On the validity of a variational principle for multicomponent systems

C. Marin and V. Garzo
Departamento de Bica, Universidad de Extremadura, E-06071 Badajoz, Spain

(Received 11 March 1997; accepted 9 May 1997

The validity of a variational principle for nonequilibrium steady states proposed by Evans and
Baranyai[Phys. Rev. Lett67, 2597(1991)] is investigated in the case of a dilute binary mixture
described by the well-known Groos—Krook kinetic model. We construct a perturbation solution
around the unconstrained shear flow state and evaluate the phase-space compression factor, the
temperature ratios, and the nonlinear shear viscosity up to the first-order approximation. All these
guantities are nonlinear functions of the shear rate and the parameters of the rpexiiee

masses, concentrations, and force constattss shown that this principle does not hold exactly,
although deviations from it are small in some situations for not very large shear rates. The
calculations presented here extend previous results derived for a single dilute gd®9©97©
American Institute of Physic§S0021-96067)50231-5

I. INTRODUCTION of our previous resulfs to mixtures is not trivial at all since
now the properties of the system not only depend on the

The development of a general theory for far from equi-shear rate, but also on parameters characterizing the mixture,
librium states is a fundamental and long standing problem isuch as the mass ratios, the molar fractions, and/or the size
statistical mechanics. Only in the case of near equilibriunratios. Unfortunately, due to the complexity of the problem,
states does the well-established principle of minimum enthe task cannot be carried out analytically using the Boltz-
tropy productioh provide a criterion to characterize such mann equation. For this reason, here we start from the well-
situations. Beyond the linear regime, where local thermodyknown Gross—Krook(GK) kinetic model for a binary
namic equilibrium is broken down, much less is known andmixture® The reliability of the GK model in the case of
the search for a general principle still remains open. A few(unconstrained uniform shear flow has been recently
years ago, Evans and Barany&iB)? proposed a nonlinear shown®
generalization of the minimum entropy production principle. The plan of the paper is as follows. In Sec. Il we give a
The EB principle states that, subject to the externally im-brief summary of the results obtained from the GK equation
posed constraints, the rate of change of the volume of spader uniform shear flow. Section Il is concerned with analysis
phase is a local minimum. Evans and Baranyai did not giveof the EB principle. By performing a perturbation expansion
any proof of their principle, but provided support for the around the uniform shear flow, we obtain explicit expres-
conjecture on the basis of computer-simulation data for sions for the phase-space compression factor, the tempera-
thermostattedinglefluid under uniform shear flow. The EB ture ratio, and the shear viscosity coefficient up to first order
principle has also been shown to be related to a well-knowiin the expansion parameter. These quantities are nonlinear
macroscopic nonequilibrium entropy definitidfterward,  functions of the shear rate and parameters of the mixture
Brey, Santos, and Garzimund that exact solutions of the (mass ratio, concentration ratio, and force constant ratios
BGK* and Boltzmann equations did noexactlyverify the ~ Analysis again shows that the EB variational principleds
principle. More specifically, and in the case of the nonlinearverified far from equilibrium, although it can be seen as a
Boltzmann equatioﬁ,the EB principle holds only in the first good approximation in several limit cases for not too large
order of the shear rate so that it has the same range of vali¢hear rates. In Sec. IV, we close the paper with some con-
ity as the minimum entropy production principle. Neverthe-cluding remarks.
less, so far all numerical studfesarried out using nonequi-
librium molecular dynamics simulations have confirmed that
this principle is at least a good approximation. Il. UNIFORM SHEAR FLOW FOR A BINARY MIXTURE

Very recently, Baranyai and Cummirfgsroposed a new
molecular dynamics algorithm capable of modeling phase Let us consider a dilute binary mixture. In terms of the
coexistence between two nonequilibrium steady state phaseglocity distribution function f(r,v;t) of species s(s
which can be constituted by different components. In ordee=1,2), the number density and mean velocity of spesies
to test their algorithm, they use the EB variational principleare defined, respectively, as
and apply their results to simple model mixtures. Given that
this principle has only been analyzed in the case of a single n :f dvf 1)
gas, it is a subject of interest to investigate its range of va- s S’
lidity for multicomponent systems. This is the main goal of
this paper, in which we will consider a binary mixture in the Uszi dvvf. )
low density regime. It must be emphasized that the extension Ns
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These quantities define the total number densiyn;+n,  with
and the flow velocityu= (pqU;+ poU,)/p, whereps=mgng

