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The validity of a variational principle for nonequilibrium steady states proposed by Evans and
Baranyai@Phys. Rev. Lett.67, 2597~1991!# is investigated in the case of a dilute binary mixture
described by the well-known Groos–Krook kinetic model. We construct a perturbation solution
around the unconstrained shear flow state and evaluate the phase-space compression factor, the
temperature ratios, and the nonlinear shear viscosity up to the first-order approximation. All these
quantities are nonlinear functions of the shear rate and the parameters of the mixture~particle
masses, concentrations, and force constants!. It is shown that this principle does not hold exactly,
although deviations from it are small in some situations for not very large shear rates. The
calculations presented here extend previous results derived for a single dilute gas. ©1997
American Institute of Physics.@S0021-9606~97!50231-5#
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I. INTRODUCTION

The development of a general theory for far from eq
librium states is a fundamental and long standing problem
statistical mechanics. Only in the case of near equilibri
states does the well-established principle of minimum
tropy production1 provide a criterion to characterize suc
situations. Beyond the linear regime, where local thermo
namic equilibrium is broken down, much less is known a
the search for a general principle still remains open. A f
years ago, Evans and Baranyai~EB!2 proposed a nonlinea
generalization of the minimum entropy production princip
The EB principle states that, subject to the externally i
posed constraints, the rate of change of the volume of sp
phase is a local minimum. Evans and Baranyai did not g
any proof of their principle, but provided support for th
conjecture on the basis of computer-simulation data fo
thermostattedsinglefluid under uniform shear flow. The EB
principle has also been shown to be related to a well-kno
macroscopic nonequilibrium entropy definition.3 Afterward,
Brey, Santos, and Garzo´ found that exact solutions of th
BGK4 and Boltzmann5 equations did notexactlyverify the
principle. More specifically, and in the case of the nonline
Boltzmann equation,5 the EB principle holds only in the firs
order of the shear rate so that it has the same range of v
ity as the minimum entropy production principle. Neverth
less, so far all numerical studies6 carried out using nonequi
librium molecular dynamics simulations have confirmed t
this principle is at least a good approximation.

Very recently, Baranyai and Cummings7 proposed a new
molecular dynamics algorithm capable of modeling ph
coexistence between two nonequilibrium steady state pha
which can be constituted by different components. In or
to test their algorithm, they use the EB variational princip
and apply their results to simple model mixtures. Given t
this principle has only been analyzed in the case of a sin
gas, it is a subject of interest to investigate its range of
lidity for multicomponent systems. This is the main goal
this paper, in which we will consider a binary mixture in th
low density regime. It must be emphasized that the exten
J. Chem. Phys. 107 (7), 15 August 1997 0021-9606/97/107(7)/2
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of our previous results4,5 to mixtures is not trivial at all since
now the properties of the system not only depend on
shear rate, but also on parameters characterizing the mix
such as the mass ratios, the molar fractions, and/or the
ratios. Unfortunately, due to the complexity of the proble
the task cannot be carried out analytically using the Bo
mann equation. For this reason, here we start from the w
known Gross–Krook~GK! kinetic model for a binary
mixture.8 The reliability of the GK model in the case o
~unconstrained! uniform shear flow has been recent
shown.9

The plan of the paper is as follows. In Sec. II we give
brief summary of the results obtained from the GK equat
for uniform shear flow. Section III is concerned with analys
of the EB principle. By performing a perturbation expansi
around the uniform shear flow, we obtain explicit expre
sions for the phase-space compression factor, the temp
ture ratio, and the shear viscosity coefficient up to first or
in the expansion parameter. These quantities are nonli
functions of the shear rate and parameters of the mix
~mass ratio, concentration ratio, and force constant rati!.
Analysis again shows that the EB variational principle isnot
verified far from equilibrium, although it can be seen as
good approximation in several limit cases for not too lar
shear rates. In Sec. IV, we close the paper with some c
cluding remarks.

