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We have studied the transport properties in disparate-mass binary gases. The Hilbert method is applied to the coupled BGK 
kinetic model equations. A set of two-fluid transport equations is derived to the Navier-Stokes hydrodynamic order. The results 
are compared with those obtained using Chapman-Enskog techniques. 

1. Introduction 

Transport phenomena in mixed binary gases are generally described by coupled Boltzmann equations [ 11. 
The Chapman-Enskog (CE) expansion is the standard method of solution. The fundamental characteristic of 
this method to lowest order is that one obtains a velocity distribution function which is locally Maxwellian 
about a single temperature and velocity. Consequently, the mixture is described as a pure gas with a single 
temperature and flow velocity and a diffusion velocity is ascribed to each of its components. This is the es- 
sential difference with respect to the usual description of a pure mono-atomic gas. 

However, for disparate-mass binary gases the conventional CE method is not adequate. One needs a de- 
scription which includes the possibility of different temperatures for the different components of the binary 
mixture. In this situation it seems natural to take as the reference state (lowest order in the normal solution) 
local Maxwellians about species flow velocities and temperatures. In the last few years various studies have 
appeared with the aim of describing disparate-mass binary gases to Navier-Stokes order. Some of them are 
based on model kinetic Boltzmann equations [ 2-51. Others make use of CE-type techniques with various col- 
lision integral reorderings [ 6-91 and the remainder use Grad’s thirteen-moment [ lo- 131 approach for a binary 
mixture of Maxwellian molecules. 

The aim of this paper is the study of transport properties in disparate-mass binary gases. We start with the 
Bhatnagar-Gross-Krook (BGK) [ 141 kinetic equations for a gas mixture. Recently, the BGK equation has 
been solved by the Hilbert method [ 15,161 for the pure gas case. In this paper we apply Hilbert theory to the 
coupled BGK equations. Recently, Delale [ 171 has also used this method to solve the Boltzmann equations 
for gas mixtures. The present work differs from that of Delale. 

We compute the pressure tensor and the heat flux vector within the Navier-Stokes approximation and the 
analysis is constrained to Maxwellian molecules. The first term in the Hilbert expansion corresponds to local 
Maxwellians for species flow velocities and temperatures which leads to a set of two-fluid transport equations. 
In this hydrodynamic order there is diffusion and so these equations are not the conventional Euler solutions 
for ideal flow. In the second hydrodynamic stage the transport equations are similar to those obtained using 
the coupled Boltzmann equations [ 71. 

2. Kinetic model 

We consider a binary gas mixture whose distribution functionsA( r, Y; t) and$(r, u; t) obey the coupled BGK 
equations [ 3 ] 
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(alat+V,V,)1;=-ri,~-~1)-CjjCf;-~)~JiitJij 3 

(alat+v,V,)~=-r,j~-Qj)-CjiCf;-~)~Jji+~i. (1) 

Throughout i and j are species indices while the Greek subscripts refer to vector components. In eq. (l), Jii 
corresponds to the self-collision term of the gas i and J,, to the cross-collision term, and similarly hj and Jii for 
the gas j. Furthermore, we have introduced the parameters C,, the frequency of collisions of molecules i among 
themselves, [ii the frequency of collisions between molecules i and j, and the functions &, @i given by 

#, =n,(~~,/2nkBk,T,)” exp[ -(m,/2k,Ti)(U_ui)‘] , (2) 

$“=ni(m;/2nkgFi)3’2 exp[ -(~~,/2k,Ti)(v_ii)*] . (3) 

The parameters n,, ui and Ti are the species number density, flow velocity and temperature, respectively, 

n,= duf;, 
I (4) 

n,u, = dvvf, , 
s 

$nikBTi= 
s 

dVfmicJ 3 

(5) 

(6) 

where Vi=v-Ui is the velocity of species i. The parameters with a tilde that appear in (3) will be computed 
later by applying conservation principles. From eqs. (4)-( 6) we may define the mass density, flow velocity 
and temperature of the mixture by the relations: 

P=? j dvf,= C wb= C pr (r=i,j) , (7) 
I , 

(8) 

(9) 

where o,Eu,.- I is the diffusion velocity of species r. In order to obtain the moment equations in a two-fluid 
form [ 61, we take species mass, momentum and energy moments (1, m, V,, irn, V: ) of the coupled BGK equa- 
tions (1): 

