Nonlinear transport for a dilute gas in steady Couette flow
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Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients
(steady planar Couette flovare determined. The results are obtained from the so-called ellipsoidal
statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to
account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by
constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled
variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate.
A comparison with previous results derived from a perturbative solution of the Boltzmann equation
as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions
are in better agreement with the Boltzmann results than those of the other approximations. In
addition, the velocity distribution function is also computed. Although the shear rates required for
observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here
may be relevant for analyzing computer results. 1@97 American Institute of Physics.
[S1070-663(97)02203-4

I. INTRODUCTION Even in this regime the problem remains of knowing the
spatial dependence of the transport coefficients if an exact

_One of the most interesting problems in which somegq tion s to be determined. One possibility is to consider a
insight into the behavior of nonequilibrium systems can beg; te gas for which the state of the system is completely

gainc_ed is that of steady planar Cout_atte _flow. Ithrresponds tgpecified by the velocity distribution functidi{r,v:t) satis-

a fluid between paral!el platgs maintained at different Fgm ing the Boltzmann equatiohSince in this case the ratio
peratures anq in relative motion. These boundary condmon%/Ko is constant, it is easy to solve Eqd) and (2) and
lead to comblned_ heat and momentum transpork. dindy —  gpain 4 finear velocity profile and a parabolic temperature
denote the coordinate parallel to the flow and normal to th rofile.

plates, respectively, then the corresponding hydrodynamic: —a naqg) question is whether beyond the Navier—Stokes

balance equations read as regime one may also find a solution valid for arbitrary ve-

d d locity and temperature gradients. Very recently, Tijs and

@nyzﬁpyyzo’ (1) santod have shown that the Boltzmann equation admits a
consistent solution for Maxwell moleculégarticles interact-

J d ing via anr ~* repulsive potentialcharacterized by similar

@qy__PXYWUX’ 2) profiles as those of the linear regime, but replacing in the

constitutive Egs.(3) and (4) 5y and ko by a generalized
shear viscosityp(a) = noF ,(a) and a generalized thermal
conductivity x(a) = xoF (a), respectively. Herea is the
constant(dimensionlessshear rate ané , andF, are non-

whereu, is thex component of the flow velocity, P is the
pressure tensor angl is the heat flux. Equatio2) shows
that a thermal gradientT/dy is present due to the existence

of a velocity gradient, even if both plates are at the sam inear functions ofa. Unfortunately, explicit expressions for

temperature. The above equations are not closed unless t &th functions may not be given in a closed form since they

pressure tensor and the heat flux are known functions of tthey an algebraic hierarchy that cannot be solved in a recur-

hydrqdynamm_ﬂelds. In the Navier—Stokes regime, the CONSive way. Therefore, they use a perturbation expansion in
stitutive equations are

powers of the shear rate and derive results up to the super-
Burnett approximation. If one wants to get the transport co-
Pxy=—70(n,T) @Ux’ ©) efficients for arbitrary values &, either one performs com-
puter simulations or on the analytical side one considers
kinetic models. Here, we take the second route.

An exact solution for the steady Couette flow, using the

wheren and T are the local density and temperature Wh”ewell-known BGK kinetic modef, has been available for
y P some time*® As a matter of fact, the results of Ref. 2 were

10 and k are the shear viscosity and the thermal conductiv-

. . inspired in the BGK solution. However, the drawback inher-
ity, respectively. Heren andT are related through the equa- . . ]

. _ " ent in the BGK equation, namely that it does not lead to the
tion of statep(n,T)=trP and the condition

correct Prandtl number Pr, served as a motivation to
p=const. (5) reexaming the same problem by using the Liu kinetic

d
ay= —Ko(n,T)@T, (4)

776 Phys. Fluids 9 (3), March 1997 1070-6631/97/9(3)/776/12/$10.00 © 1997 American Institute of Physics

Downloaded-05-0ct-2007-t0-158.49.20.67.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



modef (an extension of the BGK model giving Pr corregtly case of steady Couette flow. In order to have a correct
The results indicate that the main difference between th@randtl number, a differerfty can be considered. In the ES
BGK and Liu descriptions was in the generalized thermalmodel the choice s’
conductivity but it was also found that, apart from other dif- ap y
ficulties, the Liu model could yield negative values for the  fo(V)=n7 ~“(deta) Zexp(— o ViV)), @)
velocity distribqtioq function3 Whi(;h is p.hysically mea_ning- where a=A"1 and\; = A, — (B/p)P; . Here,p=mn, m
less. Another kinetic model in which neither of these mcon-being the mass of ajparticlje y
sistencies is present is the ellipsoidal statisti¢&lS ’
modell’ In the ES model the local Maxwellian of the BGK
collision term is replaced by an anisotropic three- HZI dvf, ®
dimensional Gaussian involving the pressure tensor and the
Prandtl number. When Prl, the ES model reduces to the is the local number density}/=v—u,
BGK equation. Since the ES model avoids the two difficul-
ties mentioned above, in this paper we will use it for the u:}f dwvf 9)
analysis of the steady planar Couette flow. As described be- n '
low, the comparison with the perturbative solution given by , 4 ,
Tijs and Santdsshows that the results from the ES model 'S the local flow velocity A=(2kgT/m)Pr =, kg being the
are in much better agreement than those from either the BG@0!tzmann constant,
or the Liu models. This suggests that in general, the shear- m
rate dependence of the transport coefficients predicted by the T= j dvV2f, (10)
ES approximation will be close to the one that might be 3nkg
obtained from t.he exac_t Boltzmann equation. _ is the local temperatur&=2(Pr*—1), and