II. UNIFORM SHEAR FLOW FOR A BINARY MIXTURE

Let us consider a dilute binary mixture. In terms of th
velocity distribution function f s(r ,v;t) of species s(s
[1,2), the number density and mean velocity of species
are defined, respectively, as

ns5E dvf s , ~1!

us5
1

ns
E dvvf s . ~2!
2573573/7/$10.00 © 1997 American Institute of Physics
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2574 C. Marı́n and V. Garzó: Variational principle for multicomponent systems
These quantities define the total number densityn5n11n2

and the flow velocityu5(r1u11r2u2)/r, wherers5msns

is the mass density of speciess, ms is the mass of a particle
of speciess, andr5r11r2 is the total mass density. It i
usual to define a local ‘‘temperature’’ for each spec
through

3

2
nskBTs5

ms

2 E dv~v2us!
2f s , ~3!

which is related to the mean kinetic energy of each spec
Here,kB is the Boltzmann constant. From these partial te
peratures, the temperature of the mixtureT ~which is the
relevant one at a hydrodynamic level! is

nkBT5(
s51

2

~nskBTs1
1
3rs~us2u!2!. ~4!

In the uniform shear flow state, the only nonzero hyd
dynamic gradient corresponds to thex component of the flow
velocities along they direction:

us,i5ui5ai j r j , ai j 5ad ixd jy , ~5!

a being the constant shear rate. Since no mutual diffus
appears in the system, the only nonequilibrium param
~which may be arbitrarily large! is the shear rate. The un
form shear flow state is not stationary since the tempera
grows in time due to viscous heating. In order to prevent t
effect, it is usual in computer experiments to introduce
ternal forces which remove the heat at the same rate as
produced. The simplest choice~which is based on Gauss
principle of least constraint! is a nonconservative force pro
portional to the peculiar velocityVi5v i2ai j r j , i.e.,10

Fs52msaV, ~6!

where the thermostat parametera is adjusted to maintain the
temperature constant. In addition, the uniform shear flow
comes spatially homogeneous in the frame moving with
flow velocity u. Thus in this frame the velocity distributio
function adopts the formf s(r ,v)5 f s(V).

Exact expressions for the rheological properties~which
are related to the second-degree velocity moments! of a bi-
nary mixture of Maxwell molecules described by the Bol
mann equation and under uniform shear flow have been
cently obtained.11 Nevertheless, no explicit expressions f
higher-degree velocity moments are known. In particular
we will see below, the fourth-degree moments are neces
to analyze the validity of the EB principle. Consequently,
order to overcome such limitation one needs to resor
simplified kinetic models. Perhaps, in the case of binary m
tures, the most widely used is the model proposed by G
and Krook ~GK!.8 In this model, the Boltzmann collision
integralsJrs@ f r , f s# are replaced by terms of the form

Jrs
GK@ f r , f s#52n rs~ f r2 f rs!, ~7!

where for the uniform shear flow problemf rs is

f rs5nr S mr

2kBTrs
D 3/2

expF2
mr

2kBTrs
V2G ~8!
J. Chem. Phys., Vol. 107,
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Trs5Tr12
mrms

~mr1ms!
2 ~Ts2Tr !. ~9!

Here,n rs is a velocity independent collision frequency give
by

n rs5AnsS k rs

mr1ms

mrms
D 1/2

, ~10!

whereA54p30.422. The quantitiesTrs andn rs are deter-
mined by imposing that the total momentum and energy
conserved and that the first five collisional moments as co
puted with Eq.~7! be the same as those computed with t
exactJrs@ f r , f s# for Maxwell molecules. Although the GK
model can be extended to general repulsive interaction12

for the sake of concreteness we will restrict ourselves
Maxwell molecules.

Under the conditions of the shear flow state, the veloc
distribution functionf 1 verifies the kinetic equation

2
]

]Vi
~ai j Vj1aVi ! f 152n11~ f 12 f 11!2n12~ f 12 f 12!

~11!

and a similar equation holds forf 2 . From these coupled
equations one may obtain the reduced velocity moments
responding to each species. They are defined as

Mk,l ,m5
1

n1
S 2kBT

m1
D 2

1
2~k1 l 1m!E dVVx

kVy
l Vz

mf 1~V!,

~12!

