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Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain
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Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients
~steady planar Couette flow! are determined. The results are obtained from the so-called ellipsoidal
statistical ~ES! kinetic model, which is an extension of the well-known BGK kinetic model to
account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by
constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled
variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate.
A comparison with previous results derived from a perturbative solution of the Boltzmann equation
as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions
are in better agreement with the Boltzmann results than those of the other approximations. In
addition, the velocity distribution function is also computed. Although the shear rates required for
observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here
may be relevant for analyzing computer results. ©1997 American Institute of Physics.
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I. INTRODUCTION

One of the most interesting problems in which som
insight into the behavior of nonequilibrium systems can
gained is that of steady planar Couette flow. It correspond
a fluid between parallel plates maintained at different te
peratures and in relative motion. These boundary conditi
lead to combined heat and momentum transport. Ifx andy
denote the coordinate parallel to the flow and normal to
plates, respectively, then the corresponding hydrodyna
balance equations read as

]

]y
Pxy5

]

]y
Pyy50 , ~1!

]

]y
qy52Pxy

]

]y
ux , ~2!

whereux is thex component of the flow velocityu, P is the
pressure tensor andq is the heat flux. Equation~2! shows
that a thermal gradient]T/]y is present due to the existenc
of a velocity gradient, even if both plates are at the sa
temperature. The above equations are not closed unles
pressure tensor and the heat flux are known functions of
hydrodynamic fields. In the Navier–Stokes regime, the c
stitutive equations are

Pxy52h0~n,T!
]

]y
ux , ~3!

qy52k0~n,T!
]

]y
T, ~4!

wheren andT are the local density and temperature wh
h0 andk0 are the shear viscosity and the thermal conduc
ity, respectively. Here,n andT are related through the equa
tion of statep(n,T)[ 1

3trP and the condition

p5const. ~5!
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Even in this regime the problem remains of knowing t
spatial dependence of the transport coefficients if an ex
solution is to be determined. One possibility is to conside
dilute gas for which the state of the system is complet
specified by the velocity distribution functionf (r ,v;t) satis-
fying the Boltzmann equation.1 Since in this case the ratio
h0 /k0 is constant, it is easy to solve Eqs.~1! and ~2! and
obtain a linear velocity profile and a parabolic temperat
profile.

A natural question is whether beyond the Navier–Sto
regime one may also find a solution valid for arbitrary v
locity and temperature gradients. Very recently, Tijs a
Santos2 have shown that the Boltzmann equation admits
consistent solution for Maxwell molecules~particles interact-
ing via anr24 repulsive potential! characterized by similar
profiles as those of the linear regime, but replacing in
constitutive Eqs.~3! and ~4! h0 and k0 by a generalized
shear viscosityh(a)5h0Fh(a) and a generalized therma
conductivity k(a)5k0Fk(a), respectively. Here,a is the
constant~dimensionless! shear rate andFh andFk are non-
linear functions ofa. Unfortunately, explicit expressions fo
both functions may not be given in a closed form since th
obey an algebraic hierarchy that cannot be solved in a re
sive way. Therefore, they use a perturbation expansion
powers of the shear rate and derive results up to the su
Burnett approximation. If one wants to get the transport
efficients for arbitrary values ofa, either one performs com
puter simulations or on the analytical side one consid
kinetic models. Here, we take the second route.

An exact solution for the steady Couette flow, using t
well-known BGK kinetic model,3 has been available fo
some time.4 As a matter of fact, the results of Ref. 2 we
inspired in the BGK solution. However, the drawback inhe
ent in the BGK equation, namely that it does not lead to
correct Prandtl number Pr, served as a motivation
reexamine5 the same problem by using the Liu kinet
3)/776/12/$10.00 © 1997 American Institute of Physics
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model6 ~an extension of the BGK model giving Pr correctly!.
The results indicate that the main difference between
BGK and Liu descriptions was in the generalized therm
conductivity but it was also found that, apart from other d
ficulties, the Liu model could yield negative values for t
velocity distribution function, which is physically meaning
less. Another kinetic model in which neither of these inco
sistencies is present is the ellipsoidal statistical~ES!
model.1,7 In the ES model the local Maxwellian of the BG
collision term is replaced by an anisotropic thre
dimensional Gaussian involving the pressure tensor and
Prandtl number. When Pr51, the ES model reduces to th
BGK equation. Since the ES model avoids the two diffic
ties mentioned above, in this paper we will use it for t
analysis of the steady planar Couette flow. As described
low, the comparison with the perturbative solution given
Tijs and Santos2 shows that the results from the ES mod
are in much better agreement than those from either the B
or the Liu models. This suggests that in general, the sh
rate dependence of the transport coefficients predicted by
ES approximation will be close to the one that might
obtained from the exact Boltzmann equation.

The paper is organized as follows. In Sec. II we give
brief description of the ES model. In Sec. III we construc
consistent solution of the ES model for steady planar Cou
flow. The main transport properties of the problem are eva
ated in Sec. IV. In Sec. V, the velocity distribution functio
corresponding to the bulk of the system is explicitly obtain
in terms of the nonequilibrium parameters of the proble
Finally, we close the paper in Sec. VI with some conclud
remarks.

