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Abstract 

The so-called ellipsoidal statistical (ES) kinetic model is used to study the uniform shear flow 
problem in a dilute gas. This model is an extension of the well-known BGK kinetic to account 
for the correct Prandtl number. The velocity moments and the velocity distribution function are 
obtained in terms of the shear rate and a parameter Pr which plays the role of the Prandtl 
number. It is shown that, independently of the numerical value of Pr, the expressions of the 
second-degree velocity moments (which are related to the pressure tensor) coincide with the 
ones derived from the Boltzmann equation for Maxwell molecules. A comparison with previous 
results obtained from the Boltzmarm equation for the fourth-degree velocity moments and for 
the velocity distribution function is carried out. Surprisingly enough, the comparison shows a 
superiority of the BGK model (Pr = 1) over the ES model (Pr = 32-) in this problem. If one 
chooses values of Pr larger than one, the ES predictions are improved significantly. 
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1. Introduction 

A well-known problem in dealing with the Boltzmann equation is the intricacy o f  

its collision term. This is specially manifest  when one attempts to analyze situations 

far away from equilibrium. One possibil i ty to overcome such problem is to use kinetic 

models, namely,  equations where the Boltzmann collision term is replaced by a simple 

relaxation term. The physical  idea behind such an approximation is to assume that the 

net effect of  collisions is to make the distribution function to tend toward a certain 

reference function with a characteristic relaxation time v -1.  The most widely known 

collision model  o f  the Boltzmann equation is the Bha tnaga r -Gros s -Krook  (BGK)  ki- 

netic equation [1], where the reference distribution is the local equilibrium distribution 

function. Although this model  has been shown to be very fruitful in the past years, it 
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presents an important defficiency since it does not lead to the correct Prandtl number. 
For this reason other kinetic models have been proposed. Nevertheless, either they are 
constructed specially for linearized problems [2,3] or suffer from a drawback [2,4], 
namely, their distribution functions may turn out to be negative. 

One model in which neither of these limitations appears is the ellipsoidal statistical 
(ES) model [5,6]. In this model, the local Maxwellian (which is an isotropic Gaussian) 
of the BGK collision term is replaced by an anisotropic three-dimensional Gaussian 
which involves the Prandtl number Pr. This quantity can be seen as an extra parameter 
(apart from v) that can be chosen in principle arbitrarily. If Pr = 1, we recover the 
BGK model, so that the latter can be considered as a particular case of the ES model. 
When one chooses Pr--  ~, one obtains the same expressions for the shear viscosity and 
thermal conductivity coefficients as the ones given from the Boltzrnann equation for 
a Maxwell gas [6]. This fact encourages the use of the ES approximation to analyze 
general transport phenomena. However, beyond the linear domain and to the best of our 
knowledge, the problem of validation of the ES model through a comparison with an 
exact solution of the Boltzmann equation has not been treated so far. This circumstance 
is clearly related to the difficulty of finding exact solutions of the Boltzmann equation. 
In this paper, we solve the ES model in the so-called uniform shear flow (USF) problem 
and perform a comparison with the exact expressions derived from the Boltzmann 
equation. The natural expectation is that the ES equation improves the results previously 
obtained from the BGK equation. 

The USF problem is one of the few non-homogeneous situations for which a so- 
lution of the Boltzmann equation can be given in terms of the velocity moments. 
In this state, the only non-zero hydrodynamic gradient is ~Ux/t3y=a, where u is 
the flow velocity and a is the constant shear rate. In the especial case of Maxwell 
molecules (particles interacting via a n  r - 4  potential), Ikenberry and Truesdell [7] 
showed that the infinite hierarchy of velocity moments could be recursively solved 
and, in particular, they obtained the elements of the pressure tensor (which are re- 
lated to the second-degree velocity moments) as non-linear functions of the shear 
rate. The expression of the pressure tensor exactly coincides with the one given from 
the BGK model [8,9]. More recently, the fourth-degree velocity moments have also 
been evaluated [10]. Since the exact velocity distribution function is not known, the 
comparison with the fourth-degree moments allows one to infer the degree of re- 
liability of the distribution functions obtained from the ES and the BGK 
equations. 