(alat+u,V,)n;+n,V~u,=O) (10) 

p,(alattu,V~)ui,tV,pi~,=-pjCij(ui,-~i,)~~i, 3 (11) 
~~ik~(~l~tt~~~V~)T;tPi~~V~U,~tV~qi~=-~ij~~ik~(Ti-~)tf~~~~(U~-Pi)*~M~ 9 (12) 

where we have defined the momentum and heat fluxes with reference to the species flow velocities: 

Piab = 
I 

dV mi Vi, vlaf; , (13) 

qra = s du f m, V VA . (14) 

Obviously analogous expressions may be obtained for component j by replacing the subscript i by j. On the 
other hand, total momentum and energy conservation requires that 

1 L,=O, i.e., miU, t fTl,Ilj = miii t mjrl, , (15) 

C M,+u,L,=O, i.e. 3k~(Ti+_t)+miu3+~ju~~3k~(~i+$)+m,a~+mj~~, (16) r 
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where we have considered niCij=nlcji. In this way, one may easily obtain the familiar hydrodynamic conser- 
vation equations (see eqs. (6)-( 8) of ref. [ 151) although now the pressure tensor and the heat flux vector of 
the mixture will be given by 

In order to complete the model it is still necessary to compute the collision frequencies (subject to condition 
(15)) and to evaluate the parameters u’,, iij, fi and c (subject to conditions (16) and (17)). For that, we shall 
restrict ourselves to the particular case of Maxwell molecules (repelling each other with forces proportional to 
r-$) for which [ 181 cii=pini and li.= uni. In addition, if the potential parameters are the same for the three 
possible interactions, then pia J- J----- mi and YOC mi+m,. On the other hand, we expect that the most relevant 
features of the coupled Boltzmann equations will be reasonably well mimicked by the proposed kinetic model. 
Thus, we demand that the ratio of the momentum difference relaxation time to the temperature difference 
relaxation time obtained from eqs. (1) be the same as that of the Boltzmann equations for a binary Maxwell 
mixture [ 31. Therefore, 

ii=~j=i~(m,u,+mjUj)l(mi+m,) , (19) 

~~=~,+2[m;mjl(mi+mj)Z][(~-_r,)+(mjl6k~)(~j-~,)2], i-j. (20) 

3. Transport properties, Hilbert theory 

As noted in section 1, we are interested in transport phenomena in disparate-mass binary gases of Maxwellian 
molecules; in particular, for the so-called Lorentzian mixtures for which mi K mj and ni e nj. In this case, as 
a possible way of obtaining normal solutions to the BGK equations (1)) we consider a reordering procedure 
due to Grad (see section 8 of ref. [ 61). Following this procedure, the coupled BGK equations can be written 
as: 

(alat+U~V~)~=-t-‘~ij~-~i)-~~~-~j) 3 

(alat+UaVa)h= -&(J-$)-C-‘{jj(J-@j) 7 (21) 

where c E ( m/mj) “2 is the uniformity parameter. We look for normal solutions to (2 1) by means of Hilbert 
theory [ 151 expanding the distribution functions in powers of E 

_ti= kzo ~“fl”’ , (22) 

and similarly for the hydrodynamic variables. When we introduce these expansions in (2 1 ), and separate terms 
order-by-order we obtain the algebraic equations 

(23) 
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and identically for& Note that the first terms on the right-hand side of eqs. (23) are identical to those found 
in the pure gas case [ 151. These terms represent the self-collisions of a gas species. The last term involves the 
velocity and temperature differences of the two gases and represents cross-collisions between the two gases. 
From now on, in order to avoid having to specify the initial conditions we restrict the discussion to the steady 
state. 

At zeroth order, we obtain velocity distribution functions f’ to’ which are local Maxwellians defined in terms 
of the flow velocity ~1~’ and temperature Tj”, 

fl”‘=nJO’(mi/2nkBT10’)3’2 exp[ - (WZi/2/CBTj”‘) Vj”“] , (24) 

where nj”‘, uj”’ and Tp”’ are defined in the usual manner. From (24), we obtain the two-fluid zeroth-order 
transport equations, 

V,(pjO’uj~‘)=O ) (25) 

p,‘~‘~~~‘~,~~~‘+~ogj~‘~~j~~~~~~~~~~~~~c~’ 101 3 (26) 

~nl”‘kBU~‘V~TIO’+PlO’v~kU,k -n, to)- ‘yy’(p*lmi) ( 3k&P’lmj+ W0’2)&$O’ . (27) 