The paper is organized as follows. In Sec. Il we give a
brief description of the ES model. In Sec. Ill we construct a
consistent solution of the ES model for steady planar Couette Pij= f dvmV;Vif, (11)
flow. The main transport properties of the problem are evalu-
ated in Sec. IV. In Sec. V, the velocity distribution function is the pressure tensor. The Prandtl number Pr in this model
corresponding to the bulk of the system is explicitly obtainedcan be seen as an adjustable parameter to get the same shear
in terms of the nonequilibrium parameters of the problemyviscosity and thermal conductivity coefficients as those of
Finally, we close the paper in Sec. VI with some concludingthe Boltzmann equation. If one sets=F;, f, reduces to a
remarks. local Maxwellian which amounts to saying the BGK model
is recovered in this limit. Notice that the reference function
involves not only the conserved hydrodynamic fields as in
the BGK approximation, but also the dissipative momentum
flux. In a dilute gas, the other relevant dissipative flux is the
heat fluxg defined as

The general idea behind the formulation of a kinetic
; . L m
model is to replace the complicated Boltzmann collision op- q:J dv—V2V{. (12)
eratorJ[ f,f] by a simpler expression but retaining the main 2
physical properties of the former. The usual choice is a re-
laxation term of the form

Il. THE ELLIPSOIDAL STATISTICAL (ES) KINETIC
MODEL

In this model, it is straightforward to evaluate the trans-
port coefficientsn, and «, appearing in Eqs(3) and (4).

JE,f1=—v(f—to), (6)  The resulti$
wherefy(r,v;t) is a certain reference function whose explicit nkgT
form must account for the conservation laws but it may be 70~ pr-1° (13
chosen in different ways. The influence of the interaction
potential considered is included through an effective colli- 5 nkéT
sion frequencyr, which is velocity independent but it can Ko=5 "my - (14)

depend on the density and temperature. For instance, for

r~/ potentials,y « nT* whereu=(1/2)—(2//). The sim-  If we identify v with a given eigenvalue of the linearized
plest selection foff ; corresponds to the model proposed by Boltzmann collision operator and take=2/3, then the ex-
Bhatnagar, Gross, and KrogBGK),® wheref is the local  pressiong13) and(14) coincide with those derived from the
equilibrium distribution function. In spite of its simplicity, Boltzmann equatiof’ Strictly speaking, this identification is
the BGK model has been shown to be reliable in several faonly exact for Maxwell molecules and for what is known as
from equilibrium states, such as the uniform shear fland  the first Enskog approximation to the transport coefficients
the steady Fourier flowNevertheless, it has some deficien- of other interaction laws. Although the actual calculations
cies like the prediction Pfl instead of the correct Prandtl will be carried out for arbitrary values of Pr, in the end we
number. This is particularly important in situations wherewill only consider the cases of P2/3 (ES resultsand P=1
combined heat and momentum transport occur, as it is théBGK results.
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IIl. CONSISTENT SOLUTION FOR THE
HYDRODYNAMIC FIELDS

k

o\t o d
f=(1+vy£> f0=k20 (=) - xfo. (21)

Let us consider a dilute gas enclosed between two par_i_h il f th diti for the densi d th
allel plates in relative motion and maintained at different e fulfillment of the conditions for the density and the

temperatures. Let the axis be parallel to the motion and the velogity V readily follows after sqbstitution of_Eo(Zl) in
y axis be normal to the walls. We are interested in analyzin lations(20). On the other hand, in contrast with what hap-

e
a steady state under arbitrary velocity and temperature gri)_ens in both the BGK and the Liu models, the condition for

dients along the direction. In this case, the ES model yields the temperature gives in terms ofa and the nonzero ele- .
ments of the pressure tensor whose shear-rate dependence is

not known. Consequently, in order to close the problem, the

J
Uy@f:_”(f_fo)' (15 evaluation of these nonzero elements is also needed. This
o . leads, in principle(see Appendix A to the four coupled
wherefy is given by Eq.(7) with nonlinear implicit Eqs(A14), (A15), (A16), and (A18) for
Ap—BP,, BPy 0 the set{y,P,,Pyy.P,4} as function_s of the shear rate
Here, we have taken into account  that
= P BPyy Ap—BPy, 0 (16) Pw=3p—Py,—P,,. If we now set P+1, theny(a) obeys
A A a closed equatiofnot involving the pressure tengand one
0 0 Ap—BP,, recovers the BGK resulfs.

- ) 5 For Pr£1, although the natural parameteras from a
Here, A=A%p"—ABp(Pyx+Pyy) + B (PxPy,—P})) and  practical point of view it is convenient to tak& [defined by
the structure ofa reflects the symmetry of the problem. Eq. (A13)] as an independent variable. This allows us to

Since our interest lies in obtaining the hydrodynamic profilesexpress explicitly all the unknowns as functions f In
in the bulk of the system far away from the plates, rathemarticular,

than introducing the appropriate boundary conditions for Eq.