The plan of the paper is as follows. In Section 2 we give a brief description of the 
ES model. In Section 3, we solve the ES model in the USF state. We provide explicit 
expressions of the velocity moments as well as the velocity distribution function in 
terms of the shear rate and the Prandtl number Pr. In Section 4, we compare the 
results obtained from the ES (Pr = ~) and the BGK (Pr = 1) approximations with 
those obtained from the Boltzmann equation. In this comparison we also include recent 
simulation results [ 11 ] obtained for the velocity distribution function. A few concluding 
remarks close the paper in Section 5. 
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2. The ellipsoidal statistical (ES) model for dilute gases 

A kinetic model is constructed by replacing the complicated Boltzmann collision 
operator J [ f , f ]  by a simpler collision term which retains only the qualitative and 
average properties of  the true J [ f , f ] .  The usual choice is a relaxation term of the 

form 

J [ f , f ]  = - v ( f  - f o ) ,  (i) 

where f ( r , v ;  t) is the velocity distribution function and f0(r,v; t) is a certain distribu- 
tion function determined by requering that Eq. (1) preserves the local conservation laws 
of  mass, momentum and energy. Its explicit form may be chosen in different ways. All 
the details of the interaction potential are taken into account through a velocity inde- 
pendent collision frequency v(r; t), which can depend on the density and temperature. 
Thus, for r -e potentials, v oc nT -u  with # = 1 _ 2/: .  The simplest collision model 
is the BGK equation [1] where f0(r,v; t) is the local equilibrium distribution function 
fLE(r, V; t), i.e. 

f B G K = f L E  ( m ~3/2 ( m 
----n exp -2--~--jT V2 . (2) 

Here, m is the mass of a particle, ks is the Boltzmann constant, 

n = f avf(v) (3) 

is the local number density, V = v - u, 

u=l f a.f(v) (4) 

is the local flow velocity, and 

m~ 
T = 3n)cB d v V 2 f ( v )  (5) 

is the local temperature. In spite of its simplicity, the BGK model has been shown to 
be very fruitful in the past years. However, it presents an important defficiency since 

2 it leads to a Prandtl number of 1 instead of the correct value of ~ [2]. To improve 
such prediction, other more sophisticated selections for f0 have been proposed [2-4]. 
A disadvantage of grand part of them is that the corresponding distribution function 
may turn out to be negative for large velocities. 

A non-linear model that does not present neither of the above drawbacks is the so- 
called ellipsoidal statistical (ES) model [5,6]. In the ES model, one takes for f0 the 
distribution 

fo(v) = nzc-3/2(det A) 1/2 exp ( -A i j  Viii) ,  (6) 
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where A = [ A I -  (B/p)P] -1, p=mn,  A=(2kBT/m)Pr -1, B = 2 ( P r  -1 - 1), and 

/ d v  V V f  (7) P =  

is the pressure tensor. The quantity Pr is an extra parameter which plays the role of  

the Prandtl number. It is easy to see that if Pr = 1, f0 reduces to the local Maxwellian 
fLE and one recovers the BGK equation. In contrast to the BGK approximation, its 

collision term involves not only the first five conserved hydrodynamic fields but the 
dissipative momentum flux. 

As a final point in this section, it is interesting to give the expressions of  the Navier- 

Stokes transport coefficients obtained from the ES model. After a simple calculation, 
the shear viscosity r/0 and thermal conductivity x0 coefficients are given by [6] 

nkaT 
q 0 -  vPr_ l , (8) 

5 nk2aT 
x0 - (9) 

2 my 

I f  we identify v with a given eigenvalue of the linearized Boltzmann collision operator 
and take Pr = 2, then the expressions (8) and (9) coincide with those derived from the 
Boltzmann equation [2]. 