. . : ; : m, Mg
is the mass density of speciesms is the mass of a particle T=T,+ 2—2 (Ts—T,). (9)
of speciess, andp=p;+p, is the total mass density. It is (m; +m)
usual to define a local “temperature” for each speciesHere, v, is a velocity independent collision frequency given
through by
m, +mg\ 2
n KpTs= f dv(v—ug)*fs, 3 VrS:AnS( Kes ——— )| (10)
ml‘mS

which is related to the mean kinetic energy of each speciesvhereA=47x0.422. The quantitie¥,, and v, are deter-
Here, kg is the Boltzmann constant. From these partial tem-mined by imposing that the total momentum and energy are
peratures, the temperature of the mixtdre(which is the  conserved and that the first five collisional moments as com-

relevant one at a hydrodynamic leyet puted with Eq.(7) be the same as those computed with the
2 exactJ, 4 f, ,fs] for Maxwell molecules. Although the GK
nkBT:2 (NkaTo+ Lpo(us—u)?). (4) model can be extended to general repulsive interactfons,

for the sake of concreteness we will restrict ourselves to
Maxwell molecules.

Under the conditions of the shear flow state, the velocity
distribution functionf, verifies the kinetic equation

In the uniform shear flow state, the only nonzero hydro-
dynamic gradient corresponds to theomponent of the flow
velocities along the direction:

14
uS,i:ui:aijrjv a5 5Jy| (5) - _(9V (aijVj"‘aVi)fl:_Vll(fl_fll)_Vlz(fl_flz)
|

a being the constant shear rate. Since no mutual diffusion (11
appears in the sys_tem_, the or_1|y nonequilibrium param_eteénd a similar equation holds fdr,. From these coupled
(which may be arbltra_rlly Iar@els_ the shgar rate. The uni- equations one may obtain the reduced velocity moments cor-
form shear flow state is not stationary since the temperaturFespondIng to each species. They are defined as

grows in time due to viscous heating. In order to prevent this

effect, it is usual in computer experiments to introduce ex-

2kgT
ternal forces which remove the heat at the same rate as itis My ,= 5

k+| +m)
) f dVVEV VDT (V),

produced. The simplest choidevhich is based on Gauss’ Nl M (12)
principle of least constraipis a nonconservative force pro-
portional to the peculiar velocity;=v;—a;r;, i.e.;° 2ksT 2(k+1+m)

Foe —meaV, ® Ny | m= n—z( m, ) fdvvkv'vmf (V). (13

where the thermostat parameteis adjusted to maintain the Very recently, explicit expressions of these moments have

temperature constant. In addition, the uniform shear flow bebeen obtained.The only nonvanishing moments correspond

comes spatially homogeneous in the frame moving with théo k+1 andm even, in which case one gets

flow velocity u. Thus in this frame the velocity distribution K

function adopts the fornfig(r,v)=f(V). My | = 32 —__(—a)d
Exact expressions for the rheological properiehich o g=o (k—q)!

are related to the second-degree velocity momaenita bi-

nary mixture of Maxwell molecules described by the Boltz-

X[ v+ (k+1+m)a] T

mann equation and under uniform shear flow have been re- X Cy_4Ci+4C Con vy (T2 g S mi2)

cently obtained! Nevertheless, no explicit expressions for

higher-degree velocity moments are known. In particular, as (14)

we will see below, the fourth-degree moments are necessagyhere C,=T"((k+1)/2),

to analyze the validity of the EB principle. Consequently, in 9 _1

order to overcome such limitation one needs to resort to Xl_E 14 Ba(v;+2a)’-a? ’2/1 =

simplified kinetic models. Perhaps, in the case of binary mix- T Mviy(1+0)[3(v1+2a)°+2a7]

tures, the most widely used is the model proposed by Gross (15

and Krook (GK).2 In this model, the Boltzmann collision V1=V, 1,11_\/\/1’12(5/(14r NV2(1+ ), vi=1/

integralsJ,¢[ f, ,fs] are replaced by terms of the form (1+6), M=w/(A+wp)% and x,=T/T=x;+2M(1+
JGK[f f]=—v(f—f.0) @ 8)(1—x1). In these expressiong,=m;/m, is the mass ra-