Nk,l ,m5
1

n2
S 2kBT

m2
D 2

1
2~k1 l 1m!E dVVx

kVy
l Vz

mf 2~V!. ~13!

Very recently, explicit expressions of these moments h
been obtained.9 The only nonvanishing moments correspo
to k1 l andm even, in which case one gets

Mk,l ,m5p23/2(
q50

k
k!

~k2q!!
~2a!q

3@n11~k1 l 1m!a#2~11q!

3Ck2qCl 1qCm@n11x1
~k1 l 1m!/21n12x12

~k1 l 1m!/2#,

~14!

where Ck5G((k11)/2),

x1[
T1

T
5F11

3a~n112a!22a2n1

Mn12~11d!@3~n112a!212a2#G
21

,

~15!

n15n111n12, n115w11
1/2(d/(11d))A2/(11m), n1251/

~11d!, M[m/~11m)2, and x12[T12/T5x112M (11
d)(12x1). In these expressions,m[m1 /m2 is the mass ra-
tio, d[n1 /n2 is the concentration ratio, andw11[k11/k12.
The thermostat parametera is the largest root of a sixth
degree algebraic equation with coefficients depending on
parameters of the problem~see the Appendix!.9 Notice that
in Eq. ~14! we have takent5(n2 /n)n12

21 as the time unit so
No. 7, 15 August 1997
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2575C. Marı́n and V. Garzó: Variational principle for multicomponent systems
that a, a, and the collision frequenciesn rs are now dimen-
sionless quantities. Henceforth, we will take this time unit
our calculations. The momentsNk,l ,m can be easily obtained
from Eq. ~14! by the adequate changes:m↔m21, d↔d21,
w11↔w22. The shear rate dependence of the second-de
moments9 presents a reasonably good agreement with
one obtained from the Boltzmann equation.11 This fact
shows the reliability of the GK model for computing tran
port properties in a binary mixture far from equilibrium
Since all the velocity moments of the~unconstrained! shear
flow problem are known, we are in a condition to investiga
the EB principle. This will be done in the next section.

III. ANALYSIS OF THE EB PRINCIPLE IN DILUTE
BINARY MIXTURES

Let us assume that we perturb the uniform shear fl
described before by introducing an extra nonconservative
ternal force

F s,i52msbVi
3 ~s51,2! ~ i 5x,y,z!. ~16!

This force is introduced to explore the verification of the E
principle. The parameterb is adjusted to get a prescribe
value of the fourth moment, which will be taken as the e
dogeneous variable. The EB principle refers to the pha
space compression factorL, which in general is proportiona
to the thermostating multiplicatora. In reduced units it is
given by2

L~a,b!52~a~a,b!1 3
2b!. ~17!

According to the EB principle,L must have a maximum in
absence of constraints on the endogeneous variable, nam
at b50. This implies that

l~a![S ]L

]b D
b50

50, ~18!

for arbitrary shear rates.
The purpose of this work is to evaluatel(a) from the

GK kinetic model. In the constrained shear flow problem,
steady GK equation forf 1 reads

2ai j Vj

]

]Vi
f 12

]

]Vi
~aVi1bVi

3! f 1

52n11~ f 12 f 11!2n12~ f 12 f 12!, ~19!

while a similar equation applies forf 2 . In the following we
will focus on the properties of species 1. Multiplying bo
sides of Eq.~19! by Vx

kVy
l Vz

m and integrating over the veloc
ity space, one gets the hierarchy

Rk,l ,m2n1Mk,l ,m5akMk21,l 11,m1a~k1 l 1m!Mk,l ,m

1b~kMk12,l ,m1 lM k,l 12,m

1mMk,l ,m12!, ~20!

where the momentsMk,l ,m are given by Eq.~14! and we
have introduced the quantity

Rk,l ,m5p23/2CkClCm@n11x11
~k1 l 1m!/21n12x12

~k1 l 1m!/2#.
~21!
J. Chem. Phys., Vol. 107,
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In Eq. ~20! it is assumed thatMk,l ,m is identically zero when
any of its indices is negative. For arbitrary values ofb, the
above hierarchy is not closed and cannot be solved. H
ever, in order to computel(a) only small values ofb need
to be considered. Consequently, we shall carry out a per
bation expansion around the unconstrained shear flow s
by taking b as the perturbation parameter. Therefore,
write

a5a01ba11••• , ~22!

xs5xs
~0!1bxs

~1!1••• , ~23!