3. Solution of the ES model in the uniform shear flow 

As said in the Introduction, the only non-zero hydrodynamic gradient in the uni- 
form shear flow (USF) state corresponds to OUx/~y = a, where a is the constant shear 
rate. This quantity measures the departure of the system from equilibrium. The USF 

is not stationary since the temperature increases in time due to viscous heating. In 
order to prevent this effect, a drag force of the form - m ~ V  is usually introduced 
[12], where c~ is a function of the shear rate to be determined by consistency. It 
is important to remark that only in the especial case of  Maxwell molecules (/~ =0) ,  
there is an exact equivalence between the results with and without a thermostat [13]. 
Furthermore, the velocity distribution function becomes spatially homogeneous when 
one refers the velocities of  the particles to the flow velocity u, namely, f ( r , v )  

= f ( V ) .  
The USF state must not be confused with the so-called steady planar Couette flow. In 

the latter, apart from the linear profile of  the velocity, the temperature varies spatially 
so that combined heat and momentum transport appears in the system. Both kinds 

of  shear flow are generated in computer simulations by means of different boundary 
conditions [14] and the corresponding rheological properties are different beyond the 
Navier-Stokes approximation [15]. As a matter of fact, and in contrast to what happens 
in the USF problem [7], no exact solution of the Boltzmann equation is known for the 
planar Couette problem. 



V. Garz61Physica A 243 (1997) 113-128 117 

Under the conditions established in the USF state, the stationary ES equation can be 
written as [ 10] 

O 
c3vi(aijVj + ~Vi)f = - v ( f  - fo) ,  (10) 

where aij = af~fjy, and f0(V) is given by Eq. (6) with 

(Ap-Beyy BPxy 0 I 
P I B~xy Ap-BPxx  0 (11) 

A = A  A " 

0 Ap - BPzz 

Here, A =A2p 2 - ABp(Pxx + Pyy) + B2(exxPyy - p2y). The structure of A reflects the 
geometry of the USF. The fact that the temperature is controlled by the thermostat 
force implies that the collsion frequency is constant, and consequently all the results 
apply for any potential. On the other hand, the reference function f0 is given in terms 
of the pressure tensor whose shear rate dependence is not known. In order to get this 
quantity, let us define now the reduced velocity moments 

l(m) k'+k2+k3)/zf Mkl,k2,k3 = n \2~-fBT,/ avVxkl Vy k2 Vzk3f. (12) 

Taking velocity moments in Eq. (10), the following moment hierarchy is obtained: 

aklMkl-l,k2+l,k3 + [v + ~(kl + k2 + k3)]Mk,,k2,k3 = vNk~,k2,k3 , (13) 

where Nkl,k~,k3 is (see the appendix) 

kl 
Nk, kE,k3 = 71:--3/2 Z kl ! - -  ½(k,-¢). -½(k~+e)--k3/2- -e.~ ,-~ ,- ' ~!(kl - ~)! Ox Oy Oz t - c )  t~k~-t~k2+e~k~ 

E=0 

(14) 

with Ck = F((k + 1)/2) if k = even, being zero otherwise. Furthermore, we have intro- 
duced the functions bx = ( 2kB T/m )A xx, by = ( 2kB T / m  )[ ayy  - ( a 2xy/ axx ) ], bz = ( 2kB T/m ) 
Azz, and c = hxy/Axx. 

Let us introduce z = vPr- l as a convenient unit of time. Henceforth, all the quantities 
will be reduced with respect to z. Thus, the solution to Eq. (13) can be recast into the 
form 

k~ kl!  
Mkl,k2,k3 : Z er-q(--a)q(k 1 - _  q)/[1, + Pr-1 ~(kl + k2 @ k3 )]-(q+l)N,j kl--q, k2+q,k3 • 

q=O 
05) 

Notice that in Eq. (15), N is zero if any of its indices is negative. To close the 
expression (15), it still remains to determine the second-degree moments (pressure 
tensor) and ~ as functions of a and Pr. They can be obtained self-consistently from 
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the definition (7). After a simple algebra, one gets 