Here p= m,m,/( mi+ m,) is the reduced mass, W”‘=~jo’ -u IO’ is the diffusion velocity of heavy species with 
respect to the light species in this approximation, #O’= TJ”‘- Tj”’ and pj”‘= njO’kB T,!O’. According to equa- 
tion (26), in our description diffusion appears at the lowest order in the perturbation expansion. This is not 
the case in the conventional Hilbert [ 17 I or CE [ 1 I expansions because the species flow velocity uI”’ coincides 
with the mixture flow velocity u(O) in the Euler regime. This is an essential difference between both 
tions. On the other hand, the mixture momentum and heat fluxes (eqs. (17), (18)) are given by 

descrip- 

(28) 

(29) 

Here p(‘)= t~(~)k,J(~‘, and (A&) = 1 (AJ$+A,B,)- f&&& is the symmetric traceless part of the tensor 
AB. 

At the Navier-Stokes order, after some manipulation, the function fr(” may be written as, 

(30) 

where nj”, u j” and Tj” are defined fromfj”. In order to obtain the corresponding set of two-fluid equations 
at the Navier-Stokes level, we need to calculate the species pressure tensor and heat flux vector: 

where 

p,“‘= nl”k,T~“‘+njo’k,T,“’ and ~=pj~‘/cj;O) , ni=$p{o’k,lm,#‘) 
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are the pure gas shear viscosity and thermal conductivity coefficients evaluated at the species variables. Ad- 
ditionally, we have introduced the parameters 

BiE nj”‘~*C~“/miC$,“’ and AiE( nj”’ y’Cl;“‘/mf CB’) (5k&“‘l~i+! W”“). 

All the cross-collisional effects appear in the last terms of the right-hand side of eqs. (3 1) and (32). These results 
are similar to those obtained from the Boltzmann equations in the two-temperature description [ 71. 

If we introduce (3 1) and (32) in the moment equations (lo)-( 12), we obtain the two-fluid Navier-Stokes 
equations, 

v~[nlO’u~~‘+nl”uC’]=o) (33) 

V~[~jo’~~~‘Uj~‘+~~0’~~~‘U,jBO’+~f”U~~’U,$O’+~I(1’S~~-2~i(V~U~~’) +B, ( We” Ws”‘)] 

=(~~“~~~‘+~~~‘~~~‘)~~~~‘+~,‘O’~~~’~~~’, (34) 

+j0’&[z.4$“v,T I” tu~‘v,T!O’]+pjO’V~U~~‘+nj0’k,T~‘)VkU~~)-_tli(V~U~~‘VaUC’ 

tVsUC’V~sUr~‘)+#tli(V~~~~‘)*+Bi( ~~“‘~~‘)V~uC’-V,(niV~~~o’)tV,(AiW~o’) 

(35) 

where obviously W(‘)=U(” --uj” and P’= TJ(” - Tj’). These equations constitute a set of linear partial dif- 
ferential equations for the species variables n/l’ , II!‘) and Tj’), which can be solved from the first approxi- 
mation solution. From (3 1) and (32) one can easily derive the mixture transport properties. Then, after some 
algebra, the pressure tensor and the heat flux vector of the mixture will be given by 

P&fQ=p”‘G,- ~[255(V,U$‘)-B,( w~‘wS”‘)-2p!0’(w~‘,a))-p!‘)(,a)w~~’)] (rri,j), 
I 

(36) 

qt’= - C [5V~T!“‘-~(p!o’w~‘tp!“w~‘)+2~,w,(V,u~~’) -&CL@{ Wlp’Wj,“‘) 

_ @,: (p~“o~‘tp~~‘o~,‘)-p~~‘w~,o’o~,o’o~~’]+ (Ai-.4j)W$’ (r=i,j), (37) 

wherep(‘)=n(‘)keT(0)+n(O)keT(‘). A ccording to ( 34) and ( 37 ), one may observe the cross transport that ap- 
pears in the gas mixture: thermal diffusion and the diffusion thermoeffect. In this way, one may define the 
corresponding transport coefficients of the binary mixture. 

In summary, we have analyzed the transport properties in disparate-mass binary gases by means of the cou- 
pled BGK equations. The solution of the BGK model is worked out by the Hilbert method. The first term in 
the series expansion of the distribution function are shown to be local Maxwellians about the independent flow 
velocities and temperatures. The zeroth-order set of two-fluid transport equations does not correspond to Euler 
equations of ideal flow. There is diffusion in this approximation. The pressure tensor and heat flux vector are 
computed to Navier-Stokes order. The results are identical to those obtained from the Boltzmann equations 
for disparate-mass binary gases. 
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