(15), we first assume a given form for the profiles and later _P " B +
we verify their consistency. Thus, we expect to describe Y Ap(l Bl1=2B(F1+2F2)])A, (22
transport phenomena in the bulk region by looking for a
consistent solution regardless of the actual characteristics &
the boundaries. This idea has already been followed in pre-  (2-BC;)?
vious works. aZZT
In the same way as in the BGK descriptibme assume
that Eqg.(15) admits a solution consistent with the profiles Ap(2C3—3BC;C4)+3p(2—BC;)(2—BC,)
2 2 2 — 2
p=nksT = const, 17) B4(C,F§+ CiF1) —2B(Fy+2C.F,) +4F,
) (23
—5 Ux=a=const, (18)  Here,
52 om Ci(B)=2B(F1+2F5) 1, (24)
— T=——y(a)=const. 19
Js°® kg va) 19 CaB)=2B(F1+Fz)—1, (25)
Here, we have introduced the scaled space varsdkfined C3(B)=2B(3F,+2F,)—3, (26)
through the relatiords=v(y)dy. The variables measures
the distance in units of mean-free paths, and also it scales all C4(B8)=28F;—1, (27)

the influence of the interaction potential. Therefore, in terms

of s the results are independent of the law of interactio
considered. Of course, one can rewrite the profiles as fun
tions of y when one knows the dependenceobn n and
T. Further,a is the reduced shear rate ap¢a) is a dimen-

sionless function to be determined by consistency. This func-

tion measures the curvature of the temperature profile.
To verify the consistency of the assumed solution it is
necessary to prove that

In order to show that relation®0) are fulfilled, an explicit
expression foif should be required. Such an expression will

3p

f dv{1V,V3f= ( n0, (20

n
C

and the functiond,=F,(B) are defined in Eq(Al1l). In

two instances, namely, for small and large shear rates it is

possible to directly relater anda. In the former case,

Pr 4
y(a)= —a? 1— —(7PP—35Pr10)a%(+---, (29
5 25
while in the latter case,
y(a)~ 3a% (29

Notice that whereas for small shear rates the ES and BGK
equations predict different behaviors fgt the asymptotic
value for the ratioy/a? is the same for both models. This last
result contrasts with the one found in the Liu modehere

be provided in Sec. V. However, at this stage it is sufficientno physical solutions consistent with the profilds)—(19)

to use the formal series representation,
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IV. TRANSPORT PROPERTIES 1.00 g e

F :\‘ ]
The transport properties of the steady Couette flow are " o0.90 [\ 7
related to the momentum and heat fluxes. We begin with the E \ ]
nonzero elements of the pressure tensor. In terms, dfiey 080 e E
are given by oo | \\ ]
C1(B) 5 T :
A, B 0.60 [ R -
Pyy=Ap BC,(B)—2’ (30 - T ]
B 050 F T ]
4 C ]
PZZ:Ap _ 91 (31) 0.40 :JLIIIIIII|IIIIIIIII|IIIIIlIIL!I$IIIII|I|IIIIIIIII_
BC4(B) =2 " 00 0.2 0.4 0.6 0.8 1.0
0 a?
P.w=—"2Ap —————>a. 32
v~ 2R B, (B)? .

Noti hat th d licitly d d FIG. 1. Shear-rate dependence of the reduced shear viscosity
otice that the pressure tensor does not explicitly depen OEﬂ(a)= n(@)! 7, for the ES model—-), the BGK modek— — ), and the

the thermal gradient, as it also happens in the solution of theju model (- - -)
Boltzmann equatioA.The xy element defines the nonlinear
shear viscosityy(a) = noF ,(a) with

Pr Before we analyze the general shear-rate dependence of
F(a)=——Py. (33)  the transport coefficients, it is interesting to consider the
pa small shear rate limit in order to make a comparison with the
Normal stress effects are measured by the viscometric funderturbative solution of the Boltzmann equatfoin this
tions¥,(a) and¥,(a). In reduced form, they are defined as limit, one gets

_ 6 2
¥,(a)= Pyyprzzzxx' (34) F,(a)=1-3sPrl+2Pna“+ , (39
P W(a)=— %+ £ (149PF+ 150PF 70)a%+ - - -, (40)
P2z~ Pyy
Vy(a)= oPPa? (35 Vy(a)= £ — £:(49PP+ 75Pr+20)a%+ - - -, (42)
The explicit expressions df,, ¥;, and¥, can be easily F.(a)=1— X(16PF+85Pr20)a+ - - -, (42)
obtained by substituting Eq$30)—(32) into Egs.(33)—(35).
Now, we turn to the heat flux vector. Although the tem-  ®(a)= z(Pr+1)a+---. (43

perature gradient is only directed along theaxis (so that In the lowest orderBurnett ordey, both viscometric func-

]Elhere. 'Za response in this directiothe ;f)r(ra]serr:ce c])('; the_?rrllear tions coincide with the Boltzmann equation values irrespec-
ow induces a nonzere component of the heat flux. These o ot the choice of the Prandtl number. This is also true for

components, which are calculated in Appendix B, have thqhe Liu model if an adequate choice of the ratio of the two

form collision frequencies introduced in the model is matié&n
Pr a2 J the other hand, the numerical coefficient corresponding to
Qy=—rog 7':7,(3)@1', (36)  the super-Burnett contribution ®,, is different for the ES

model (Pr=2/3), the BGK model(Pr=1), and the Liu
pks d model. Comparing with the Boltzmann restilthe relative
qX:E(D(a)@T' (37 error for the ES model is around 15%, while for the other
o ) two models is larger than one hundred per cent. Concerning
whered(a) is given by Eq(B31). From Eq.(36), which can  the transport of heaE , is again different for the three mod-
be regarded as a generalization of Fourier's law, one may|s The comparison with the Boltzmann predicfiandi-

define a generalized thermal conductivity coefficientcates that the relative error in this case is around 8% for the