II. THE ELLIPSOIDAL STATISTICAL (ES) KINETIC
MODEL

The general idea behind the formulation of a kine
model is to replace the complicated Boltzmann collision o
eratorJ@ f , f # by a simpler expression but retaining the ma
physical properties of the former. The usual choice is a
laxation term of the form

J@ f , f #52n~ f2 f 0!, ~6!

wheref 0(r ,v;t) is a certain reference function whose expli
form must account for the conservation laws but it may
chosen in different ways. The influence of the interact
potential considered is included through an effective co
sion frequencyn, which is velocity independent but it ca
depend on the density and temperature. For instance
r2l potentials,n } nTm wherem5(1/2)2(2/l ). The sim-
plest selection forf 0 corresponds to the model proposed
Bhatnagar, Gross, and Krook~BGK!,3 where f 0 is the local
equilibrium distribution function. In spite of its simplicity
the BGK model has been shown to be reliable in several
from equilibrium states, such as the uniform shear flow8 and
the steady Fourier flow.9 Nevertheless, it has some deficie
cies like the prediction Pr51 instead of the correct Prand
number. This is particularly important in situations whe
combined heat and momentum transport occur, as it is
Phys. Fluids, Vol. 9, No. 3, March 1997

Downloaded¬05¬Oct¬2007¬to¬158.49.20.67.¬Redistribution¬subject¬t
e
l

-

-
he

-

e-

l
K
r-
he

te
-

d
.

-

-

e
n
-

or

ar

e

case of steady Couette flow. In order to have a corr
Prandtl number, a differentf 0 can be considered. In the E
model the choice is1,7

f 0~v!5np23/2~deta!1/2exp~2a i j ViVj !, ~7!

wherea5l21 andl i j5Ad i j2(B/r)Pi j . Here,r5mn, m
being the mass of a particle,

n5E dvf , ~8!

is the local number density,V5v2u,

u5
1

nE dvvf , ~9!

is the local flow velocity,A5(2kBT/m)Pr
21, kB being the

Boltzmann constant,

T5
m

3nkB
E dvV2f , ~10!

is the local temperature,B52(Pr2121), and

Pi j5E dvmViVj f , ~11!

is the pressure tensor. The Prandtl number Pr in this mo
can be seen as an adjustable parameter to get the same
viscosity and thermal conductivity coefficients as those
the Boltzmann equation. If one sets Pr51, f 0 reduces to a
local Maxwellian which amounts to saying the BGK mod
is recovered in this limit. Notice that the reference functi
involves not only the conserved hydrodynamic fields as
the BGK approximation, but also the dissipative moment
flux. In a dilute gas, the other relevant dissipative flux is t
heat fluxq defined as

q5E dv
m

2
V2V f . ~12!

In this model, it is straightforward to evaluate the tran
port coefficientsh0 and k0 appearing in Eqs.~3! and ~4!.
The result is7

h05
nkBT

nPr21 , ~13!

k05
5

2

nkB
2T

mn
. ~14!

If we identify n with a given eigenvalue of the linearize
Boltzmann collision operator and take Pr52/3, then the ex-
pressions~13! and~14! coincide with those derived from th
Boltzmann equation.10 Strictly speaking, this identification is
only exact for Maxwell molecules and for what is known
the first Enskog approximation to the transport coefficie
of other interaction laws. Although the actual calculatio
will be carried out for arbitrary values of Pr, in the end w
will only consider the cases of Pr52/3 ~ES results! and Pr51
~BGK results!.
777V. Garzó and M. López de Haro
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III. CONSISTENT SOLUTION FOR THE
HYDRODYNAMIC FIELDS

Let us consider a dilute gas enclosed between two
allel plates in relative motion and maintained at differe
temperatures. Let thex axis be parallel to the motion and th
y axis be normal to the walls. We are interested in analyz
a steady state under arbitrary velocity and temperature
dients along they direction. In this case, the ES model yield

vy
]

]y
f52n~ f2 f 0!, ~15!

where f 0 is given by Eq.~7! with

a5
r

D S Ar2BPyy BPxy 0

BPxy Ar2BPxx 0

0 0
D

Ar2BPzz

D . ~16!

Here, D5A2r22ABr(Pxx1Pyy)1B2(PxxPyy2Pxy
2 ) and

the structure ofa reflects the symmetry of the problem
Since our interest lies in obtaining the hydrodynamic profi
in the bulk of the system far away from the plates, rath
than introducing the appropriate boundary conditions for
~15!, we first assume a given form for the profiles and la
we verify their consistency. Thus, we expect to descr
transport phenomena in the bulk region by looking for
consistent solution regardless of the actual characteristic
the boundaries. This idea has already been followed in
vious works.

In the same way as in the BGK description,4 we assume
that Eq.~15! admits a solution consistent with the profiles

p5nkBT5const, ~17!

]

]s
ux5a5const, ~18!

]2

]s2
T52

2m

kB
g~a!5const. ~19!

Here, we have introduced the scaled space variables defined
through the relationds5n(y)dy. The variables measures
the distance in units of mean-free paths, and also it scale
the influence of the interaction potential. Therefore, in ter
of s the results are independent of the law of interact
considered. Of course, one can rewrite the profiles as fu
tions of y when one knows the dependence ofn on n and
T. Further,a is the reduced shear rate andg(a) is a dimen-
sionless function to be determined by consistency. This fu
tion measures the curvature of the temperature profile.

To verify the consistency of the assumed solution it
necessary to prove that

E dv$1,V,V2% f5H n,0,3pm J . ~20!

In order to show that relations~20! are fulfilled, an explicit
expression forf should be required. Such an expression w
be provided in Sec. V. However, at this stage it is sufficie
to use the formal series representation,
778 Phys. Fluids, Vol. 9, No. 3, March 1997
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f5S 11vy
]

]sD
21

f 05 (
k50

`

~2vy!
k

]k

]sk
f 0 . ~21!