Mk,l ,m5Mk,l ,m
~0! 1bMk,l ,m

~1! 1••• . ~24!

The coefficients in these expansions are nonlinear funct
of the shear rate and the parameters of the mixture. Inser
these expansions into Eq.~20!, one gets a set of hierarchie
~one for each order inb! that can be recursively solved
Here, we will restrict ourselves to the two first approxim
tions. The zeroth-order approximation corresponds to
shear flow solution described in Sec. II, where the mome
M (0) are given by Eq.~14! anda0 is related to the shear rat
through Eq.~A11!.

In the first-order approximation, one has the hierarch

Rk,l ,m
~1! 2n1Mk,l ,m

~1! 5akMk21,l 11,m
~1! 1a0~k1 l 1m!Mk,l ,m

~1!

1kMk12,l ,m
~0! 1 lM k,l 12,m

~0! 1mMk,l ,m12
~0!

1a1~k1 l 1m!Mk,l ,m
~0! , ~25!

where

Rk,l ,m
~1! 5p23/2CkClCm

k1 l 1m

2 Fn11x1
~0!k1 l 1m/2

x1
~1!

x1
~0!

1n12x12
~0!k1 l 1m/2

x12
~1!

x12
~0!G . ~26!

The solution of Eq.~25! can be written as

Mk,l ,m
~1! 5 (

q50

k
k!

~k2q!!
~2a!q@n11~k1 l 1m!a0#2~11q!

3Sk2q,l 1q,m , ~27!

where

Sk,l ,m5Rk,l ,m
~1! 2kMk12,l ,m

~0! 2 lM k,l 12,m
~0! 2mMk,l ,m12

~0!

2~k1 l 1m!a1Mk,l ,m
~0! . ~28!

Equation~28! is still a formal expression as we do not kno
the shear rate dependence ofa1 and x1

(1) . These quantities
can be obtained from the consistency conditions:

3
2x1

~1!5M200
~1!1M020

~1!1M002
~1! , ~29!

3
2x2

~1!5N200
~1!1N020

~1! 1N002
~1! , ~30!

dx1
~1!1x2

~1!50. ~31!
No. 7, 15 August 1997

 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



b

f
g

o

. I

in

ne
of

ce
th
e

F

ratio

r
t
f
s to
the

d
s
e
ts

llent
of

t-
er-

om

ing
s

r

f

2576 C. Marı́n and V. Garzó: Variational principle for multicomponent systems
The solution of these equations provides, after a tedious
straightforward algebra, an explicit expression fora1 . From
it one can computel as

l52~a11 3
2!. ~32!

The expression ofa1 is given in the Appendix in terms o
the second- and fourth-degree moments correspondin
f 1

(0) and f 2
(0) . By substituting the shear rate dependence

these recently derived moments,9 it turns out thatl is differ-
ent from zero for all nonvanishing values of the shear rate
particular, in the limit of small shear rates

l'
2d

n1
2n2

2

~n12n2!2

~11d!2 a2[l0a2. ~33!

Consequently, in general, the EB principle is only verified
the linear regime~Navier–Stokes approximation!. Neverthe-
less, there can be some limit cases for which the Bur
coefficient l0 is zero or very small. Thus in the case
mechanically equivalent particles~m51, and k115 k22

5 k1251 so thatn15n251!, l050. As a matter of fact,l
'(31/3)a4, according to the results derived in Ref. 4. Sin
l0 depends in a nontrivial way on the parameters of
mixture, in Fig. 1 we plot this coefficient as a function of th
concentration ratio for several values of the mass ratio.
the sake of clarity, we have assumed thatd<1 and we have
set w115w2251. The corresponding behavior ford.1 can
be easily inferred. We observe thatl0 goes to zero

