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Tracer limit in a gas mixture under shear flow with repulsive interactions

C. Marı́n, V. Garzó, and A. Santos
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 2 December 1996; revised manuscript received 10 April 1997!

A dilute binary mixture under uniform shear flow is considered in the tracer limit. The analysis is made from
an exact solution of a generalized Gross-Krook model forr 2g repulsive forces. The results show that the
partial contribution of the tracer species to the total properties of the mixture becomes finite if the shear rate is
larger than a certain critical valueac , which is a function of the mass ratio, force constant ratios, and the
interaction potential considered. This phenomenon can be interpreted as a nonequilibrium phase transition in
velocity space. For non-Maxwell molecules (gÞ5), the corresponding order parameter is discontinuous at the
critical point ~first order transition!; on the other hand, the transition becomes continuous atac in the special
case of Maxwell molecules (g55). @S1063-651X~97!16008-1#

PACS number~s!: 05.20.Dd, 47.50.1d, 05.60.1w, 51.10.1y
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A problem of practical and physical interest is the stu
of nonequilibrium properties of binary mixtures in which th
concentration of one of the components~tracer species! is
much smaller than that of the other component~excess spe-
cies!. Since the molar fraction of the tracer species is ne
gible, one expects that the total properties of the mixture
not affected by the presence of the tracer particles. This
sumption has been widely used in different physical sit
tions. Quite surprisingly, this is not always true and recen
we have presented an example of a violation of the ab
expectation@1–3# in the case of a dilute binary mixture o
Maxwell molecules under uniform shear flow. The resu
derived from exact solutions to the Boltzmann equat
@1,2#, as well as to the Gross-Krook~GK! kinetic model@3#
show a transition to a new state in which the tracer spe
contributes significantly to the total properties of the mixtu
when the system is sufficiently far from equilibrium. Th
happens for shear rates larger than acritical value, which
depends on the mass and force constant ratios. Since
above studies have been restricted to the Maxwell inte
tion, a natural question is whether this transition can be
tended to other more realistic interaction potentials or
merely an artifact of Maxwell molecules. Unfortunately, th
question cannot be answered analytically from the Bo
mann equation, since no exact solution of this equation
yond the Maxwell interaction is known@4#. For this reason,
here we analyze with detail the same problem by star
from a generalized GK model@5#. In this case, the Boltz-
mann collision integralsJi j @ f i , f j # are replaced by simple
relaxation terms:

Ji j
GK52n i j ~ f i2 f i j !, ~1!

where

n i j 5C~b!nj S k i j

mi1mj

mimj
D ~12b!/2S 2kBTi

mi
1

2kBTj

mj
D b/2

~2!

is an effective collision frequency for molecules interacti
through repulsive forces of the formk i j r

2g(g55, . . . ,̀ ).
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Here,b[(g25)/(g21) andC(b) is a constant for a given
potential. The reference distribution functionf i j is

f i j 5ni~mi /2pkBTi j !
3/2exp@2~mi /2kBTi j !~v2ui j !

2#,
~3!

with ui j 5(miui1mjuj )/(mi1mj ) and Ti j 5Ti
12M @(Tj2Ti)1(mj /6kB)(ui2uj )

2#. In these equations
M[m1m2 /(m11m2)2 and ni , ui and Ti are the number
density, flow velocity, and ‘‘temperature’’ of speciesi , re-
spectively. According to Eq.~2!, the model incorporates a
temperature dependence of the collision frequenciesn i j that
allows the consideration of general repulsive potentials. T
reliability of this kinetic model has been assessed in seve
nonequilibrium problems@6# by comparison with Monte
Carlo simulations of the Boltzmann equation@7#.

In the uniform shear flow state, the only nonzero hydr
dynamic gradient is]ux /]y5a, whereu5u15u2 is the flow
velocity of the mixture anda is the constant shear rate. The
is no mutual diffusion and the shear rate is the relevant n
equilibrium parameter of the problem. In addition, an exte
nal ‘‘thermostat’’ force is introduced in the system to contr
viscous heating and achieve a steady state@8#. In the case of
Maxwell molecules, the presence of the thermostat does
play any role in the results@3,4#, while a certain influence
may exist for other repulsive interactions. Very recently,
exact solution of the GK model for this state has been fou
@3#. In general, the main transport properties of the mixtu
are given in terms of the thermostat parametera and the
temperature ratiox[T1 /T2. Both quantities are determine
by solving the following set of nonlinear algebraic equatio
@3#:

~32A1!~32A2!2B1B250, ~4!

x5
32A2

B2
5

B1

32A1
, ~5!

where

A15
n111n12~122M !

n112a F31
2a2

~n112a!2G , ~6!
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B15
2Mn12

n112aF31
2a2

~n112a!2G , ~7!

andn15n111n12. The remaining coefficientsA2 andB2 can
be obtained from Eqs.~6! and ~7! by the adequate change
The solution of Eqs.~4! and ~5! givesa andx as nonlinear
functions of the shear ratea and the parameters of the mix
ture, namely, the mass ratiom[m1 /m2, the concentration
ratio d[n1 /n2, the force constant ratiosw11[k11/k12 and
w22[k22/k12, and the interaction parameterb. In the case
of Maxwell molecules (b50), the collision frequenciesn i j
are independent of the temperature ratio and Eq.~4! reduces
to a sixth-degree closed equation ina. For non-Maxwell
molecules (bÞ0), however, no explicit closed equation
a can be obtained, so thata andx are nonlinearly coupled
This fact shows the intricacy of the problem beyond t
Maxwell interaction. It must be remarked that thephysical
solution of Eqs.~4! and ~5! is the one corresponding to th
largestvalue ofa @3,4#.