k(@)= koF () in which ES model, 100% for the BGK model, and 22% for the Liu
r a2 model. As ford(a), the ES model gives the exact Boltz-
Fk(a)=§7Fn(a). (38 mann value while the relative error in the BGK model is

around 20%. The above comparison clearly indicates the
Equation(37) provides information about the anisotropy in- superiority of the ES model versus both the BGK and Liu
duced by the shear flow. It gives the transport of energymodels.
along thex axis due to a thermal gradient parallel to the To gain some more insight into the performance of these
axis. This effect is absent in the Navier—Stokes regime andinetic models, in Figs. 1-5 we displdy, , F., ¥V, V,,
in fact, the corresponding transport coefficient, is a generaliand Q=®/((7/2)(Pr+1)a) as functions of the shear rate.
zation of a Burnett coefficient. To the best of our knowledge Except forQ), we observe that the qualitative trends are simi-
this is the first time that the shear-rate dependence (@) lar for all three models, namely, the corresponding transport
has been explicitly provided. property decreases as the shear rate increases. According to
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FIG. 2. Shear-rate dependence of the reduced thermal conductivity
F (a)=«(a)/k, for the ES mode(—-), the BGK model— — -), and the FIG. 4. Shear-rate dependence of the reduced second viscometric function
Liu model (- - -). V¥,(a) for the ES mode(—-), the BGK model— — -, and the Liu model

the smalla results discussed above, one expects that the

Boltzmann equation will also present the same behaviormation on the distribution function, but the latter cannot be
Nevertheless, the quantitative discrepancies, especially b&xplicitly determined. Perhaps, one of the main advantages
tween the ES and BGK results, become rather signiﬁcan@f considering kinetic models is that the velocity distribution
with increasing shear rate. In general, the BGK values aréunction may be obtained. In the cases of the uniform shear
lower than those of the ES model and it is somewhat surprisfiow® and the Fourier flow,the BGK solutions have been
ing that the Liu model is numerically very close to the ESShown to present a good agreement with Monte Carlo nu-
model for the generalized thermal conductivity and the secmerical solutions of the Boltzmann equation, especially in
ond viscometric function. The most notable difference bethe region of thermal velocitie$. This fact suggests the re-
tween the ES and BGK models shows in the cas@ ofNot I|ab|l|ty of kinetic models for describing the “real” distribu-
only there is a huge quantitative discrepancy, but for not todion- . o o _

large shear rates while the ES approximation predicts an in-  In this section our aim is to get an explicit solution of the
crease of the transport of energy along thelirection, the Stationary ES equatior(15) incorporating the specified

opposite trend is present in the BGK approximation. boundary conditions. Since we are interested in describing
the bulk of the systentoutside of the boundary layerwe
V. VELOCITY DISTRIBUTION FUNCTION will consider idealized boundary conditions under which the

contribution to the distribution function arising from the
Itis evident that the general description of transport pro-houndary term vanishes. One possibility is to choose moving
cesses in a dilute gas requires the explicit knowledge of thgjates with zero temperature at the walls. These are condi-
VE|0City distribution fUnCtiorf(r,V;t). Unfortunately, all the tions describing an infinite Systeﬁm the sense that the sepa-
known exact solutions of the Boltzmann equation for inho-ration between the plates is infiniteorresponding to planar
mogeneous situations are given in terms of a finite number of guette flow between very cold walls. In this special case the
moments. These moments constitute the only indirect inforboundary layers vanish as the Knudsen number vanishes at
the walls. Consequently, neither velocity slip nor tempera-

1.00 P e T e

i ) ] o 150 ]

L ] E

080 . L 25 3

AN i .

NN ] 1.00 3

0.60 N . F\ ]

L N B C ]

C N ] 0.75 £\ =

- \\\\\ 4 NN 4

L ~ Tl N C ~ =

0.40 - TN . 050 | ~ . E

L T 025 E T e~ L]

0.20 oonlen it e e F ]

° C Lo v v v v b e by s
0.0 0.2 0.4 0.6 0.8 1.0 0.00 H '

0.0 0.2 0.4 0.6 0.8 1.0

(lz 2

a

FIG. 3. Shear-rate dependence of the reduced first viscometric functioflG. 5. Shear-rate dependence of the cross coefficient
W, (a) for the ES mode(—-), the BGK model— — -), and the Liu model  Q(a)=®(a)/((7/2)(Pr+1)a) for the ES mode(—-), and the BGK model
(---). (=9
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ture jumps at the walls can be predicted from this type of
solution. Such a solution can be considered a®rmnal so-
lution since the effect of the boundary conditions appears
only indirectly through the explicit space dependence of the
hydrodynamic fields. In the context of the BGK model, the
appropriateness of such a solution has been thoroughly ex-
amined in Ref. 13. For the present kinetic model, the same
type of arguments also apply.