The fulfillment of the conditions for the densityn and the
velocity V readily follows after substitution of Eq.~21! in
relations~20!. On the other hand, in contrast with what ha
pens in both the BGK and the Liu models, the condition
the temperature givesg in terms ofa and the nonzero ele
ments of the pressure tensor whose shear-rate dependen
not known. Consequently, in order to close the problem,
evaluation of these nonzero elements is also needed.
leads, in principle~see Appendix A!, to the four coupled
nonlinear implicit Eqs.~A14!, ~A15!, ~A16!, and ~A18! for
the set$g,Pxy ,Pyy ,Pzz% as functions of the shear ratea.
Here, we have taken into account th
Pxx53p2Pyy2Pzz. If we now set Pr51, theng(a) obeys
a closed equation~not involving the pressure tensor! and one
recovers the BGK results.4

For PrÞ1, although the natural parameter isa, from a
practical point of view it is convenient to takeb @defined by
Eq. ~A13!# as an independent variable. This allows us
express explicitly all the unknowns as functions ofb. In
particular,

g5
p

Ar
~11B@122b~F112F2!# !b, ~22!

and

a25
~22BC1!

2

4Ar

3
Ar~2C323BC1C4!13p~22BC1!~22BC4!

B2~C2F0
21C1

2F1!22B~F0
212C1F1!14F1

b.

~23!

Here,

C1~b![2b~F112F2!21 , ~24!

C2~b![2b~F11F2!21, ~25!

C3~b![2b~3F112F2!23, ~26!

C4~b![2bF121, ~27!

and the functionsFr[Fr(b) are defined in Eq.~A11!. In
two instances, namely, for small and large shear rates
possible to directly relateg anda. In the former case,

g~a!5
Pr

5
a2F12

4

25
~7Pr2235Pr110!a2G1•••, ~28!

while in the latter case,

g~a!; 1
3a

2. ~29!

Notice that whereas for small shear rates the ES and B
equations predict different behaviors forg, the asymptotic
value for the ratiog/a2 is the same for both models. This la
result contrasts with the one found in the Liu model5 where
no physical solutions consistent with the profiles~17!–~19!
exist for values ofg larger than a certain critical value.
V. Garzó and M. López de Haro
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IV. TRANSPORT PROPERTIES

The transport properties of the steady Couette flow
related to the momentum and heat fluxes. We begin with
nonzero elements of the pressure tensor. In terms ofb, they
are given by

Pyy5Ar
C1~b!

BC1~b!22
, ~30!

Pzz5Ar
C4~b!

BC4~b!22
, ~31!

Pxy522Ar
F0

~22BC1~b!!2
a. ~32!

Notice that the pressure tensor does not explicitly depend
the thermal gradient, as it also happens in the solution of
Boltzmann equation.2 The xy element defines the nonlinea
shear viscosityh(a)5h0Fh(a) with

Fh~a!52
Pr

pa
Pxy . ~33!

Normal stress effects are measured by the viscometric fu
tionsC1(a) andC2(a). In reduced form, they are defined a

C1~a!5
Pyy2Pxx

pPr2a2
, ~34!

C2~a!5
Pzz2Pyy

pPr2a2
. ~35!

The explicit expressions ofFh , C1 , andC2 can be easily
obtained by substituting Eqs.~30!–~32! into Eqs.~33!–~35!.

Now, we turn to the heat flux vector. Although the tem
perature gradient is only directed along they axis ~so that
there is a response in this direction!, the presence of the shea
flow induces a nonzerox component of the heat flux. Thes
components, which are calculated in Appendix B, have
form

qy52k0

Pr

5

a2

g
Fh~a!

]

]y
T, ~36!

qx5
pkB
mn

F~a!
]

]y
T, ~37!

whereF(a) is given by Eq.~B31!. From Eq.~36!, which can
be regarded as a generalization of Fourier’s law, one m
define a generalized thermal conductivity coefficie
k(a)5k0Fk(a) in which

Fk~a!5
Pr

5

a2

g
Fh~a!. ~38!

Equation~37! provides information about the anisotropy i
duced by the shear flow. It gives the transport of ene
along thex axis due to a thermal gradient parallel to they
axis. This effect is absent in the Navier–Stokes regime
in fact, the corresponding transport coefficient, is a gener
zation of a Burnett coefficient. To the best of our knowled
this is the first time that the shear-rate dependence ofF(a)
has been explicitly provided.
Phys. Fluids, Vol. 9, No. 3, March 1997
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Before we analyze the general shear-rate dependenc
the transport coefficients, it is interesting to consider
small shear rate limit in order to make a comparison with
perturbative solution of the Boltzmann equation.2 In this
limit, one gets

Fh~a!512 6
5 Pr~112Pr!a21•••, ~39!

C1~a!52 14
5 1 8

125~149Pr
21150Pr170!a21•••, ~40!

C2~a!5 4
5 2 8

125~49Pr
2175Pr120!a21•••, ~41!

Fk~a!512 2
25 ~16Pr2185Pr220!a21•••, ~42!

F~a!5 7
2 ~Pr11!a1•••. ~43!

In the lowest order~Burnett order!, both viscometric func-
tions coincide with the Boltzmann equation values irresp
tive of the choice of the Prandtl number. This is also true
the Liu model if an adequate choice of the ratio of the tw
collision frequencies introduced in the model is made.11 On
the other hand, the numerical coefficient corresponding
the super-Burnett contribution toFh is different for the ES
model (Pr52/3), the BGK model~Pr51!, and the Liu
model. Comparing with the Boltzmann result,2 the relative
error for the ES model is around 15%, while for the oth
two models is larger than one hundred per cent. Concern
the transport of heat,Fk is again different for the three mod
els. The comparison with the Boltzmann prediction2 indi-
cates that the relative error in this case is around 8% for
ES model, 100% for the BGK model, and 22% for the L
model. As forF(a), the ES model gives the exact Boltz
mann value while the relative error in the BGK model
around 20%. The above comparison clearly indicates
superiority of the ES model versus both the BGK and L
models.