1 1 [ 1 +  2a2 1 (16) 
/14200 -- 2 1 + 2c~ (1 + 2c~) ~ ' 

1 1 
Mo2o =Moo2 - 2 1 + 2c~ ' (17) 

1 a 
M l l O  - -  (18) 

2 (l + 2ct) 2 " 

The requirement 114200 + Mo2o + Moo2 = 3 yields a cubic equation for ~, whose real 
(physical) solution is 

~ (a )=  2sinh 2 [~ cosh-l(1 + 9a2)] . (19) 

The expressions (16)-(19)  coincide with those obtained from the Boltzmann equation 
for Maxwell molecules [7] and from the BGK equation [10]. This fact shows the 
relevance of the BGK and ES models for computing the rheological properties of the 
system. The knowledge of the second-degree moments allows one to get the parameters 
bi and c. They are given by 

Pr(Pr + 2~)(1 + 2ct) 
bx = ( 2 0 )  

3~(Pr - 1)(4~ + Pr + 1) + (2ct + Pr) 2 ' 

1 +2c~  
by ~ b Z = P r p r  + 2~ ' (21) 

P r -  1 
c = a .  (22) 

(1 + 2~)(Pr + 2~) 

Now, all the velocity moments of f can be obtained from Eq. (15). They are given 
as non-linear functions of the shear rate a and the Prandtl number Pr. 

The use of the simplified collision term (1) allows one to explicitly get the velocity 
distribution function f (V) ,  which cannot be determined from the Boltzmann equation 
even in the case of Maxwell molecules. This fact is one of the main reasons for using 
kinetic models. A formal solution to Eq. (10) compatible with the moments (15) is 
given by 

f ( V )  = 1 - 3Pr- l~ - pr-laVY~x- x - p r - l ~ v  • fo(V) 

= e-O-3Pr-'~)Sexp Pr-  asVY~x + p r - l ~ s V  • ~ fo(V).  (23) 

o 

The action of the operator is 

exp msVy + n s V . f f ~  fo(Vx, Vy, Vz) 

= fo(enS(Vx + msVy),enSVy, e"~V~). (24) 
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In terms of the reduced velocity ~ = (m/2kBT)I/2v, and taking into account the identity 
(24), the distribution function can be written as f ( V ) =  n(2ksT/m)-3/2g(~), where 

O ~  

g(~) = rr-3/2(bxbybz)l/2 / ds exp[-(1 - 3Pr- la)s]  

o 

x exp(-e2Pr-l~s~ • ~ ( s ) .  ~). (25) 

Here, [l(s) is a matrix whose non-zero elements are f2xx = bx, Oxy =bx(c + pr- las) ,  
['~yy =by + bx(c 2 + 2Pr-lacs + pr-2a2s2), and [2zz =by. The dependence of g on a 

appears explicitly and also through ~(a) and the parameters bi(a) and c(a). For small 
shear rates, 

g(~; a) = g(O)(~) + a g(1)(~) q_ a2g(2)(~) q_ a3g(3)(~) q_ (_9(a4) , (26) 

where 

g(O)(~) = 7r-3/2 exp(_~2),  (27) 

g(l)(~)__ _ 2~xey g(°)(~), (28) 

g(2)(~) ~_ ~5r2 [~(4Pr + - 3) - pr2)¢2(1 5Pr 2 grr2~ 2-2~ - ( 1 +  242 ) 

- (1 - PrZ)~2]g(°)(~) ,  (29) 

1 g(3)(~) = 3~r3 ~x~y[6(pr3 - 3Pr 2 + 9Pr - 1)~y 2 + 4Pra(1 + Pr)~ a 

+6Dr(1 . . . .  pr2)~ 2 4(Pr 3 3Pr 2 + 9Pr 1)~x~y2 2 

+Pr(Pr 2 -- 14Pr - 7)]#(°)(~). (30) 

At the level of Navier-Stokes, the ES and BGK distributions coincide with the one 
given from the Boltzmann equation for Maxwell molecules. Beyond the linear regime, 
an explicit dependence on the parameter Pr appears. 

