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Mutual diffusion in a binary mixture under shear flow

C. Marı́n and V. Garzo´
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 8 July 1997!

Mass transport in a dilute binary mixture of Maxwell molecules under steady shear flow is studied. The
analysis is made from an exact perturbation solution of the Boltzmann equation through first order in the
concentration gradient. The reference state~zeroth order approximation! corresponds to the exact recent solu-
tion @Phys. Rev. E52, 3812 ~1995!# of the Boltzmann equation in the uniform shear flow, which holds for
arbitrary values of the shear rate. The results show that the mass flux obeys a generalized Fick’s law where, due
to the anisotropy of the problem, a mutual diffusion tensor is defined. This tensor is a highly nonlinear function
of the shear rate and the parameters of the mixture~particle masses, concentrations, and force constants!. The
calculations presented here extend previous results derived in the limit cases of self-diffusion and tracer
particles.@S1063-651X~98!02601-4#

PACS number~s!: 51.10.1y, 05.20.Dd, 05.60.1w, 47.50.1d
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I. INTRODUCTION

The description of transport processes taking place
fluid mixtures is well established for states near equilibriu
For such states, the Curie principle forbids the coupling
tween fluxes and forces of different tensorial rank@1#. For
instance, when a fluid mixture is simultaneously subjected
both weak velocity and concentration gradients, the m
flux ~vector quantity! that obeys Fick’s law is not affected b
the presence of the velocity gradient~second-rank tensoria
quantity!. Nevertheless, beyond the linear domain Curi
principle does not apply, and the mass flux can be modi
by the shear flow even if the concentration gradient is sm

In order to capture the essential aspects of such a no
ear problem, we consider a binary mixture in the low dens
regime as a prototype fluid, which lends itself to a detai
description by means of the nonlinear Boltzmann equa
@2#. However, due to the complexity of its collision term, it
a very hard task to get explicit results in far from equilibriu
situations, especially in the case of multicomponent syste
One of the fewinhomogeneousstates for which exact result
can be obtained is the uniform shear flow~USF!. In this
state, the only nonzero gradient is]ux /]y5a5const, where
u(r ) is the flow velocity of the mixture. Recently, rheolog
cal properties~such as the shear viscosity and viscome
functions! of a dilute binary mixture under shear flow hav
beenexactlyobtained in terms of the shear ratea and the
parameters of the mixture@3#. The solution is restricted to
the Maxwell potential, i.e., particles of speciesr ands inter-
act through a potential of the formF rs5k rsr

24. Apart from
the limitation to the interaction considered, the solution a
plies to arbitrary values of masses, concentrations, and f
constants. In the particular case of mechanically equiva
particles~single gas!, the well-known solution given year
ago by Ikenberry and Truesdell@4# is recovered.

The aim of this paper is to study a diffusion problem in
strongly sheared binary mixture. The physical situation
such that anarbitrary shear rate coexists with aweakcon-
centration gradient. Under these conditions, one expects
the mass flux verifies a generalized Fick’s law where, due
the anisotropy of the problem, a mutual diffusion tens
571063-651X/98/57~1!/507~7!/$15.00
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rather than a scalar can be identified. Our goal is to get
explicit expression of this tensor in the case of Maxwell m
ecules. Such an expression generalizes previous results
rived in the cases of tagged particles~self-diffusion! @5–7#
and tracer particles@8,9#.

In the context of dense fluids, Evans and co-work
@10,11# have derived a Green-Kubo formula for the mutu
diffusion tensor in fluids undergoing strong shear. In a sim
lar manner as in equilibrium, the mutual diffusion tensor o
thermostated shearing steady state is related to fluctuatio
the steady mass flux. This expression has been used to e
ate the influence of the shear rate on the diffusion tensor
binary Lennard-Jones mixture by means of computer sim
lations @11#. In their simulations they do not observe a si
nificant shear rate dependence of the diffusion tensor. Th
probably due to the fact that the shear rates considered in
simulation are not sufficiently large to observe no
Newtonian effects.

The plan of the paper is as follows. In Sec. II we give
brief summary of the results derived from the Boltzma
equation for a binary mixture under uniform shear flow. Se
tion III is concerned with the evaluation of the mutual diffu
sion tensor. By performing a perturbation expansion arou
the shear flow solution, we get an explicit expression for
mass flux up to first order in the concentration gradient. T
nonzero elements of the diffusion tensor happen to be n
linear functions of the shear rate and the parameters of
mixture ~mass ratio, concentration ratio, and force const
ratios!. Finally, in Sec. IV the results are discussed and co
pared with previous simulation results.

II. DILUTE BINARY MIXTURE UNDER SHEAR FLOW

Let us consider a binary mixture. In the low-density r
gime, the evolution of the system is described by the se
two coupled nonlinear Boltzmann equations@2#:

]

]t
f 11v•“ f 11

]

]v
•

F1

m1
f 15J11@ f 1 , f 1#1J12@ f 1 , f 2#,

~1a!
507 © 1998 The American Physical Society
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]

]t
f 21v•¹ f 21

]

]v
•

F2

m2
f 15J21@ f 2 , f 1#1J22@ f 2 , f 2#,

~1b!

where ms is the mass of a particle of speciess, Fs is the
external force acting on particles of speciess, f s is the one-
particle velocity distribution function of speciess, and
Jsr@ f s , f r # is the Boltzmann collision term, which in standa
notation reads@2#

Jsr@ f s , f r #5E dv1E dVuv2v1us rs~v2v1 ,u!@ f s~v8! f r~v18!