Thus far, the results apply for an arbitrary concentrat
d. The aim of this work is to analyze in detail what happe
in the tracer limit (d→0). For the sake of convenience, w
taken12

21 as unit of time. This means that we measure time
units of the mean free time of a particle of the tracer spec
between collisions with particles of the excess spec
Therefore, we will use the reduced quantitiesa* 5a/n12,
a* 5a/n12, n11* 5n11/n125z11d@11(m/x)#2b/2, n22* 5n22/
n125z22@11(x/m)#2b/2, and n21* 5n21/n125d. Here,
z115A2@w11/(11m)# (12b)/2 and z225A2@w22m/
(11m)] (12b)/2. Henceforth, we will omit the asterisks. W
assume first thatx is finite, so that Eq.~4! factorizes in the
limit d→0 into two equations

a2~122M !53~a1M !~112a!2, ~8!

a2z22m
b/2~m1x!b/253a@2a~m1x!b/21z22m

b/2#2. ~9!

Equation ~8! is a closed cubic equation, but Eq.~9! is
coupled to

x5
M @2a213~112a!2#

3~a1M !~112a!22a2~122M !
, ~10!

which comes from the second equality in Eq.~5!. Notice that
Eq. ~8! is independent of the interaction parameterb. As said
before, the thermostat parameter isa5max(a0 ,a08), where
a08 is the real root of Eq.~8!, while a0 is the largest real roo
obtained numerically from Eqs.~9! and ~10!. In Fig. 1 we
plot the shear rate dependence ofa0 and a08 for m50.15,
w115w2251, and several values ofb: b50 ~Maxwell mol-
ecules!, b5 1

2, andb51 ~hard spheres!. There exists a criti-
cal shear rateac(m,b), beyond which there is no solution t
Eqs.~9! and ~10! with a positive real value ofx. Therefore,
a5a08 if a.ac , while a5a0 if a,ac . It is important to
remark that a is discontinuous ata5ac , since a0(ac)
Þa08(ac). This discontinuity decreases as the interaction
comes softer and eventually disappears for Maxwell m
ecules (b50). Since the denominator in the right-hand si
of Eq. ~10! vanishes ifa5a08 , we havex→` if a.ac . The
n
s

n
s

s.

-
l-

m dependence ofac is shown in Fig. 2 forb50,1
3 , 1

2 , 2
3 , and

1. As happens in the Maxwell case@2#, the results sugges
the existence of a threshold mass ratiom0(b) for each inter-
action model, such thatac(b)→` as m→m0(b). The
threshold mass ratio is smaller than 1 in the cases of Fig
but it can be larger than 1 if one considers other choices
the force constants. The value ofm0 can be obtained analyti-
cally only for Maxwell molecules. In general, at a give
value ofm, the corresponding critical valueac(b) decreases
as the interaction parameter increases.

The main physical consequence of the existence

FIG. 1. Plot of a0 ~solid line! and a08 ~dashed line! vs a for
m50.15,w115w2251, and several values ofb: ~a! b50 ~Maxwell
molecules!, ~b! b5

1
2, and ~c! b51 ~hard spheres!. The vertical

dotted lines indicate the location ofac in each case.

FIG. 2. Plot ofac as a function ofm for w115w2251 and five

values ofb: 0, 1
3 , 1

2 , 2
3, and 1.
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ac(m,b) is that in the regiona.ac there is afinite relative
contribution of the tracer species to the total properties of
mixture. Let us consider the energy ratioE1 /E
5dx/(11dx). To get this quantity fora.ac one needs to
evaluatedx first and then take the limitd→0. This function
is evaluated from the first equality of Eq.~5!. After a careful
asymptotic analysis, one gets that

E1

E
5

F0~a!

11F0~a!F11
F1~a!

11F0~a!
db/21O~db!G , ~11!

if m,m0(b) and a.ac(m,b), being E1 /E;d otherwise,
where

F0~a!5
6a08

3

M ~a216a08
2!

, ~12!

F1~a!5mb/2F0~a!2b/2z22F12a08
22a2

12a08
3

2
6a08z22

M ~a216a08
2!

G .

~13!

It is interesting to notice that the leading term in Eq.~11! is
independent ofb. On the other hand, the subleading te
depends onb and is of orderdb/2, so that it is negligible only
for very small values ofd, especially ifb is much smaller
than 1. The asymptotic analysis leading to Eq.~11! does not
apply in the particular case of Maxwell molecules (b50)
since an infinite number of terms in the series become of
same order. The corresponding exact result is

E1

E
5

3a08~2a081z22!
22a2z22

a2~2M2z22!13~a081M !~2a081z22!
2

1O~d!,

~14!

if m,m0 and a.ac . This means that the limitsb→0 and
d→0 do not commute.