To gain some more insight into the performance of the
kinetic models, in Figs. 1–5 we displayFh , Fk , C1 , C2 ,
andV[F/((7/2)(Pr11)a) as functions of the shear rate
Except forV, we observe that the qualitative trends are sim
lar for all three models, namely, the corresponding transp
property decreases as the shear rate increases. Accordi

FIG. 1. Shear-rate dependence of the reduced shear visc
Fh(a)5h(a)/h0 for the ES model~—–!, the BGK model~– – –!, and the
Liu model ~- - -!.
779V. Garzó and M. López de Haro
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tiv
the smalla results discussed above, one expects that
Boltzmann equation will also present the same behav
Nevertheless, the quantitative discrepancies, especially
tween the ES and BGK results, become rather signific
with increasing shear rate. In general, the BGK values
lower than those of the ES model and it is somewhat surp
ing that the Liu model is numerically very close to the E
model for the generalized thermal conductivity and the s
ond viscometric function. The most notable difference b
tween the ES and BGK models shows in the case ofV. Not
only there is a huge quantitative discrepancy, but for not
large shear rates while the ES approximation predicts an
crease of the transport of energy along thex direction, the
opposite trend is present in the BGK approximation.

V. VELOCITY DISTRIBUTION FUNCTION

It is evident that the general description of transport p
cesses in a dilute gas requires the explicit knowledge of
velocity distribution functionf (r,v;t). Unfortunately, all the
known exact solutions of the Boltzmann equation for inh
mogeneous situations are given in terms of a finite numbe
moments. These moments constitute the only indirect in

FIG. 3. Shear-rate dependence of the reduced first viscometric fun
C1(a) for the ES model~—–!, the BGK model~– – –!, and the Liu model
~- - -!.

FIG. 2. Shear-rate dependence of the reduced thermal conduc
Fk(a)5k(a)/k0 for the ES model~—–!, the BGK model~– – –!, and the
Liu model ~- - -!.
780 Phys. Fluids, Vol. 9, No. 3, March 1997
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mation on the distribution function, but the latter cannot
explicitly determined. Perhaps, one of the main advanta
of considering kinetic models is that the velocity distributio
function may be obtained. In the cases of the uniform sh
flow8 and the Fourier flow,9 the BGK solutions have bee
shown to present a good agreement with Monte Carlo
merical solutions of the Boltzmann equation, especially
the region of thermal velocities.12 This fact suggests the re
liability of kinetic models for describing the ‘‘real’’ distribu-
tion.

In this section our aim is to get an explicit solution of th
stationary ES equation~15! incorporating the specified
boundary conditions. Since we are interested in describ
the bulk of the system~outside of the boundary layer!, we
will consider idealized boundary conditions under which t
contribution to the distribution function arising from th
boundary term vanishes. One possibility is to choose mov
plates with zero temperature at the walls. These are co
tions describing an infinite system~in the sense that the sepa
ration between the plates is infinite! corresponding to plana
Couette flow between very cold walls. In this special case
boundary layers vanish as the Knudsen number vanishe
the walls. Consequently, neither velocity slip nor tempe

on

FIG. 4. Shear-rate dependence of the reduced second viscometric fun
C2(a) for the ES model~—–!, the BGK model~– – –!, and the Liu model
~- - -!.

FIG. 5. Shear-rate dependence of the cross coeffic
V(a)[F(a)/((7/2)(Pr11)a) for the ES model~—–!, and the BGK model
~– – –!.
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ture jumps at the walls can be predicted from this type
solution. Such a solution can be considered as anormal so-
lution since the effect of the boundary conditions appe
only indirectly through the explicit space dependence of
hydrodynamic fields. In the context of the BGK model, t
appropriateness of such a solution has been thoroughly
amined in Ref. 13. For the present kinetic model, the sa
type of arguments also apply.

In terms of the scaled variables, the formal solution to
Eq. ~15! is

f ~s,v!5expS 2
s2s0
vy

D f ~s0 ,v!1E
s0

s

ds8

3expS 2
s2s8

vy
D 1

vy
f 0~s8,v!, ~44!

wheres0 is an arbitrary point. According to the symmetry
the planar Couette flow, it is sufficient to get the half dist
bution f1(s,v)5Q(vy) f (s,v), Q being the Heaviside ste
function. As said before, we want to get rid of bounda
effects which can be achieved by choosings0 such that
T(s0)50 and imposing the boundary conditio
f1(s0 ,v)50. After having found in Sec. III a consistent s
lution characterized by the profiles~17!–~19!, Eq. ~44! is no
longer a formal expression. Substituting these hydrodyna
profiles into~44!, and after some manipulations, one obta
the following expression forf1 :

f1~s,v!5 f LE~s,v!ej2
2z~11z!3/2

ejy
~detã !1/2

3E
0

1

dt@2t2~12z!t2#25/2expS 2
2z

11z

12t

ejy
D

3expH 2
11z

2t2~12z!t2 F ãxxS jx1
2az

11z

12t

e D 2
1ãyyjy

21ãzzjz
212ãxyjyS jx1

2az

11z

12t

e D G J .
~45!