FIG. 1. Plot of the coefficientl0 as a function of the concentration ratio fo
w115w2251 and~a! m50.1, ~b! m510, ~c! m50.5, and~d! m52.
J. Chem. Phys., Vol. 107,
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as the mass ratio goes to one and/or as the concentration
goes to zero~tracer limit!. In addition, at a given value ofd,
l0 is smaller form.1 than for 1/m,1. For instance, atd
50.1, l0.0.014 for m510, while l0.0.21 for m50.1.
The behavior ofl0 is indicative of what happens for finite
shear rates. In Fig. 2, we showl as a function of the shea
rate for several values ofm andd. In general, this coefficien
monotonically increases witha. We see that the accuracy o
the EB principle increases as the concentration ratio tend
zero, especially when the tracer particles are heavier than
bath particles. Furthermore, since form51, l is independent
of d, the above conditions~m.1 andd!1! lead to a devia-
tion from the EB principle smaller than that previously foun
in the case of identical particles.4 For instance, for shear rate
up to a.0.3 ~for which the shear viscosity of the mixtur
with m510 andd50.1 is about 1.1 times smaller than i
limiting zero shear rate value!, l is smaller than 0.03. In this
sense, the EB principle can be considered as an exce
approximation in this region. Obviously, for larger values
a the discrepancies are more significant.

Apart from investigating the EB principle, it is interes
ing to study theb dependence of the main transport prop
ties of the mixture, namely, the temperature ratios~which is
a measure of the failure of the equipartition theorem far fr
equilibrium! and the nonlinear shear viscosityh. This coef-
ficient is the most relevant physical quantity characteriz
the nonequilibrium behavior of the mixture. It is defined a

FIG. 2. Shear rate dependence ofl for w115w2251, and several values o
d and m: ~a! d50.1, m50.1; ~b! d51, m52; ~c! m51; ~d! d50.1, m
510.
No. 7, 15 August 1997

 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ar

e

m
i-
th

e
ra

pl

in

u
, a

o-
s

a
roof
en
dity
res
of

p-
em
ell-
-
ved

ed
. In
eter
le

f
we

tion
te.
sive

d

2577C. Marı́n and V. Garzó: Variational principle for multicomponent systems
h52
2nkBT

ta

1

11d
~M110d1N110!. ~34!

Up to first order inb, both quantities can be written as

x15x1
~0!1bx1

~1! , ~35!

h5
1

11d

n11dn2

n1n2

nkBT

t
~h01bh1!, ~36!

where h0 is the ~reduced! unconstrained nonlinear she
viscosity.9 The explicit expressions of the coefficientsx1

(1)

andh1 are also given in the Appendix. In Figs. 3 and 4 w
plot the shear rate dependence ofx1

(1) andh1 , respectively,
for d50.5 and several values ofm. We observe thatx1

(1) and
h1 do not present a monotonic behavior. In the case of co
parable masses,x1

(1) is very small and is practically insens
tive to the value of the shear rate. On the other hand,
shear rate dependence ofh1 is very similar for all the mass
ratios considered, namely, there is a small region of sh
rates for which this coefficient decreases with the shear
while the opposite happens for larger values ofa.

IV. CONCLUDING REMARKS

In this paper, we have analyzed a variational princi
proposed a few years ago by Evans and Baranyai2 for char-
acterizing steady states far from equilibrium. The EB pr
ciple states that the phase-space compression factorL is a
local maximum with respect to variations in endogeneo
variables. Although this conjecture has not been proved

FIG. 3. Shear rate dependence ofx1
(1) for w115w2251, d50.5 and several

values ofm: ~a! m510; ~b! m50.5; ~c! m50.1.
J. Chem. Phys., Vol. 107,
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numerical studies performed for single fluids under therm
statted shear flow6 have supported this principle. In thi
sense, very recently Baranyai and Cummings7 have used the
principle for testing a new algorithm capable of simulating
two-phase two-component system. Since no theoretical p
of the EB principle for multicomponent systems has be
given to date, here we have investigated the range of vali
of such principle using kinetic theory methods. This requi
the knowledge of explicit expressions for the properties
the mixture that is far from equilibrium, which is an una
proachable problem except in particular cases. One of th
is a low density gas. For this reason, we have used the w
known nonlinear GK kinetic model for a dilute binary mix
ture. The present work extends our previous results deri
for a dilute single gas in the context of the BGK4 and Bolt-
zmann equations.5