Once the velocity distribution function is known, it is instructive to obtain the non- 
equilibrium entropy S in terms of a and Pr. Let us define the reduced excess entropy 
per particle as [16] 

5~(a) =-- (S - Seq)/NkB = - f g(~;a)log g(~;a) (31) g(0)(~) ,  

where Seq is the entropy per particle of an ideal gas at equilibrium. Although g(~; a) is 
given by Eq. (25) for arbitrary values of the shear rate, it is a very complex problem 
to get the full nonlinear dependence of 5¢(a). Here, we evaluate the first few terms of 
the expansion of the reduced entropy in powers of the shear rate. After some algebra, 
one gets 

6'~(a) = 63(2)a2 + ,_gf(4)a4 + (_9(a 6) , (32) 
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where 

5e~2) = _ 1 (33) 
2 ' 

~#(4)  = 73Pr4 - 50Pr3 - 56Pr2 + 78Pr - 36 
36Pr 4 (34) 

Upon deriving the above expressions use has been made of the property 

/ d~ g(k)(~) = 0 (35) 

for k ~> 1, which follows from the normalization of g. 

4. Comparison with the Boltzmann results 

The calculations presented in the above section apply for arbitrary values of  the 
Prandtl number Pr. This quantity can be seen as an additional parameter to adjust 

the transport coefficients of  the ES model to those given by the Boltzmann equation. 
Nevertheless, in the case of  the USF problem, the ES equation gives the exact nonlinear 
transport coefficients independently of the numerical value of Pr. This implies that 

2 no restriction about the value of Pr exists, except that Pr~> ~ to assure the positive 
definitness of  A [6]. Here, we will only consider the most interesting physical cases 
of  Pr = 2 (correct Prandtl number) and Pr = 1 (BGK model). 

The knowledge of the explicit shear rate dependence of the fourth-degree moments 

derived from the Boltzmann equation [10] allows one to perform a detailed comparison 
with the corresponding moments given by the ES model. This comparison extends the 

one previously made between the Boltzmann and BGK equations [17]. Due to the 

symmetry of the problem, there are in principle 9 independent fourth-degree moments. 

Here, we take the following set {Maoo,Mo40,Moo4,Mo22,M202,M220,Ml12,M130,M310}. 
The expressions of  these moments are given in the appendix. The first five moments 

of  the set are even functions of  the shear rate, while the remaining three moments are 
odd functions. The analysis of  the small shear rate limit shows that the BGK (Pr = 1) 
and ES (P r=  2) approximations are exact up to first order in a, while the predictions 

of  the BGK model for the Bumett and super-Burnett transport coefficients are closer 
to the exact ones [10] than those obtained from the ES model. This is indicative of 
what happens for finite shear rates. For the sake of illustration, in Figs. 1-4 we show 
the shear rate dependence of the reduced moments J/400 = M400/(3 ), J/040 = M040/(3 ), 
Jgz20 = M220/(41-), and JCz 12 = -M112/(a/4), respectively, according to the ES results, 
the BGK results and the Boltzmann results. We see that in general, the qualitative trends 
predicted by the Boltzmann equation are retained by both the BGK and ES models, at 
least for the range of shear rates considered in the figures. Nevertheless, at a quantitative 
level, the results from the BGK model are in better agreement with the exact results 
than those given from the ES model, except for J/o40. For instance, at a "~ 0.5 (where 
the shear viscosity is about 1.25 times smaller than its zero shear rate value), the 
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Fig. 1. Shear rate dependence o f  M4o0, relative to its equilibrium value, according to the Boltzruann equation 
( ), the ES model ( - -  - -  - - )  and the B G K  model (- - -). 
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Fig. 2. Shear rate dependence o f  M040, relative to its equilibrium value, according to the Bol tzmann equation 
( ), the ES model ( . . . .  ) and the B G K  model (- - -). 