In terms of the scaled variabk the formal solution to
Eq. (15 is

=% T o e 5L B e e

v
2.0

“ 7y

1.5

1.0

0.5

o v v v by b v b

LINLIL S B B o B B 2 B )

S—Sg s 00 Divrovin i i bt
f(s,v)=ex4 - )f(so,v)+ J ds’ -2.0 -1.0 0.0 1.0 2.0
S,
’ , ° &y
XeXF{ - >—fo(S',V), (44) FIG. 6. Reduced distribution functioR,(§,) versus¢, for a=1 and
Uy /Uy e=1. The solid line refers to the ES model while the dashed line corre-
wheres, is an arbitrary point. According to the symmetry of SPonds to the BGK model.
the planar Couette flow, it is sufficient to get the half distri-
bution f  (s,v)=0(v,)f(s,v), ©® being the Heaviside step
function. As said before, we want to get rid of boundaryf_(s,v)
effects which can be achieved by choosigg such that 20(1+ )2
T(sp)=0 and imposing the boundary condition =fLE(s,v)et > (defa)V?
f . (sg,v)=0. After having found in Sec. lll a consistent so- el §y|
lution characterized by the profil€$7)—(19), Eq. (44) is no 2(1—¢) 20 1—t
longer a formal expression. Substituting these hydrodynamic X j dt[2t—(1— g)t2]5’2exp< - — —)
profiles into(44), and after some manipulations, one obtains ! 1+4 ey
the following expression fof , : p{ 1+¢ _ 2al 1—t)2
32 Xex T or 1 2| Uxx xt—
f+(s,v)=fLE(s,v)egzzg(l;g)(detE)l’2 Ao T e
€&y ey ey 2a; 1-t
1 Zg 1—t + ayy§y+ (12ng+ 2axy§y( §X+ m T) ] y (49)
xf dt[2t—(1—§)t2]5’2exp(———) _ _ _
0 1+ €&y where the change of the dummy integration variable
14+¢ 2a; 1—t\2 t—[2—(1+)t]/(1—¢) has been performed.
Xexp[ - axx( L __> Equations(45) and (49) clearly show the complicated
2t—(1-0t 1+¢ e dependence of the distribution function on the two nonequi-

+'&yy§§+EZZ§§+ 2y, the shear rate appears throughnd the nonzero elements of
(45) « (which is related to the pressure tensdn the BGK case
(Pr=1), ay=ay,,=a,,=1 anda,,=0, and one recovers

Here, we have introduced the local equilibrium distributionprevious result@ln order to investigate the distortion of the

2a¢ 1_t)H librium parameters and e. Notice that the dependence on

St1r7 e

function, distribution function with respect to the local equilibrium, it
m |32 m is convenient to define the marginal distributions,
LE_ _ 2 - -
f N n( 27TkBT) eXF{ ZkBTV ) ! (46) o ffoodgxffoodng
£&=(m/2kgT(s))Y4(v—u(s)) is the velocity reduced with the —eHox) —t67
thermal local velocity, and and
€ JEodEy ST dEf
= y 4 = Y
v @7 &)= T 4e 7 dg i &y
where In Figs. 6 and 7 we ploR, and R,, respectively, for
2kg | 24T a=e=1 and for the ES mod&Pr=2/3) and the BGK model
= ( mT(s)) s (48) (Pr=1). Since the system is far from equilibrium, the distor-

tion from local equilibrium R,=R,=1) as well as the

is the reduced local thermal gradient. Further, the dimensiorasymmetry are quite evident. Although the dependende of

less element§ij have been defined in Appendix A. ona ande in both models is very different, the shape of the
The symmetry of the problem implies that the other half-marginal distributions is rather similar at least in the range of

distribution f _ can be obtained from Ed45) by changing thermal velocities. This is consistent with the general shear-

eto —eandéto —¢: rate dependence of the main transport properties. Neverthe-
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latter if one sets the Prandtl numb@vhich explicitly enters
as an adjustable parameter in the collision term of the ES
approximation Pr=1.

We have found a consistent solution of the ES model
characterized by a uniform pressure, and linear velocity and
quadratic temperature profiles with respect to a given scaled
variable. The scaling allows us to haveuaiversaldescrip-
tion, namely the results are independent of the interaction
potential considered. The ES solution is a close relative to
the ones derived earlier for the BGK and Liu models, and
05 bttt b e b b without this previous insight the formulation of the problem

-10 —05 0.0 05 1.0 with the ES model would have been an almost insuperable
£ task. Nevertheless, it must be pointed out that the presence of
the pressure tensor in the collision term gives rise in prin-
ciple to four coupled transcendental equations that cater for
the consistency of the sought solution. Concerning the trans-
ort properties, we have determined the generalized shear
iscosity F,(a), the generalized thermal conductivity
F (@), the viscometric function¥, 5(a), and a generalized
cross coefficientd(a) measuring the transport of energy
along the direction normal to the thermal gradient. This last
coefficient had not been calculated previously. All coeffi-
VI. DISCUSSION cients exhibit a monotonous decrease with the shear rate,
although®(a) only does so after attaining a maximum. The

In this paper we have examined a steady nonequilibriungomparison of the ES model results with those obtained from
problem involving combined heat and momentum transportihe Boltzmann equation in the limit of small shear rates
The system consists of a dilute gas enclosed between tWggicates that there is a better agreement than using either the
relatively moving parallel plates which are kept in general atgGk or Liu predictions. This fact suggests that, for finite
different temperatures. An appealing aspect of this stat§|yes of the shear rate, the exact Boltzmann results will not
which is known as planar Couette flow, is that it is generateqyq 15 far from the ES results. In order to test the value of
by means of realistic boundary conditions and hence, it cagyis conjecture, it would be very interesting to perform com-
be in principle implemented experlmentally. Neverthelessputer simulations, a task that we are currently considering. It
because of the way the system is sheared, the density, ﬂ°¥\hould be pointed out that in the two limiting cases of pure

velocity, ar_1d temperature are nonhomoggne0us, thus makirLﬁﬂform shear flok* and pure planar Fourier floW,where
the analysis of this problem more complicated than say th%omputer simulations are indeed already availdbléhe

case of uniform shear flofy. forms of the relevant transport properties allow us to con-