In order to validate the EB principle, we have consider
a dilute binary mixture in a thermostatted shear flow state
addition, a new external force, characterized by a param
b, is introduced to fix the fourth moment. The EB princip
implies thatL(a,b) must have a maximum atb50 for ar-
bitrary values of the shear ratea. Since only small values o
b need to be considered to check this hypothesis, here
have constructed a perturbation solution of the GK equa
in powers ofb around the unconstrained shear flow sta
The main feature of this expansion is that the succes
approximations are nonlinear functions ofa and the param-
eters of the mixture~mass ratio, concentration ratio, an
force constant ratios!. In the zeroth-order approximation (b

FIG. 4. Shear rate dependence ofh1 for w115w2251, d50.5 and several
values ofm: ~a! m50.1; ~b! m50.5; ~c! m51; ~d! m510.
No. 7, 15 August 1997
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2578 C. Marı́n and V. Garzó: Variational principle for multicomponent systems
50), one recovers recent results9 obtained for a binary mix-
ture under uniform shear flow. The general expressions
rived in the first-order solution indicate that, in the sam
manner as in previous results,4,5 the EB principle does no
apply exactly. Nevertheless, when the shear rate is not
large, this principle may be at least an accurate approxi
tion in some particular situations; more specifically, in sy
tems of like particles and/or in the tracer limit, when t
mass of the defect component is larger than that of the ex
component. Under these circumstances, the EB principle
be considered as a good approximation and consequent
provides an excellent criterion for testing molecular dyna
ics algorithms. Otherwise, the accuracy of this principle
the nonlinear regime is in doubt. Apart from analyzing t
EB principle, we have studied theb dependence of the rel
evant quantities of the mixture: the temperature ratio and
shear viscosity coefficient. We have shown that the effec
b on these properties is more noticeable than on the ph
space compression factor.

Since the results presented here have been obtained
a model kinetic equation, it could be that the disagreem
with the EB principle is due to the inadequacies of t
model. Nevertheless, and according to the previous res
derived for a single dilute gas,4,5 one expects that simila
conclusions could be given from the set of coupled Bo
mann equations. Finally, as Baranyai and Cummings7 claim,
it must be noticed that the thermostats of our theoret
model and of the computer experiments areslightly different.
The EB principle was proposed for a generalized microca
cal ensemble, where, in addition to the volume, internal
ergy, and number of particles, the external shear rate is
fixed. In our description, since microcanonical and canon
ensembles are identical in the low density regime, we us
constant thermostat variable. However, we think that, a
qualitatively level, this subtlety does not drastically chan
the main conclusions reported here. Anyway, it is true t
the significance of such difference is still an open questi
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APPENDIX: EXPLICIT EXPRESSIONS OF SOME
QUANTITIES

In this Appendix we list the expressions of the ma
quantities appearing in the first-order approximatio
namely,a1 , x1

(1) , andh1 . The coefficienta1 can be written
as

a15
Aa41Ba21C

Da41Ea21F
, ~A1!

where
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A5d~2M2n2!F2M040
~0! 2~2a01n1!

M130
~0! 1M310

~0!

a G
1~2M2n1!F2N040

~0!2~2a01n2!
N130

~0!1N310
~0!

a G ,
~A2!

B52dM040
~0!G12N040

~0!H1d~2M2n2!~2a01n1!2M400
~0!

1~2M2n1!~2a01n2!2N400
~0!23~a01M !~2a01n1!

3~2a01n2!Fd
M130

~0! 1M310
~0!

a
~2a01n2!

1
N130

~0! 1N310
~0!

a
~2a01n1!G , ~A3!

C53~a01M !~2a01n1!2~2a01n2!2@d~M400
~0!

12M040
~0! !1N400

~0!12N040
~0! #, ~A4!

D52d~n222M !FM020
~0!2~2a01n1!

M110
~0!

a G12~n1

22M !FN020
~0!2~2a01n2!