The fact that limd→0E1 /EÞ0 if a.ac shows the qualita-
tively different behavior of the mixture in the tracer lim
depending on whether the shear ratea is larger or not than
the corresponding critical valueac . By borrowing the usual
terminology of equilibrium phase transitions@9#, one can
identify a as the ‘‘control’’ parameter andE1 /E as an ‘‘or-
der’’ parameter. In Fig. 3, we plot the order parameter ver
a/ac for m50.1 in the case w115w2251 for
d51022,1023 and 0. We have considered Maxwell mo
ecules and hard spheres. The curves corresponding todÞ0
have been obtained by solving numerically Eqs.~4! and~5!,
while the exact tracer limit (d50) is given by the dominan
terms in Eqs.~11! and ~14!. We observe that the numerica
results tend to the asymptotic behavior asd goes to zero, this
trend being slower in the case of hard spheres. At a gi
value of a/ac.1, the energy ratio for non-Maxwell mol
ecules is larger than that of the Maxwell potential. Furth
more, as the order parameter is discontinuous at the cri
point, the transition for non-Maxwell molecules is of fir
order. In the case of Maxwell molecules, the fact th
E1 /E→0, whena2ac→01, indicates that the transition i
of second order.

In summary, we have analyzed the tracer limit of an ex
solution@3# of the Gross-Krook kinetic equation for a bina
e

e

s

n

-
al

t

t

mixture with general repulsive interactions and under u
form shear flow. This work extends previous studies ma
from the Boltzmann equation in the special case of Maxw
molecules@2#. In the model, the details of the interactio
potential are incorporated in the temperature dependenc
the collision frequencies. The solution holds for arbitra
values of the shear ratea and the parameters of the mixtur
~i.e., the mass ratiom, the concentration ratiod, the force
constant ratiosw11 andw22, and a parameterb characteriz-
ing the interaction law! and is given in terms of the thermo
stat parametera and the temperature ratiox, which are non-
linearly coupled~except in the case of Maxwell molecule
b50). In the tracer limit (d→0), we find that the contribu-
tion of the tracer species to the total properties of the mixt
does not tend to zero when the system is sufficiently far fr
equilibrium. That happens for shear rates larger than a c
cal valueac , which depends on the mass ratio, force co
stant ratios, and the interaction parameter. The results i
cate that ac increases as the intermolecular repulsi
becomes harder. Fora.ac , the temperature ratiox goes to
infinity but the energy ratioE1 /E reaches a finite value
Obviously, identical conclusions can be drawn if one cons
ers other quantities of the system, such as the shear visc
and the viscometric functions. The fact thatE1 /E is zero or
not, depending on the value of the control parametera, can
be interpreted as a nonequilibrium phase transition in ve
ity space. In the case of non-Maxwell molecules, this tran
tion is of first order (E1 /E is discontinuous atac), while it is

FIG. 3. Plot of the energy ratioE1 /E for d51022 ~dotted lines!,
d51023 ~dashed lines!, and the exact tracer limitd50 ~solid lines!
for ~a! Maxwell molecules and~b! hard spheres. The force consta
ratios arew115w2251 and the mass ratio ism50.1. The circles
represent simulation data in the case of Maxwell molecules
d51022.
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of second order in the case of Maxwell molecules (E1 /E is
continuous atac).

One of the objectives of kinetic theory is to offer a d
scription as independent of the specific interaction law c
sidered as possible. To this end, one conveniently scales
physical quantities of the problem. In our study, it has be
essential to reduce the shear rate with the collision freque
n12 to identify the phase transition. In this sense, we ha
extended previous conclusions obtained only for Maxw
molecules. While the choice of the unit of time may be
relevant in the case of Maxwell molecules~sincen i j is con-
stant!, this is not the case for non-Maxwell molecules, whe
n i j is a function of the temperature ratio. As a matter of fa
the critical shear rate becomes infinite when one takesn22 as
a unit of time, although numerical results indicate th
E1 /E can be significant for very large shear rates, even
very small concentration ratios@3#. Since the treatment in
this work has been mainly algebraic, involving a delica
limit, it might be possible that the predicted phase transit
was an artifact of the algebra. This point can be elucidated
-
he
n
cy
e
ll

,

t
r

n
y

computer simulations. Preliminary simulations of the Bol
mann equation by using the direct simulation Monte Ca
method @7# support the theoretical predictions. Simulatio
data for Maxwell molecules with a concentration rat
d51022, a mass ratiom50.1, and reduced shear rate
a/ac50.25, 0.76, 1.27, and 2.11 are included in Fig. 3; th
have been obtained by using 23105 simulated particles.
While ata/ac50.76 the tracer species stores less than 2%
the total energy, that fraction becomes more than 60%
a/ac52.11. The quantitative difference between the simu
tion and the theoretical results is due to the approxim
character of the GK model. More extensive simulation
sults will be published elsewhere.
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