res rs rs tio, =ny/n, is the concentration ratio, antl;;=xq1/k12.
where for the uniform shear flow problefyy is The thermostat parameter is the largest root of a sixth-

degree algebraic equation with coefficients depending on the
(8) parameters of the problegsee the AppendjX Notice that
in Eq. (14) we have taken=(n,/n) vy, as the time unit so

f.=n LS/Zex _ M V2
s ' ZkBTrS 2kBTrS
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thata, «, and the collision frequenciegs are now dimen- In Eq. (20) it is assumed tha¥l, | , is identically zero when
sionless quantities. Henceforth, we will take this time unit inany of its indices is negative. For arbitrary values@fthe

our calculations. The momenktg | ,, can be easily obtained above hierarchy is not closed and cannot be solved. How-
from Eq. (14) by the adequate changesi»u 1, -6 1, ever, in order to compute(a) only small values of3 need

Wy W,,. The shear rate dependence of the second-degrde be considered. Consequently, we shall carry out a pertur-
moments presents a reasonably good agreement with théation expansion around the unconstrained shear flow state
one obtained from the Boltzmann equatidnThis fact by taking B as the perturbation parameter. Therefore, we
shows the reliability of the GK model for computing trans- write

port properties in a binary mixture far from equilibrium.

Since all the velocity moments of te@nconstrainedshear a=agtfayt---, (22)

flow problem are known, we are in a condition to investigate

=,(0) My...
the EB principle. This will be done in the next section. Xs=Xs TBXs "+ 23

— MO (D 4.
IIl. ANALYSIS OF THE EB PRINCIPLE IN DILUTE Mictm=Michm® BMicim @9
BINARY MIXTURES The coefficients in these expansions are nonlinear functions
V\pf the shear rate and the parameters of the mixture. Inserting
hese expansions into ERO), one gets a set of hierarchies
>{one for each order irB) that can be recursively solved.
Here, we will restrict ourselves to the two first approxima-
Tsi=—mgBVE (s=1,2) (i=x,y,2). (16)  tions. The zeroth-order approximation corresponds to the

This force is introduced to explore the verification of the EBSh(%‘;’lr ﬂOW. solution described |n.Sec. Il, where the moments
principle. The parameteB is adjusted to get a prescribed M*™ are given by Eq(14) anda, is related to the shear rate
value of the fourth moment, which will be taken as the en-thmngh Eq_.(All). L .
dogeneous variable. The EB principle refers to the phase- In the first-order approximation, one has the hierarchy:

Let us assume that we perturb the uniform shear flo
described before by introducing an extra nonconservative e
ternal force

space compression factAr,.w.hmh in general is prop.ortllor!al Rf(,ll),m_ VlM(k,l|),m=akM(k131,|+1,m+ ao(k+1+ m)Mﬁ,lR,m

to the thermostating multiplicatos. In reduced units it is

given bf +kM§<0+)2,I,m+|Mf(?l)+2,m+mM(k(,)l),m+2
A(a,B)=—(a(a,B)+3B). 17 +ay(k+1+mME (25)

According to the EB principleA must have a maximum in
. . Yvhere
absence of constraints on the endogeneous variable, namely,

at B=0. This implies that K+14+m (1)
X
JA Rf(’ll)’m: 7773/2CKC|Cm T V11X(10)k+| +m/2 (10)
Ma)=|—=] =0, (18) X
B/ 5o X3
(O)k-+1+m2
for arbitrary shear rates. +vioxi 9| (26)

The purpose of this work is to evaluak€a) from the
GK kinetic model. In the constrained shear flow problem, theThe solution of Eq(25) can be written as
steady GK equation fof; reads

k!
d d M :2 ——— (—a) v+ (K+1+m)a] 2P
Vi gy i gy (Vi AV S (k—a)! ! 0
XS, _
=—v(f1—F1)—vif1—F12), (19 Sk-al+qm: (27)

while a similar equation applies fdr. In the following we where

will focus on the properties of species 1. Multiplying both “RY kMO ~IM©® —mM©
sides of Eq(19) by VEV{ VT and integrating over the veloc- Sctm=Riclm krzhm Tk 2m kl.m+2

ity space, one gets the hierarchy —(k+l+myaMy . (28
Ri1,m— viMi ) m=akMy_ 1)1 mt a(k+1+m)My | Equation(28) is still a formal expression as we do not know
+ B(KMys 25 m+ My 4 2m the shear rate dependenceaf and X(ll). These quantities
v T can be obtained from the consistency conditions:
+mM , 20
ot 2) (20 3= ML M MO 29
where the moment#/, | ,, are given by Eq(14) and we Al 2007 7020 © 002!
have introduced the quantity 3ot = NG+ NG5+ NG, (30
Retm=7 ¥CCiCl vy ™2+ wipx s ™).
(21) S+ x5V =0. (31)
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8 FIG. 2. Shear rate dependencenafor w,;=w,,=1, and several values of
sdand w: (@ 6=0.1, u=0.1; (b) 6=1, u=2; (c) u=1; (d) 6=0.1, u