Here, we have introduced the local equilibrium distributi
function,

f LE5nS m

2pkBT
D 3/2expS 2

m

2kBT
V2D , ~46!

j[(m/2kBT(s))
1/2(v2u(s)) is the velocity reduced with the

thermal local velocity, and

z5
e

~e218g!1/2
, ~47!

where

e5S 2kB
mT~s! D

1/2]T

]s
, ~48!

is the reduced local thermal gradient. Further, the dimens
less elementsã i j have been defined in Appendix A.

The symmetry of the problem implies that the other ha
distribution f2 can be obtained from Eq.~45! by changing
e to 2e andj to 2j :
Phys. Fluids, Vol. 9, No. 3, March 1997
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f2~s,v!

5 f LE~s,v!ej2
2z~11z!3/2

eujyu
~detã !1/2

3E
1

2/~12z!

dt@2t2~12z!t2#25/2expS 2
2z

11z

12t

ejy
D

3expH 2
11z

2t2~12z!t2 F ãxxS jx1
2az

11z

12t

e D 2
1ãyyjy

21ãzzjz
212ãxyjyS jx1

2az

11z

12t

e D G J , ~49!

where the change of the dummy integration varia
t→@22(11z)t#/(12z) has been performed.

Equations~45! and ~49! clearly show the complicated
dependence of the distribution function on the two noneq
librium parametersa and e. Notice that the dependence o
the shear rate appears throughz and the nonzero elements o
a ~which is related to the pressure tensor!. In the BGK case
~Pr51!, ãxx5ãyy5ãzz51 and ãxy50, and one recovers
previous results.13 In order to investigate the distortion of th
distribution function with respect to the local equilibrium,
is convenient to define the marginal distributions,

Ry~jy![
*2`

` djx*2`
` djzf

*2`
` djx*2`

` djzf
LE ~50!

and

Rx~jx![
*2`

` djy*2`
` djzf

*2`
` djy*2`

` djzf
LE . ~51!

In Figs. 6 and 7 we plotRy and Rx , respectively, for
a5e51 and for the ES model~Pr52/3! and the BGK model
~Pr51!. Since the system is far from equilibrium, the disto
tion from local equilibrium (Ry5Rx51) as well as the
asymmetry are quite evident. Although the dependencef
on a ande in both models is very different, the shape of th
marginal distributions is rather similar at least in the range
thermal velocities. This is consistent with the general she
rate dependence of the main transport properties. Never

FIG. 6. Reduced distribution functionRy(jy) versus jy for a51 and
e51. The solid line refers to the ES model while the dashed line co
sponds to the BGK model.
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less, there exist significant discrepancies especially for la
and negativejy and/orjx . This may probably explain the
differences observed forqx where large velocity tails play an
important role.

VI. DISCUSSION

In this paper we have examined a steady nonequilibr
problem involving combined heat and momentum transp
The system consists of a dilute gas enclosed between
relatively moving parallel plates which are kept in genera
different temperatures. An appealing aspect of this st
which is known as planar Couette flow, is that it is genera
by means of realistic boundary conditions and hence, it
be in principle implemented experimentally. Neverthele
because of the way the system is sheared, the density,
velocity, and temperature are nonhomogeneous, thus ma
the analysis of this problem more complicated than say
case of uniform shear flow.8

In planar Couette flow, there are two parameters mea
ing the departure of the system from equilibrium: the~re-
duced! shear ratea and the~reduced! thermal gradiente.
The main motivation of our study has been to obtain
transport properties, which are related to the pressure te
and the heat flux vector, for arbitrary values ofa ande. Of
course, the natural framework to pursue such a study is
exact Boltzmann equation. However, due to the comple
of the problem, so far it has only been possible to ge
perturbative solution2 up to super-Burnett order. Conse
quently, the other alternative if one wants to derive analyti
results is to use simple kinetic models. This had already b
done for planar Couette flow with the BGK4 and the Liu5

models. The results of these two models present drawba
in the BGK model the Prandtl number~which plays a key
role in this situation! is not given correctly, while in the Liu
case, which does not share this difficulty, unphysical pred
tions ~such as negative values for the distribution functio!
restrict its range of validity. In view of these limitations,
seems natural to consider another kinetic equation
avoids such drawbacks. A good candidate is the so-ca
ellipsoidal statistical~ES! model,1,7 that can be seen as a
extension of the BGK approximation since it reduces to t

FIG. 7. The same as in Fig. 6, but forRx(jx) as a function ofjx .
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latter if one sets the Prandtl number~which explicitly enters
as an adjustable parameter in the collision term of the
approximation! Pr51.

We have found a consistent solution of the ES mo
characterized by a uniform pressure, and linear velocity
quadratic temperature profiles with respect to a given sca
variable. The scaling allows us to have auniversaldescrip-
tion, namely the results are independent of the interac
potential considered. The ES solution is a close relative
the ones derived earlier for the BGK and Liu models, a
without this previous insight the formulation of the proble
with the ES model would have been an almost insupera
task. Nevertheless, it must be pointed out that the presenc
the pressure tensor in the collision term gives rise in pr
ciple to four coupled transcendental equations that cater
the consistency of the sought solution. Concerning the tra
port properties, we have determined the generalized s
viscosity Fh(a), the generalized thermal conductivit
Fk(a), the viscometric functionsC1,2(a), and a generalized
cross coefficientF(a) measuring the transport of energ
along the direction normal to the thermal gradient. This l
coefficient had not been calculated previously. All coef
cients exhibit a monotonous decrease with the shear r
althoughF(a) only does so after attaining a maximum. Th
comparison of the ES model results with those obtained fr
the Boltzmann equation in the limit of small shear rate2

indicates that there is a better agreement than using eithe
BGK or Liu predictions. This fact suggests that, for fini
values of the shear rate, the exact Boltzmann results will
be too far from the ES results. In order to test the value
this conjecture, it would be very interesting to perform co
puter simulations, a task that we are currently considering
should be pointed out that in the two limiting cases of pu
uniform shear flow14 and pure planar Fourier flow,15 where
computer simulations are indeed already available,12 the
forms of the relevant transport properties allow us to co
clude that the agreement found when comparing the B
model and the Monte Carlo results will also hold for the E
model.