comparison with the Boltzmann prediction for M4oo, M040, M220, and MI12 indicates that 
the relative error for the BGK model is around 4.7%, 7%, 0.6% and 14%, respectively, 
while for the ES model is around 31%, 5.8%, 6.4% and 23%, respectively. Obviously, 
these discrepancies increase as the shear rate increases. We have also compared the 
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Fig. 3. Shear rate dependence of M220, relative to its equilibrium value, according to the Boltzmann equation 
( ), the ES model ( - -  - -  - - )  and the BGK model (- - -). 
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Fig. 4. Shear rate dependence of M1t2, relative to its Navier-Stokes value, according to the Boltzmann 
equation ), the ES model ( - -  - -  - - )  and the BGK model (- - -). 

remainmg independent fourth-degree moments and similar conclusions can be obtained, 
especially for moments in which the component V~ is the most relevant one. Another 
possibility in the above comparison is to choose for the parameter Pr the value that 
gives the same results for the fourth-degree moments between the ES and Boltzmann 
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Fig. 5. Plot of  the marginal distribution q)(~y) for a = 1, as obtained from the ES model (solid line), the 
BGK model (dashed line) and from simulation results for Maxwell molecules (dotted line). 

equations at the level of the Bumett order and/or at the level of the super-Burnett 
order. In this way, one could obtain a good agreement between both descriptions for 
not too large shear rates. Nevertheless, the price to be paid is that the corresponding 
values for Pr are larger than 1 (in fact, in some cases the values are around 1.7), and 
consequently one gets an incorrect Prandtl number. 

The above conclusions can be also extended to the coefficients 6 e(2) and ~a(4), 
which have been recently evaluated in the Boltzmann equation [16]. In this case, 
~a(2)=_½ and 6P(4)~-0.58417. The coefficient 6 p(2) is the same as the one given 
from the ES and BGK approximations. This a consequence of the fact that the ES 
and BGK equations coincide with the Boltzmann equation to Navier-Stokes order. In 
the case of the coefficient 6 a(4), the ES equation (P r=  2) gives the value -47 /36  and 
the BGK equation (Pr- :  1) gives 1. The BGK equation estimates ~(4) with a devi- 
ation of about 50% while the ES equation does not give the same sign as the exact 
one. If one takes Pr -~ 1.218, Eq. (34) leads to the same value as the Boltzmann 
equation. 

Since the velocity distribution function depends on the three components of the 
velocity, in Fig. 3 we plot the marginal distribution 

= v/-ne ~ / d~x d~z g(~) (36) ~0(~y) 

- - O O  - - O O  

for a = 1 and for the ES model (Pr = 2) and the BGK model (Pr = 1). We have also 
included the velocity distribution function obtained from Monte Carlo simulations for 
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Maxwell molecules [11]. Since the shear rate is large, the distortion from equilib- 
rium is quite evident in both distributions. Their shape is rather similar, at least in 
the range of velocities considered. This is consistent with the fact that both distribu- 
tions lead to the same transport coefficients. On the other hand, it is clear that the 
comparison with the simulation results shows again the superiority of the BGK distri- 
bution over the ES distribution, especially in the region of thermal velocities (~y ~ 1 ). 
Further, since the fourth-degree moments obtained from both models are generally 
smaller than the exact ones, the high-velocity population is possibly underestimated by 
both approximations. This expectation has been recently confirmed by computer simu- 
lations [11]. 

5. Concluding remarks 

One of the main advantages of the knowledge of exact solutions is the possibility 
of testing approximation methods. In the case of a dilute gas, the BGK model is 
usually used as an approximation of the Boltzmann equation. However, the fact that 
the BGK equation leads to an incorrect Prandtl number has estimulated the search for 
other kinetic equations. Although the majority of these models [2,4] give correctly the 
Navier-Stokes transport coefficients, their velocity distribution functions may turn out 
to be negative. This problem is especially important in far from equilibrium situations. 
A good candidate to overcome such difficulties is the ellipsoidal statistical (ES) model 
[5,6]. This model introduces a further adjustable parameter Pr, which can be adapted 
to a given Prandtl number. If  Pr = 2, the ES model yields the same Navier-Stokes 
transport coefficients as the Boltzmann equation. 