FIG. 1. Plot of the coefficient, as a function of the concentration ratio for _ 10

Wi=W,,=1 and(a) ©=0.1, (b) »=10, (c) u=0.5, and(d) u=2.

The solution of these equations provides, after a tedious bs the mass ratio goes to one and/or as the concentration ratio
straightforward algebra, an explicit expression &qr. From  goes to zerdtracer limib. In addition, at a given value af,
it one can computa as \o is smaller foru>1 than for 1f<1. For instance, ab
A=—(a+d). (32) =0.1, )\0=.0.014 fc_)r ,L.L:.].O,. while Ag=0.21 for ,u,=0..1..
The behavior ofrq is indicative of what happens for finite
The expression ofy; is given in the Appendix in terms of ghear rates. In Fig. 2, we shawas a function of the shear
the second- and fourth-degree moments corresponding {@te for several values gf and . In general, this coefficient
£ and f{?. By substituting the shear rate dependence ofnonotonically increases with. We see that the accuracy of
these recently derived momeritit,turns out thath is differ-  the EB principle increases as the concentration ratio tends to
ent from zero for all nonvanishing values of the shear rate. Ityero, especially when the tracer particles are heavier than the

particular, in the limit of small shear rates bath particles. Furthermore, since for 1, \ is independent
25 (vy—vy)2 of 6, the above condition§.>1 andd<1) lead to a devia-
A~ 722 (1402 a?=\qa’% (33 tion from the EB principle smaller than that previously found
1%2

in the case of identical particléd=or instance, for shear rates
Consequently, in general, the EB principle is only verified inup to a=0.3 (for which the shear viscosity of the mixture
the linear regiméNavier—Stokes approximatipnNeverthe-  with =10 and§=0.1 is about 1.1 times smaller than its
less, there can be some limit cases for which the Burnetimiting zero shear rate valjiex is smaller than 0.03. In this
coefficient Ay is zero or very small. Thus in the case of sense, the EB principle can be considered as an excellent
mechanically equivalent particleu=1, and k1= k,, approximation in this region. Obviously, for larger values of
= k15=1 so thatv;=v,=1), \;=0. As a matter of facth a the discrepancies are more significant.

~(31/3)a*, according to the results derived in Ref. 4. Since  Apart from investigating the EB principle, it is interest-
Ao depends in a nontrivial way on the parameters of theng to study theB dependence of the main transport proper-
mixture, in Fig. 1 we plot this coefficient as a function of the ties of the mixture, namely, the temperature ratwhich is
concentration ratio for several values of the mass ratio. Foa measure of the failure of the equipartition theorem far from
the sake of clarity, we have assumed thatl and we have equilibrium) and the nonlinear shear viscosity This coef-
setw,;=wy,=1. The corresponding behavior fér>1 can ficient is the most relevant physical quantity characterizing
be easily inferred. We observe that, goes to zero the nonequilibrium behavior of the mixture. It is defined as
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FIG. 3. Shear rate dependencexdt for wy;=w,,=1, 5=0.5 and several

FIG. 4. Shear rate dependencepf for wi;=w,,=1, §=0.5 and several
values ofu: (8) ©=10; (b) ©=0.5; (c) »=0.1.

values ofu: (8) ©=0.1; (b) ©x=0.5; (c) u=1; (d) u=10.