N110
~0!

a G , ~A5!

E5d~n222M !~2a01n1!2M200
~0!1~n122M !

3~2a01n2!2N200
~0!22dM020

~0!G

22N020
~0!H16~a01M !

3~2a01n1!~2a01n2!Fd
M110

~0!

a
~2a01n2!1

N110
~0!

a

3~2a01n1!G , ~A6!

F52 9
2~a01M !~2a01n1!2~2a01n2!2~11d!. ~A7!

Here, we have introduced the quantities

G512a0
314a0

2~5M12n2!1a0@4M ~2n113n2!

1n2~3n224n1!#1M ~2n1
213n2

2!2n1
2n2 , ~A8!

andH is defined fromG by the adequate change of indice
(n1↔n2). The coefficientsx1

(1) andh1 are given by

x1
~1!52

2

a2~2M2n1!13~a01M !~n112a0!2

3F2a2~M040
~0! 1a1M020

~0! !2a~2a01n1!~2a1M110
~0!

1M130
~0! 1M310

~0! !1~2a01n1!2

3S 3

2
a1x1

~0!12M040
~0!1M400

~0! D G , ~A9!
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h152
2n1n2

~n11dn2!~n112a0!2~n212a0!2 F2d~2a01n2!2~a1M020
~0!1M040

~0! !12~2a01n1!2~a1N020
~0!1N040

~0! !

2
2

a
d~2a01n2!2~2a01n1!~2a1M110

~0!1M310
~0!1M130

~0! !2
2

a
~2a01n1!2~2a01n2!

3~2a1N110
~0!1N310

~0! 1N130
~0! !1x1

~1!d~n22n1!FM ~4a01n11n2!1
1

2
~4a0

22n1n2!G G . ~A10!

Whenm51, x1
(1)50, the expressions ofa1 andn1 reduce to the ones previously derived from the BGK model.4 According

to Eqs.~A1!, ~A9!, and~A10!, the coefficientsa1 , x1
(1) andh1 are given in terms of the thermostata0 and the unconstrained

second-and fourth-degree moments. Expressions of these moments can be easily obtained from Eq.~14! and its corresponding
counterpart. As stated in Sec. II, the parametera0 can be numerically obtained as a function of the shear rate by solvi
sixth-degree algebraic equation. However, from a practical point of view it is convenient to takea0 as independent variabl
~instead ofa! and express explicitly all the unknowns as functions ofa0. In particular, the relationship betweena2 anda0 is9

a252 1
2~P1AP224Q!, ~A11!

where

P5
3

n1n2~11d!22M ~dn11n2!
@4a0

3~11d!~2M2n12n2!14a0
2@M ~dn11n2!22n1n2~11d!#

1a0@2M ~dn1
21n2

2!24Mn1n2~11d!2n1n2~n11n2!~11d!#2Mn1n2~n11dn2!#, ~A12!

Q5
9a0~11d!~a01M !~2a01n1!2~2a01n2!2

n1n2~11d!22M ~dn11n2!
. ~A13!

Finally, the behaviors ofx1
(1) andh1 in the limit of small shear rates are

x1
~1!'

n12n2

2M2n1
2n2

2~11d!2 @d~4M2n2!n11~4M2n1!n2#a2, ~A14!

h1'
1

n1
3n2

3M ~n11dn2!~11d!2 $~1/2M !d~n12n2!2@d~4M2n2!n11~4M2n1!n2#@2~n11n2!M2n1n2#

2M ~3d3n2
41d2@n1

2~13n1
2210n1n228n2

2!1n2
2~6n1n218n2

2!#1d@n1
2~8n1

216n1n2!

2n2
2~8n1

2110n1n2213n2
2!#13n1

4!12d~11d!n1n2~n12n2!2~n11n2!%a2. ~A15!

In these expressions, use has been made of the behaviors

a0'
dn21n1

3~11d!n1n2
a2, ~A16!

x1
~0!'

n12n2

3M ~11d!n1n2
a2. ~A17!
,
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11C. Marı́n, V. Garzó, and A. Santos, Phys. Rev. E52, 4942~1995!.
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