The motivation of this paper has been to validate the ES model through a com- 
parison with an exact solution of the Boltzmann equation in the uniform shear flow 
(USF) state. In the USF state, the only nonequilibrium control parameter is the con- 
stant shear rate a. We have obtained the velocity moments and the velocity distribution 
function of the ES model for arbitrary values of both the shear rate a and the Prandtl 
number Pr. When Pr = 1 we recover previous results derived in the context of the 
BGK model [9]. We have shown that, by a convenient scaling, the rheological prop- 
erties (which are related to the second-degree velocity moments) are identical to those 
given from the BGK and Boltzmann equations [7], independently of the value of the 
Prandtl number Pr. Beyond the second-degree moments, the results obtained from the 
ES model (Pr = 3 2-) and from the BGK model (Pr = 1 ) are different. In the case of the 
fourth-degree moments, a comparison with the exact results of the Boltzmann equa- 
tion indicates that, in general, the BGK predictions are closer to the exact ones than 
those obtained from the ES model. This conclusion can also be extended to the veloc- 
ity distribution function where a comparison with simulation results has been carried 
out. 

It is known that some of the shortcomings of the BGK model can be avoided by 
suitable modifications, at the expense however, of the simplicity of the model. The 
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extension of the BGK model represented by the ES model might be expected to lead 
to a better agreement with the Boltzmann results, especially in far from equilibrium 
situations. Nevertheless, this is not the case for the USF problem. Perhaps, this con- 
clusion is related to the fact that in the USF state, where only momentum transport 
appears, the Prandtl number does not play an important role. On the other hand, one 
could consider Pr as an additional parameter which value is chosen by requiting that 
the ES model gives the nonlinear shear viscosity and the viscometric functions of 
the Boltzmann equation in the USF state. As shown, these quantities are identical to 
those given in the Boltzmann equation for any value of Pr so that Pr can be taken 
a priori arbitrarily. If one chooses values of Pr larger than one, the results derived 
from the ES equation are in better agreement with the Boltzmann results as those 
derived from the BGK model. Finally, we want to remark that the conclusions re- 
ported here should not be extrapolated to other non-linear problems, especially those 
where the Prandtl number plays a relevant role (such as combined heat and momentum 
transport). In this sense, recent results [18] obtained in the planar Couette flow state 
shows a superiority of the ES model over other approximations when one chooses 
P r =  2. 
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Appendix A. Some mathematical results 

Let us evaluate the expression of Nkl,k2,k3 appearing in Eq. (13). In order to compute 
this term, it is convenient to rewrite the exponential exp(-AijV/Vj) in the form 

m 2 
exp(-AijViVj)=exp(cVyo~x)eXp(-2--~BTbiVi ) ,  (A.1) 

where bx = (2kBT/m)Axx, by = (2kBT/m)[Ayy - (A2y/Axx)], bz = (2kBT/m)Azz, and c = 
Axy/Axx. Here, use has been made of the identity 

exp cVy~--~ q~(V~, Vy, V~) = ~(V~ + cVy, Vy, V~). (1.2) 
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It is easy to show that detA = (m/2kBT)3bxbybz and in the following, we will make 
use of the general property 

/ dVG(V)eCVy~/~V~F(V) = f dVF(V)e-CVY°/~VxG(V). (A.3) 

Now, we are in conditions to evaluate Nk,&,k3. It is given by 

Nk,&,k~ = n \ 2-~BT J aV Vx k' Vyk2 Vzzk3f0(V) 