n=- 2nkeT L (M 1106+ N110). (349  numerical studies performed for single fluids under thermo-
a 1+ statted shear flofvhave supported this principle. In this
Up to first order inB, both quantities can be written as sense, very recently Baranyai and Cummingave used the
(0 (1) principle for testing a new algorithm capable of simulating a
X1=x1 tBxi (39 two-phase two-component system. Since no theoretical proof
1 v+ 6w, nkgT of the EB principle for multicomponent systems has been
[ T S e— (m0+Bm1), (36)  given to date, here we have investigated the range of validity

of such principle using kinetic theory methods. This requires
where 7, is the (reducedl unconstrained nonlinear shear the knowledge of explicit expressions for the properties of
viscosity? The explicit expressions of the coefficierpt:ﬁl) the mixture that is far from equilibrium, which is an unap-
and », are also given in the Appendix. In Figs. 3 and 4 we proachable problem except in particular cases. One of them
plot the shear rate dependencexéjf) and 5, , respectively, is a low density gas. For this reason, we have used the well-
for 6=0.5 and several values of We observe that(ll) and  known nonlinear GK kinetic model for a dilute binary mix-
77, do not present a monotonic behavior. In the case of comture. The present work extends our previous results derived
parable masse;‘y,(ll) is very small and is practically insensi- for a dilute single gas in the context of the BGEnd Bolt-

tive to the value of the shear rate. On the other hand, themann equations.

shear rate dependence »f is very similar for all the mass In order to validate the EB principle, we have considered
ratios considered, namely, there is a small region of sheaa dilute binary mixture in a thermostatted shear flow state. In
rates for which this coefficient decreases with the shear rataddition, a new external force, characterized by a parameter

while the opposite happens for larger valuesaof B, is introduced to fix the fourth moment. The EB principle
implies thatA (a,8) must have a maximum g@=0 for ar-
IV. CONCLUDING REMARKS bitrary values of the shear rage Since only small values of

B need to be considered to check this hypothesis, here we
In this paper, we have analyzed a variational principlehave constructed a perturbation solution of the GK equation
proposed a few years ago by Evans and Bardrfgaichar-  in powers of 8 around the unconstrained shear flow state.
acterizing steady states far from equilibrium. The EB prin-The main feature of this expansion is that the successive
ciple states that the phase-space compression facisra  approximations are nonlinear functions afand the param-
local maximum with respect to variations in endogeneousters of the mixture(mass ratio, concentration ratio, and
variables. Although this conjecture has not been proved, allorce constant ratigsIn the zeroth-order approximatiorB(
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=0), one recovers recent resdlsbtained for a binary mix- M{Q+ MO
ture under uniform shear flow. The general expressions de- A=4J(2M—v,) ZMB%—(Zao+ V1) E—
rived in the first-order solution indicate that, in the same
manner as in previous resufts,the EB principle does not N +NQ)
i (0) 130 310
apply exactly. Nevertheless, when the shear rate is not very +(2ZM—v1)| 2Nogo~ (2a0t va) — |,
large, this principle may be at least an accurate approxima-
tion in some particular situations; more specifically, in sys- (A2)

tems of like particles and/or in the tracer limit, when the _ 0) 0) 271 (0)
mass of the defect component is larger than that of the excedl™ 20MoadG T 2NgggH + 5(2M = v5) (2a0+ v1)"Mago
component. Under these circumstances, the EB principle can 4 (2M — v,)(2aq+ v,) 2N\~ 3( g+ M) (2ap+ v1)
be considered as a good approximation and consequently, it

provides an excellent criterion for testing molecular dynam- Mg%g+ Mg%

ics algorithms. Otherwise, the accuracy of this principle in < (20t 72) S ——4 (2ag+vy)

the nonlinear regime is in doubt. Apart from analyzing the

EB principle, we have studied the dependence of the rel- N(los)oJr Néol)o

evant quantities of the mixture: the temperature ratio and the + a (2ap+v1)], (A3)

shear viscosity coefficient. We have shown that the effect of
B on these properties is more noticeable than on the phase-
space compression factor.

Since the results presented here have been obtained from +2M ) + N+ 2N, (A4)
a model kinetic equation, it could be that the disagreement
with the EB principle is due to the inadequacies of the M(©
model. Nevertheless, and according to the previous results D=25(vz—2M)[Mg%)o—(2ao+vl) 110
derived for a single dilute gds one expects that similar a
conclusions could be given from the set of coupled Boltz-
mann equations. Finally, as Baranyai and Cummnirggim, —2M)[N§%},—(2ao+ V)
it must be noticed that the thermostats of our theoretical
model and of the computer experiments slightly different.
The EB principle was proposed for a generalized microcani-  E= §(v,—2M)(2ag+ v1)2Moght+ (v1—2M)
cal ensemble, where, in addition to the volume, internal en-
ergy, and number of particles, the external shear rate is also X(2agt V2)2N(2%)()_25M B%G
fixed. In our description, since microcanonical and canonical 0
ensembles are iderr)wtical in the low density regime, we use a _ZNBZ)OH T6(aotM)
constant thermostat variable. However, we think that, at a
qualitatively level, this subtlety does not drastically change X(2aptv1)(2a9+ v,)
the main conclusions reported here. Anyway, it is true that
the significance of such difference is still an open question.