In planar Couette flow, there are two parameters measur- .
: S clude that the agreement found when comparing the BGK
ing the departure of the system from equilibrium: tfne-

duced shear ratea and the(reducedl thermal gradiene. mggg: and the Monte Carlo results will also hold for the ES

The main motivation of our study has been to obtain the Apart f luating the t ; " h
transport properties, which are related to the pressure tenso part from evaluating the transport properties, we have

and the heat flux vector, for arbitrary valuesafinde. Of a[so explicitly obtained the velocity distribution function.

course, the natural framework to pursue such a study is thehiS guantity provides all the complete information on the

exact Boltzmann equation. However, due to the Complexit)ponequilibrium state of thg system. Our solution applies qnly
of the problem, so far it has only been possible to get d" the bulk of the system, i.e., far away from the boundaries.

perturbative solutioh up to super-Burnett order. Conse- IN the same way as in the BGK_mod_éh,n order to get such
quently, the other alternative if one wants to derive analyticaP Solution we have considered idealized boundary conditions
results is to use simple kinetic models. This had already beeff Zzero wall temperatures. The velocity distribution function
done for planar Couette flow with the B&kand the Lig  displays a strong dependence on the nonequilibrium param-
models. The results of these two models present drawbackgters and so a great distortion from local equilibrium is ob-
in the BGK model the Prandtl numbéwhich plays a key served. Once again, the availability of simulation results for
role in this situationis not given correctly, while in the Liu the distribution function of the Boltzmann equation would be
case, which does not share this difficulty, unphysical predicwelcome to assess the reliability of our result.

tions (such as negative values for the distribution function It could be argued that since planar Couette flow in-
restrict its range of validity. In view of these limitations, it volves realistic boundary conditions, a comparison of our
seems natural to consider another kinetic equation thaesults with actual experiments would be in order. While this
avoids such drawbacks. A good candidate is the so-calledould of course be highly desirable, the following argument
ellipsoidal statisticalES) model’ that can be seen as an suffices to show that the goal is so far unreachable at least for
extension of the BGK approximation since it reduces to thisa low-density gas. The main goal of this work has been to

LI B e e O D N O N O |

|
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T T T T T 77T

1.0
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||/||I||||Ix|x|I|||

FIG. 7. The same as in Fig. 6, but fB;(&,) as a function of, .

less, there exist significant discrepancies especially for Iargg
and negativet, and/oré,. This may probably explain the
differences observed fay, where large velocity tails play an
important role.
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consider non-Newtonian effects as given for instance by the Now, we are in conditions to verify20). Let us start
reduced shear viscosify,(a). In order to compute the ac- with the density. Taking into account the series representa-
tual velocity gradient, an expression for the collision fre-tion for f, one gets

guencyr can be obtained from the Navier—Stokes shear vis-

cosity 7o through wv=(Prp)/ny. Consequently, "

du,/dy=av=(pPra)/ 9. Now, from Fig. 1 it follows that _ _ap K 112 KaCV, alaVy

a 10% decrease in the nonlinear shear viscosity with respeqL dvf=m g‘o (=d5)"n(dew) J dvvyer

to its Navier—Stokes value occurs far=0.316. If we con- 2kgT\~

sider argon ap=1 atm andT=273 K, the experimental Xexr{—( ) i
value of 7, (Ref. 10 is 7,=2117x10"" gcm s ™!, so

2
iVvi

that for such a change to be noticealfébout 10%) one =732 5%*n(deta)?
needsdu, /dy=3.29x 10° s L. Clearly such a high shear k=0 T
rate is presently unattainable in the laboratory and this fact % f dvvz"ex;{—< B )Bivf}
precludes a direct comparison with experimental resfilks. " Y m
this sense, the derivation of explicit expressions for the trans- p Kg k~_k ok
P L =n+—2> (2k—D)!I| —| by *e2Tk"1=n, (A4)
port properties in far from equilibrium states may prove to be kg1 m) Y

useful for analyzing computer simulation results.

As a final point, we want to remark that in spite of the
apparent simplicity of kinetic models, their relevance in deal-since according to the dependence of the temperature, for
ing with nonequilibrium problems cannot be overlooked. Ink=1, 92Tk=1=0. This automatically implies the verifica-
fact, they have been shown in the past to be very reliable fotion of the first consistency condition. The condition for the
evaluating nonlinear transport properties in severak component of the velocity is
problems®? In this context, our results may be regarded as a
further confirmation of the usefulness of the ES model.

f dvV, f =7~ 32D f AWV, ( — d)*n(deta) Y2 5eVy? Vx
k=0
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APPENDIX A: CONSISTENCY OF THE SOLUTION + 732
In this appendix we show that the kinetic equatids) X > (k+ 1)(9'§n(deta)1/2f dv(—V,)k+?
admits a consistent solution given by the profi{&g)—(19). k=0
For that, it is necessary to prove EQO), namely,f repro- 2kgT\~ ,
duces the five conserved hydrodynamic moments. In order to xexp — m biVi

compute the above relations, it is convenient to rewrite the P _
exponential term exp(a;V,V;) appearing irf in the form = EE (2k+1)1b, “"Plc—(2k+1)a]
k=0
J m ~
ERVAVAR . —— _b\V2 kgT\ k1
expl — a;j; ViVj) exy{ cVy av)()exr{ KT b;V; ) Xa§k+l<i) -0, (A5)
(A1) m

Where =y /@y, Dy=axx, By=ay,—(a2/ay), and
b,=a,,. Here,'c?ij =(2kgT/m)a;; and use has been made of where use has been made of the operator identity
the identity