= \2-~8T J rc-3/2(det A)l/2 

= ( m )(k,+k2+k3)/2 7t-3/2(det A)1/2 
\ 2ksT / 

× f aV (Vx-cZY)~'V~k2Vzk3exp(- 2kBT / 

/ d~ (bxl/2~x - cbyl/2~y) k' k2 k3 _~2 =_ ~z-3/2byk2/2bzk3/2 ~y ~z e 

kl 
= ~-3/2bzk3/2 Z kl! bx ½(kl-()by l(k2+d)(--c)d 

f ?k,-~g k:+e ? k~ ~-¢: 
x d{ =X ~ y  ",Z t:  . (1.4) 

By performing the integral one gets Eq. (14). 
The explicit expressions of the fourth-degree moments are 

3 (Pr + 2a) 2 
Mo4o -- Moo4 = 3Mo22 = 4Pr (1 + 2~)2(pr + 4a) ' (A.5) 

1 1 a (Pr + 2a)[4a 2 + 2a(3Pr - 1)a + Pr 2] 
MII2 = ~M130 - 4Pr (1 + 2ct) 3 (Pr + 400 2 (A.6) 

The remaining moments can be written in the form 

(Pr + 2a) 
M2o2 = 4Pr(Pr + 4ct)3(1 + 2ct) 2 A2°2 ' (A.7) 

A 2 2 0  

M 2 2 0  - -  4Pr(Pr + 4~)3(1 + 2 ~ )  2 ' ( 1 . 8 )  
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3aA31o 
g310 

4Pr(Pr + 4~)4(1 + 2003 ' 

3A4oo 
M4oo = 4Pr(Pr + 4~)5(1 + 2~) 2 ' 

where 

A2o2 = 4 8 ~  4 + 8 ( 2 1 P r -  8 )a  3 + 4(15Pr 2 + 5 P r -  3)eft 

÷ 2Pr2(3Pr + 5)~ + Pr 3 , 

A22o = 288~ 5 + 128(6Pr - 1)~ 4 + 24(24Pr 2 - 3Pr + 1)~ 3 

+ 4Pr(36Pr 2 + 10Pr + 3 )a  2 + 6Pr2(2Pr 2 + 2Pr + 1)c~ + Pr 4 , 

A31o = 576~6 + 32(48Pr + 1)a s + 16(96Pr 2 - P r  + 11)~4 

+ 8(72Pr 3 ÷ 30Pr 2 + 10Pr + 3)~ 3 

+ 4Pr(24Pr 3 + 24Pr 2 + 13Pr + 3)~ 2 

+ 2Pr2(3Pr 3 + 8Pr 2 + 2Pr + 3)~ + Pr 5 , 

A4oo = 13824~ 8 + 1536(24Pr + 5 )a  7 + 128(360Pr 2 + 45Pr + 68)~ 6 

+ 64(360Pr 3 + 234Pr 2 + 59Pr + 42)~ 5 

+ 32(180Pr 4 + 240Pr 3 + 121Pr 2 + 39Pr + 9)~ 4 

+ 16Pr(45Pr 4 + 120Pr 3 + 62Pr 2 + 48Pr + 9)c~ 3 

+ 4Pr2(9Pr 4 + 60Pr 3 + 44Pr 2 ÷ 12Pr + 18)~ 2 

+ 4PrS(3Pr + 5)~ + Pr 6 . 

Up to the super-Burnett order (a 3), they behave as 

3 
_ a 2 Mo4o = Moo4 = 3Mo22 = ~ + - "  , 

M _ 1 1 13Pr  2 + 1 a  3 + . . .  
112 - -  ~MI30 = - ~ a  + 3 2Pr 2 

1 a 2 
M:o2 = ~ + ~-  + " "  , 

1 14Pr  2 + 3 a z + . . .  , 

M22o = ~ + 3 2Pr 2 

127 

(A.9)  

(A. lO)  

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(AA8) 
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3 1 2Pr + 3 a3 
M31°=-4 a 2 2Pr 3 + ' " '  

3 
M4o0 = ~ q- 2 a  2 + " "  • 

(A.19) 

(A.20) 
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