Apart from evaluating the transport properties, we ha
also explicitly obtained the velocity distribution function
This quantity provides all the complete information on t
nonequilibrium state of the system. Our solution applies o
in the bulk of the system, i.e., far away from the boundari
In the same way as in the BGK model,13 in order to get such
a solution we have considered idealized boundary conditi
of zero wall temperatures. The velocity distribution functio
displays a strong dependence on the nonequilibrium par
eters and so a great distortion from local equilibrium is o
served. Once again, the availability of simulation results
the distribution function of the Boltzmann equation would
welcome to assess the reliability of our result.

It could be argued that since planar Couette flow
volves realistic boundary conditions, a comparison of o
results with actual experiments would be in order. While t
would of course be highly desirable, the following argume
suffices to show that the goal is so far unreachable at leas
a low-density gas. The main goal of this work has been
V. Garzó and M. López de Haro
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pres-
consider non-Newtonian effects as given for instance by
reduced shear viscosityFh(a). In order to compute the ac
tual velocity gradient, an expression for the collision fr
quencyn can be obtained from the Navier–Stokes shear
cosity h0 through n5(Prp)/h0 . Consequently,
]ux /]y5an5(pPra)/h0 . Now, from Fig. 1 it follows that
a 10% decrease in the nonlinear shear viscosity with res
to its Navier–Stokes value occurs fora.0.316. If we con-
sider argon atp51 atm andT5273 K, the experimenta
value of h0 ~Ref. 10! is h0.211731027 g cm21 s21, so
that for such a change to be noticeable~about 10%) one
needs]ux /]y.3.293109 s21. Clearly such a high shea
rate is presently unattainable in the laboratory and this
precludes a direct comparison with experimental results.16 In
this sense, the derivation of explicit expressions for the tra
port properties in far from equilibrium states may prove to
useful for analyzing computer simulation results.

As a final point, we want to remark that in spite of th
apparent simplicity of kinetic models, their relevance in de
ing with nonequilibrium problems cannot be overlooked.
fact, they have been shown in the past to be very reliable
evaluating nonlinear transport properties in seve
problems.8,9 In this context, our results may be regarded a
further confirmation of the usefulness of the ES model.
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APPENDIX A: CONSISTENCY OF THE SOLUTION

In this appendix we show that the kinetic equation~15!
admits a consistent solution given by the profiles~17!–~19!.
For that, it is necessary to prove Eq.~20!, namely,f repro-
duces the five conserved hydrodynamic moments. In orde
compute the above relations, it is convenient to rewrite
exponential term exp(2aijViVj) appearing inf 0 in the form

exp~2a i j ViVj !5 expS cVy ]

]Vx
DexpS 2

m

2kBT
b̃iVi

2D ,
~A1!

where c5ãxy /ãxx , b̃x5ãxx , b̃y5ãyy2(ãxy
2 /ãxx), and

b̃z5ãzz. Here,ã i j5(2kBT/m)a i j and use has been made
the identity

expS cVy ]

]Vx
DF~Vx ,Vy ,Vz!5F~Vx1cVy ,Vy ,Vz!.

~A2!

The elementsã i j as well asb̃i do not depend ons since the
pressure tensor is uniform in the steady planar Couette fl
Further, it is easy to show that detã5b̃xb̃yb̃z and in the
following, we will make use of the general property

E dVG~V!ecVy]/]VxF~V!5E dVF~V!e2cVy]/]VxG~V!.

~A3!
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Now, we are in conditions to verify~20!. Let us start
with the density. Taking into account the series represe
tion for f , one gets

E dvf5p23/2(
k50

`

~2]s!
kn~deta!1/2E dvVy

kecVy]/]Vx

3expF2S 2kBTm D b̃iVi
2G

5p23/2(
k50

`

]s
2kn~deta!1/2

3E dvVy
2kexpF2S 2kBTm D b̃iVi

2G
5n1

p

kB
(
k51

`

~2k21!!! S kBm D kb̃y2k]s
2kTk215n, ~A4!

since according to thes dependence of the temperature, f
k>1, ]s

2kTk2150. This automatically implies the verifica
tion of the first consistency condition. The condition for th
x component of the velocity is

E dvVxf5p23/2(
k50

` E dvVx~2]s!
kn~deta!1/2Vy

kecVy]/]Vx

3expF2S 2kBTm D b̃iVi
2G

5p23/2(
k50

`

]s
kn~deta!1/2

3E dvVx~2Vy!
kexpF2S 2kBTm D b̃iVi

2G
1p23/2a

3 (
k50

`

~k11!]s
kn~deta!1/2E dv~2Vy!

k11

3expF2S 2kBTm D b̃iVi
2G

5
p

m(
k50

`

~2k11!!! b̃y
2~k11!@c2~2k11!a#

3]s
2k11S kBTm D k11

50 , ~A5!

where use has been made of the operator identity

]s
kVx5Vx]s

k2ak]s
k21 . ~A6!