1% -
exp( cvyW)@(vx,vy,vz):cb(vx+cvy,vy,vz). eV =Vyds—akds t. (A6)
X

(A2)
The eIement§ij as well as’Bi do not depend oB since the The con5|s_ter_1cy cond_lt_lons for theand z components of
\/ can be similarly verified.

ressure tensor is uniform in the steady planar Couette flow. e .
P -y pa The fact that the reference functidg is given in terms

Further, it is easy to show that detb.b,b, and in the f th h h g q .
following, we will make use of the general property of the pressure tensdwhose shear-rate dependence s not

' known) implies that the condition for the temperature does
not lead to a closed equation feras a function ofa. It is

cV,dl VvV —_ —cV,dl oV
j dvG(V)e™ XF(V)_J dVE(V)e "HTG(V). thus necessary to compute the nonzero elements of the pres-
(A3) sure tensor. Th&x element is
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- 2kgT\~
Py =M f dwW2f=mm 32>, f dei(—&s)kn(dem)l’z\/)‘jecvy””\’xexp{—( nf )biv?}
k=0

2k T
5 )bv2
m

=mm =32, dkn(deta 1/2f de)Z((—Vy)keCVW’erx;{—< +2amw*3’22 ka% ™ n(deta)?
k=0

2k T
B )bv2
m

f dwV,(—V,)keYy ”"’Vxex;{ —(

xexp{—

Here, since\/ﬁ is a quadratic function of the variabte we have used the identity

+a?mm 3’22 k(k—1)d5 *n(deta) f dv(—Vy)keVy?Vx

2ks T\~

(A7)

oKvZi=V25k—2aka Vv, —a%k(k—1)85 2. (A8)

Taking into account the propertf3), one gets

+2mam 32

e 2kgT\~
Py =M 3’2;) 9&n(deta) 2 J dv(Vx—ch)Z(—Vy)kexr{—< — )bivi2

+mam 32

- 2kg T\~
xkz (k+1)o7'§n(deta)1’2f dv(VX—ch)(—Vy)k“ex;{—( n:‘ )biv?‘
=0

X kZo (k+2)(k+ 1)a§n(dera)1’2f dv( —Vy)k+zexp{ ( ZkBT) b, vz}

~ ~ - -~ ~ keT\X
=p(by t+c%by H+p >, (2k—1)!!b;"[bx‘1+(2k+1)czb;1]a§k(% +2pa
k=1

- k
x 2 (2k+1)(2k+ 1) o+ (ke+ 1)a]a§k(kBFT)

=p(b '+ cz"b';l)+pk21 (2K)!(2k— 1)1 [by t+ (2k+1)c%b, 1](— yiby)k+ 2pa”6\;1k20 (2k+ 1)1 (2k+ 1)1

k
-‘Ey_) . (A9)

<

X[c+(k+1)a]

This equation may be represented in terms of the function€onsequentlyP,, can be cast in the form
F.(X)=[(d/dx)x]"Fo(x), where

, Pux=Pby '[1-28F1(8)]+pc?b, {1 2B[F ()
2 —t -
Fo(X)=;f dttexr{T)Ko(le"‘tl’z), (A10) +2F,(B)1}+2pab, Y[cFo(B)+aFy(B)], (AL2)

Ky being the zeroth- order modified Bessel function. The aswhere we have introduced the auxiliary variable

ymptotic series of, is*
B= 'El (A13)

Frx)=2 (k+1)"(2k+1)!(2k+ ! (=x)k. (ALl
") Z ' ) (=0 (A1) Similarly, theyy element of the pressure tensor is
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P =mJ dvv2f ” KaT)\ K
yy y _ -1, -1 _ -k 2k "B
=pb, 1+ ph, gl (2k—1)!th, as( m)
:m’7773/22 (_&S)kn(detll)llzf det”eCVy‘WVX
k=0

=pb; 1+ pE;lkZl (2K)1 (2k—1)!1 (- B)K

2kgT |~
Xex"H m )b‘viz} —pb, [1-28F )] (A15)

The consistency condition for the temperature follows from
the fact thatP,,+ Py, + P,,=3p. Use of Eqs(A12), (A14),
and(A15) leads to

pg,o (2k+1)!1b, *F D2 (kg T/m)*

= pBilgo (2K (2k+ D)1 (= )k by 4 (1+¢?)b, t+b, -3+ 2ab, [cFo(B) +aFy(B)]
=pb, Y{1-28[F(B)+2F,(B)]}. (A14) :25{’5;1':1(3)+(1+C2)B;1[F1(ﬁ)+2Fz(ﬁ)]
+b; 'F1(B). (A16)

The zz element of the pressure tensor is
The only case in which EqA16) provides a direct relation-
ship (not involving the pressure tengdsetweeny anda is

— 2
PZZ_mj vz T Pr=1 (BGK approximatioi. In this casep;=1 andc=0,

. so that
7322 (=99 n(dew) 2, 1(7)+2F 5(y) .
Fi(y)
2kgT\~ ; .
Xf dVV?VkeCVY&/ﬁVxeX _ B biVi2 F|_nall)_/, thexy element of the pressure tensor is also needed.
Y It is given by

= 2k T\~
nysz dw,V, f=mz %23 fdex(—as)kn(deta)l’zv)'j*1e°"v"’”"xex;{—( rr? )bivf}
k=0