C=3(ap+M)(2ap+11)2(2ag+ 1) S(M3,

+2(V1

N(O)
“0}, (A5)

a

0 0
110 Nio

1) (2agt+vy) + T

a

X (2agtvy) |, (AB)
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+v5(3v,— 4vy) [+ M (2054 3v3) — Vi, (A8)

andH is defined fromG by the adequate change of indices

v 1,). The coefficientsy!") and 7, are given b
APPENDIX: EXPLICIT EXPRESSIONS OF SOME (=) X1 7 are g y

QUANTITIES W 2

In this Appendix we list the expressions of the main X7 7 22(2M = vy) + 3(apt M)(vy+2a0)?
guantities appearing in the first-order approximation,
namely,a;, x{¥, and ;. The coefficientx; can be written x| 2a2(MGy+ asM %) —a(2ag+ v1) (2a,M 9,
as

Aa*+Ba2+C + M3+ M +(2ag+ v1)?

DA +Eal+F (A1) 3

where <[5 e+ omigr Mg | A9
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27/17/2
(vt 6v2)(v1+2a0)*(vp+2a0)”

= [25(2a0+ 12)2(ar M+ M) +2(2ag+ 1) 2( NG+ N,

2 2 (0) (0) (0) 2 2
“a 0200+ v2)“(2ag+ v1)(2a; Mgt Mgt Mizp) — a (2a9+v1)* (200t v2)
X (2a;Nigpt Naigt Nig) + X3 8(v2—v1)

1
M (4ag+ vy+v,) + > (4ad—vivy) || (A10)

Whenu=1, X(f):o, the expressions af; and v reduce to the ones previously derived from the BGK méd&t.cording

to Egs.(Al), (A9), and(A10), the coefficientsy,, X(ll) and », are given in terms of the thermost@$ and the unconstrained
second-and fourth-degree moments. Expressions of these moments can be easily obtained(ftdnaidits corresponding
counterpart. As stated in Sec. Il, the parameigrcan be numerically obtained as a function of the shear rate by solving a
sixth-degree algebraic equation. However, from a practical point of view it is convenient tead® independent variable
(instead ofa) and express explicitly all the unknowns as functionsygf In particular, the relationship betwear and a is®

a?=— 4P+ \P7=4Q), (ALY
where

3
P= v1vo(1+6)—2M(Sv,i+ v,

) [4a3(1+ 8)(2M — v1— v) + 4a3[M(Svq+ vp) — 2v1vp(1+ 8) ]

+ ag[2M(8V5+ 13) =AM vy wo(1+ 8) — vavy( v+ 1) (1+ 8)]— My vy( vy + 6vy)], (A12)

_ 9ag(1+8)(agt M) (2ag+ v1)*(2ag+ vp)? AL3
B v1vo(1+8)—2M(Svi+vy) ' (AL3)

Finally, the behaviors oj((ll) and #, in the limit of small shear rates are

Vim V2
Y~
L 2M2uivs(1+ 6

72 [8(4M — vy) vy + (4M — 1) v,]a%, (A14)

N~ M (v 0v) (14 0)2 {(1/2M) 8(v1— v9) [ S(AM — 1) 1+ (AM = v1) v, ][ 2(v1+ v2) M — vy 5]

—M(38%v5+ 8 v2(13v2— 100, v, — 83) + v3(6v1 v+ 812) ]+ 8] v2(812+ 611 v5)

— v3(8V3+ 100, v, — 1303) 1+ 3v)) + 28(1+ 8) vy vo( vy — vy)2(v1+ vy) &% (A15)
In these expressions, use has been made of the behaviors
5V2+ V1
2
Ao~ s — A, Al6
07 3(1+8)vyvy (AL6)
Vi~V
0) 1 2 2
~o—————— a“. Al7
X1 3M(1+ 8) vivs (AL7)
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