The consistency conditions for they and z components of
V can be similarly verified.

The fact that the reference functionf 0 is given in terms
of the pressure tensor~whose shear-rate dependence is n
known! implies that the condition for the temperature do
not lead to a closed equation forg as a function ofa. It is
thus necessary to compute the nonzero elements of the
sure tensor. Thexx element is
783V. Garzó and M. López de Haro
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Pxx5mE dvVx
2f5mp23/2(

k50

` E dvVx
2~2]s!

kn~deta!1/2Vy
kecVy]/]VxexpF2S 2kBTm D b̃iVi

2G
5mp23/2(

k50

`

]s
kn~deta!1/2E dvVx

2~2Vy!
kecVy]/]VxexpF2S 2kBTm D b̃iVi

2G12amp23/2(
k51

`

k]s
k21n~deta!1/2

3E dvVx~2Vy!
kecVy]/]VxexpF2S 2kBTm D b̃iVi

2G1a2mp23/2(
k52

`

k~k21!]s
k22n~deta!1/2E dv~2Vy!

kecVy]/]Vx

3expF2S 2kBTm D b̃iVi
2G . ~A7!

Here, sinceVx
2 is a quadratic function of the variables, we have used the identity

]s
kVx

25Vx
2]s

k22ak]s
k21Vx2a2k~k21!]s

k22 . ~A8!

Taking into account the property~A3!, one gets

Pxx5mp23/2(
k50

`

]s
kn~deta!1/2E dv~Vx2cVy!

2~2Vy!
kexpF2S 2kBTm D b̃iVi

2G12map23/2

3 (
k50

`

~k11!]s
kn~deta!1/2E dv~Vx2cVy!~2Vy!

k11expF2S 2kBTm D b̃iVi
2G1ma2p23/2

3 (
k50

`

~k12!~k11!]s
kn~deta!1/2E dv~2Vy!

k12expF2S 2kBTm D b̃iVi
2G

5p~ b̃x
211c2b̃y

21!1p(
k51

`

~2k21!!! b̃y
2k@ b̃x

211~2k11!c2b̃y
21#]s

2kS kBTm D k12pa

3 (
k50

`

~2k11!~2k11!!! @c1~k11!a#]s
2kS kBTm D k

5p~ b̃x
211c2b̃y

21!1p(
k51

`

~2k!! ~2k21!!! @ b̃x
211~2k11!c2b̃y

21#~2g/b̃y!
k12pab̃y

21(
k50

`

~2k11!! ~2k11!!!

3@c1~k11!a#S 2g

b̃y
D k. ~A9!
on

as
This equation may be represented in terms of the functi
Fr(x)[@(d/dx)x# rF0(x), where

F0~x!5
2

xE dt texpS 2t2

2 DK0~2x
21/4t1/2!, ~A10!

K0 being the zeroth-order modified Bessel function. The
ymptotic series ofFr is

4

Fr~x!5 (
k50

`

~k11!r~2k11!! ~2k11!!! ~2x!k. ~A11!
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Consequently,Pxx can be cast in the form

Pxx5pb̃x
21@122bF1~b!#1pc2b̃y

21$122b@F1~b!

12F2~b!#%12pab̃y
21@cF0~b!1aF1~b!#, ~A12!

where we have introduced the auxiliary variable

b5
g

b̃y
. ~A13!

Similarly, theyy element of the pressure tensor is
V. Garzó and M. López de Haro
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Pyy5mE dvVy
2f

5mp23/2(
k50

`

~2]s!
kn~deta!1/2E dvVy

k12ecVy]/]Vx

3expF2S 2kBTm D b̃iVi
2G

5p(
k50

`

~2k11!!! b̃y
2~k11!]s

2k~kBT/m!k

5pb̃y
21(

k50

`

~2k!! ~2k11!!! ~2b!k

5pb̃y
21$122b@F1~b!12F2~b!#%. ~A14!

The zz element of the pressure tensor is

Pzz5mE dvVz
2f

5mp23/2(
k50

`

~2]s!
kn~deta!1/2

3E dvVz
2Vy

kecVy]/]VxexpF2S 2kBTm D b̃iVi
2G
w

u
hi
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5pb̃z
211pb̃z

21(
k51

`

~2k21!!! b̃y
2k]s

2kS kBTm D k

5pb̃z
211pb̃z

21(
k51

`

~2k!! ~2k21!!! ~2b!k

5pb̃z
21@122bF1b!]. ~A15!

The consistency condition for the temperature follows fro
the fact thatPxx1Pyy1Pzz53p. Use of Eqs.~A12!, ~A14!,
and ~A15! leads to

b̃x
211~11c2!b̃y

211b̃z
212312ab̃y

21@cF0~b!1aF1~b!#

52b$b̃x
21F1~b!1~11c2!b̃y

21@F1~b!12F2~b!#

1b̃z
21F1~b!. ~A16!

The only case in which Eq.~A16! provides a direct relation-
ship ~not involving the pressure tensor! betweeng anda is
Pr51 ~BGK approximation!. In this case,b̃i51 andc50,
so that

a25g
3F1~g!12F2~g!

F1~g!
. ~A17!