- , 2kgT\~
— m’7773/22 (_ &S)kn(deTa)llzf dVVXVI;,+ 1ech3/deeX[{ _( B )
k=0

bivf}—maw‘g’z

- , 2kg T\~
Xgo(kJrl)(—&s)kn(dem)l’ZJ de')‘,*ZeCVy”’erxp{—< rr? )biV-Z}

- 2kgT
=mam 32D, (—as)kn(deta)l’ZJ dv(VX—ch)V)‘j”exp{—( 5 )bivf}—maw‘m
k=0

m

X > (k+1)(— dg)*n(deta) 2 f dvv§+2exp[ - ( ZkBT)Biv?}
k=0 m

==p2 (2! (2k+1)1by o+ (2k+1)al(~ B) =~ pehy {1 - 2B[Fu(B) +2F5(B)1} —paby 'Fo(B).  (A18)

From a mathematical point of view, the problem is now system is very complicatea priori, since the coefficien@i
well posed in the sense that we have fdimdependent depend on the pressure tensor and this dependence involves
coupled equations, for instance Ed#14), (A15), (Al6), the functiond=, . Nevertheless when, insteadafwe takeg
and (A18) for the unknown se{y,P,,P,,,P,;} as func- as independent variable it is straightforward to explicitly ob-
tions of the shear rate. These equations guarantee that ourtain v, a%, and the elements of the pressure tensor as func-
solution is self-consistent. As it stands, the solution to thistions of 8 [cf. Egs.(22), (23), (30), (31), and(32)].
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APPENDIX B: CALCULATION OF THE HEAT FLUX On the other hand, the computationgyfis rather more

In this appendix, we evaluate the two nonzero compo-'nvowed' This component is defined as

nents of the heat flux vector, namety, andq, . In the latter

case, rather than a direct computation, we will profit from the qX:TJ' AWV, f = T(|X+|y+ 1), (B2)
fact that the consistency of the solution necessarily implies 2 2
thaf
oT where
Gy=—koF () —c, (B1)
_ 2
wherekg is given by Eq.(14). By substituting Eq(B1) into IX'V'Z_f AWy 2Vl (B3)
the energy balance equati®), one gets the result quoted in
Eq. (36). We will start with|,. This contribution is given by
-312 . k 1/2 3 KaCVydl V. 2kgT |~ 2 -32 . k-1 1/2 2
l=m"32% dn(deia)V?| dv3(—V,)*eVy"Mxexp — ——|biVP|+3am > koS In(deta) V2| dvv2
k=0 k=1

©

2kg T\~
x(—Vy)keCVya’ﬁVXex;{—( n? )bivi2 +3a%m 3% k(k—1)d% *n(deta) 2 f dvV, (= Vy) ket Wy Vx
k=2
2KgT )~ - 2KgT |~
Xex;{— n‘? biV?Z | +a3m ¥ k(k—1)(k—2)dk >n(deta)*? f dv(—Vy)keCVyﬁ’erx;{—< n‘j )bivf}
k=2
=IP+1@ 1P+, (B4)

In deriving the last line, we have accounted for théepen-

where the operator identity, dence of the temperature so that

MV3=V35K—3akdk V2 —3a%k(k—1)dk 2V
s o s kBT)k+1 kg (2k+2)!

o e kaT (B7)

m 2

—a%k(k—1)(k—2)dk"2, (B5) ﬁﬁk“(

) i N . -
has been used. The tenf} is The other contributions tb, are calculated in a similar way.

The results are

V= 77*3’220 aén(deta)l’zf dv(V,—cV,)3

X(—Vy)kex;{ —(ZI;:‘T>EV?}

kgp ~_, ~_ o
12 =6-20 a, {5, *Fa(8) + T, [F(B)

. + 3F2(B)1}dsT, (B8)
=— 73 gn(deta)? f dv(3cVyVZ+c3Vs)
k=0 k ~
e 1(91=6"25 a7Ch, °[4F4(8) + 4F5( B) + Fo( )14,
x(—vy)kexr{ —( nE: )bivf} (B9)
KgP < and
=B k1) (2k+ 1)1 (2K )1
m=k=o
~ ~ ~ k ~
X by '[3chy T+ (2k+3)cb, M](— B)<asT I;4)=4m%pa3by_2[4F5(ﬁ)+8F4(,8)+5F3(,8)
Kgp~_, ~_ ~_
= —7b, 3¢, 'Fy(B)+2¢%, '[Fo(8) +Fo(B)14T. (B10)
+ 2F1(B)]9sT. (B6) The second contributioh, in Eq. (B20) is given by
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_ 2
ly= J A
=7-r‘3/2k20 f dvV, V2 dkn(detar) 2

X(—Vy)kex;{—(zﬁT)Bin}

= w*3’2k§:‘,0 Jsn(deta) 2 f AV, V2 (= V)

2kgT\~
Xexp{—( ® )biv?
m

X dgn(deta) /2 f dvWi(— V)t

xex;{—(zﬁT)Ein}

Kg

+ar 323 (k+1)
k=0

kZo (K+1)(2k+1)!

3g

X (2k+3)11b, 2[c+2(k+1)al(— B)*asT

_ kBp“‘Lz 1
=27 b, {c[Fa(B)+ 2F1(B)]+2a[F3(B)

+ 3F2(B)}dsT. (B11)
The terml, can be similarly evaluated. The result is

|z:kﬁggy—lﬁgl[ca(ﬂ)+2aF2(B)]r9sT-

Substitution of Eqs(B6), (B8), (B9), (B10), (B11), and

(B12)

®(a)=[5F,+2F3+2a%(F,+5F 3+ 8F,+4F5)]a.
(B14)
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