Finally, thexy element of the pressure tensor is also need
It is given by
Pxy5mE dvVxVyf5mp23/2(
k50

` E dvVx~2]s!
kn~deta!1/2Vy

k11ecVy]/]VxexpF2S 2kBTm D b̃iVi
2G

5mp23/2(
k50

`

~2]s!
kn~deta!1/2E dvVxVy

k11ecVy]/]VxexpF2S 2kBTm D b̃iVi
2G2map23/2

3 (
k50

`

~k11!~2]s!
kn~deta!1/2E dvVy

k12ecVy]/]VxexpF2S 2kBTm D b̃iVi
2G

5mp23/2(
k50

`

~2]s!
kn~deta!1/2E dv~Vx2cVy!Vy

k11expF2S 2kBTm D b̃iVi
2G2map23/2

3 (
k50

`

~k11!~2]s!
kn~deta!1/2E dvVy

k12expF2S 2kBTm D b̃iVi
2G

52p(
k50

`

~2k!! ~2k11!!! b̃y
21@c1~2k11!a#~2b!k52pcb̃y

21$122b@F1~b!12F2~b!#%2pab̃y
21F0~b!. ~A18!
olves

b-
nc-
From a mathematical point of view, the problem is no
well posed in the sense that we have four~independent!
coupled equations, for instance Eqs.~A14!, ~A15!, ~A16!,
and ~A18! for the unknown set$g,Pxy ,Pyy ,Pzz% as func-
tions of the shear ratea. These equations guarantee that o
solution is self-consistent. As it stands, the solution to t
r
s

system is very complicateda priori, since the coefficientsb̃i
depend on the pressure tensor and this dependence inv
the functionsFr . Nevertheless when, instead ofa, we takeb
as independent variable it is straightforward to explicitly o
tain g, a2, and the elements of the pressure tensor as fu
tions ofb @cf. Eqs.~22!, ~23!, ~30!, ~31!, and~32!#.
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APPENDIX B: CALCULATION OF THE HEAT FLUX

In this appendix, we evaluate the two nonzero com
nents of the heat flux vector, namely,qx andqy . In the latter
case, rather than a direct computation, we will profit from
fact that the consistency of the solution necessarily imp
that4

qy52k0Fk~a!
]T

]s
, ~B1!

wherek0 is given by Eq.~14!. By substituting Eq.~B1! into
the energy balance equation~2!, one gets the result quoted i
Eq. ~36!.
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On the other hand, the computation ofqx is rather more
involved. This component is defined as

qx5
m

2 E dvV2Vxf5
m

2
~ I x1I y1I z!, ~B2!

where

I x,y,z[E dvVx,y,z
2 Vxf . ~B3!

We will start with I x . This contribution is given by
I x5p23/2(
k50

`

]s
kn~deta!1/2E dvVx

3~2Vy!
kecVy]/]VxexpF2S 2kBTm D b̃iVi

2G13ap23/2(
k51

`

k]s
k21n~deta!1/2E dvVx

2

3~2Vy!
kecVy]/]VxexpF2S 2kBTm D b̃iVi

2G13a2p23/2(
k52

`

k~k21!]s
k22n~deta!1/2E dvVx~2Vy!

kecVy]/]Vx

3expF2S 2kBTm D b̃iVi
2G1a3p23/2(

k52

`

k~k21!~k22!]s
k23n~deta!1/2E dv~2Vy!

kecVy]/]VxexpF2S 2kBTm D b̃iVi
2G

[I x
~1!1I x

~2!1I x
~3!1I x

~4! , ~B4!
.

where the operator identity,

]s
kVx

35Vx
3]s

k23ak]s
k21Vx

223a2k~k21!]s
k22Vx

2a3k~k21!~k22!]s
k23, ~B5!

has been used. The termI x
(1) is

I x
~1!5p23/2(

k50

`

]s
kn~deta!1/2E dv~Vx2cVy!

3

3~2Vy!
kexpF2S 2kBTm D b̃iVi

2G
52p23/2(

k50

`

]s
kn~deta!1/2E dv~3cVyVx

21c3Vy
3!

3~2Vy!
kexpF2S 2kBTm D b̃iVi

2G
5
kBp

m2 (
k50

`

~k11!~2k11!! ~2k11!!!

3b̃y
21@3cb̃x

211~2k13!c3b̃y
21#~2b!k]sT

5
kBp

m2 b̃y
21$3cb̃x

21F1~b!12c3b̃y
21@F2~b!

1 1
2F1~b!#]sT. ~B6!
In deriving the last line, we have accounted for thes depen-
dence of the temperature so that

]s
2k11S kBTm D k11

5
kB
m

~2k12!!

2
~2g!k]sT. ~B7!

The other contributions toI x are calculated in a similar way
The results are

I x
~2!56

kBp

m2 ab̃y
21$b̃x

21F2~b!1c2b̃y
21@F3~b!

1 1
2F2~b!#%]sT, ~B8!

I x
~3!56

kBp

m2 a
2cb̃y

22@4F4~b!14F3~b!1F2~b!#]sT,

~B9!

and

I x
~4!54

kBp

m2 a
3b̃y

22@4F5~b!18F4~b!15F3~b!

1F2~b!#]sT. ~B10!

The second contributionI y in Eq. ~B20! is given by
V. Garzó and M. López de Haro
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The termI z can be similarly evaluated. The result is

I z5
kBp

m2 b̃y
21b̃z

21@cF1~b!12aF2~b!#]sT. ~B12!

Substitution of Eqs.~B6!, ~B8!, ~B9!, ~B10!, ~B11!, and
~B12! into Eq. ~B2! yields the corresponding expression f
qx , which can be written in the form~37! where the function
F(a) is given by

F~a!5 1
2 b̃y
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21F1#, ~B13!

where for simplicity we have omitted the explicit depe
dence onb of the functionsFr . In general,F exhibits a
complicated dependence on the shear rate. A simple
corresponds to the BGK approximation~Pr51!, where
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