2 f s~v! f r~v1!#. ~2!

In terms off s , the densities of conserved quantities~mass of
each species, total momentum, and total energy! can be de-
fined. They are given by

ns5E dvf s , ~3!

ru5(
s51

2 E dvmsvf s5(
s51

2

rsus , ~4!

nkBT5(
s51

2
ms

3 E dv~v2u!2f s , ~5!

wherekB is the Boltzmann constant. Here,ns is the number
density of speciess, rs5msns is the mass density of specie
s, r5r11r2 , n5n11n2 , u is the flow velocity of the mix-
ture, andT is the temperature of the mixture. The corr
sponding balance equations associated withns , u, and T
define the dissipative flux of mass

j s5E dvms~v2u! f s5rs~us2u!, ~6!

momentum~pressure tensor!

P5(
s51

2 E dvms~v2u!~v2u! f s5(
s51

2

Ps , ~7!

and energy~heat flux!

q5(
s51

2 E dv
ms

2
~v2u!2~v2u! f s . ~8!

From the partial pressure of speciess, one may also define a

partial ‘‘temperature’’Ts asps5nskBTs5
1
3 trPs .

The USF state is macroscopically characterized by a c
stant densityns , uniform temperature, and a linear profile
thex component of the flow velocities along they direction:

us,i5ui5ai j r j , ai j 5ad ixd jy , ~9!

a being the constant shear rate. The shear flow produ
viscous heating so that the temperature increases in t
From a computer simulation point of view, it is desirable
measure the transport properties of the mixture in a ste
n-

es
e.

dy

state. For this reason, usually a thermostat force is introdu
to keep the temperature constant@12#. The simplest choice is

Fs52msaV, ~10!

whereVi5v i2ai j r j . Here, to parallel the results previous
obtained from computer simulations@11#, we also include a
thermostat force of the form~10! to remove this heating ef
fect @13#. For Maxwell molecules, it is important to remar
that in the USF problem there is an exact equivalence
tween the results obtained with and without a thermos
force@14#. Furthermore, the USF becomes spatially homo
neous in the frame moving with the flow velocityu. In this
local frame, the velocity distribution function adopts th
form f s(r ,v)5 f s(V). Under these conditions, Eqs.~1! can
be written as

2
]

]Vi
~ai j Vj1aVi ! f 15J11@ f 1 , f 1#1J12@ f 1 , f 2#, ~11!

and a similar equation forf 2 . In the particular case of Max
well molecules, Eq.~11! can be recursively solved by th
moment method. The key point is that for this interaction t
collision rategs(g,u) is independent of the relative velocit
g, so that the collisional moments of orderk only involve
moments of degree smaller than or equal tok @4#.

Exact expressions for the nonzero elements of the p
sure tensor of a binary mixture of Maxwell molecules und
uniform shear flow have been recently obtained@3#. These
elements define the main transport coefficients of the pr
lem, namely, the shear viscosity and the viscometric fu
tions. They are nonlinear functions of the dimensionle
shear ratea* 5a/z and the parameters of the mixture: th
mass ratiom5m1 /m2 , the concentration ration5n1 /n2 and
the force constant ratiosk11/k12 andk22/k12. Here,z21 is a
convenient time unit defined in the Appendix. The expli
expressions of the partial pressure tensors are also quot
the Appendix.

Since the USF state is well characterized through the
nontrivial moments, we are now in conditions to study t
influence of the shear field on the mass flux in a dilute bin
mixture. This will be done in the next section.

III. DIFFUSION UNDER SHEAR FLOW

We are interested in analyzing the effect of the shear fl
on diffusive motion in the limit of small concentration gra
dients. In this situation, symmetry arguments suggest that
mass flux is still proportional to the concentration gradie
but a shear-rate-dependent mutual diffusion tensor can
identified. As stated in the Introduction, the evaluation of t
tensor is the main goal of this paper. To this end, let
assume that we perturb the USF state by introducing a w
concentration gradient“n. On physical grounds, we als
assume that the total densityn is constant so tha
“n152“n2 . These are the usual experimental conditio
for measuring the mutual diffusion coefficient at equilibrium
In this case, the corresponding steady Boltzmann equat
for the mixture are given by
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2
]

]Vi
~ai j Vj1aVi ! f 11~Vi1ai j r j !

]

]r i
f 1

5J11@ f 1 , f 1#1J12@ f 1 , f 2#, ~12!

and similarly for f 2. In the following we will focus on the
properties of species 1. The corresponding properties
species 2 can be easily obtained by changing the indi
Since the concentration ratio is slightly nonuniform, w
solve Eq.~12! by means of a perturbation expansion arou
the uniform shear flow state. In this expansion, the differ
aproximations are nonlinear functions of the shear ra
Therefore, we write

f 15 f 1
~0!1 f 1

~1!1•••, ~13!

wheref 1
(k) is of orderk in ¹n but retains all the orders ina.

The zeroth-order approximationf 1
(0) corresponds to the USF

distribution but taking into account now the local depe
dence of the densitiesns . Although the explicit form off 1

(0)

is not known, only the knowledge of its second-degree m
ments~related to the pressure tensor! is necessary to get th
mutual diffusion tensor. Here, we will restrict our calcul
tions to first order in the expansion. In this approximatio
and assuming that the system has reached a stationary
one gets

2
]

]Vi
~ai j Vj1aVi ! f 1

~1!1~Vi1ai j r j !
]

]r i
f 1

~0!5J11
~1!1J12

~1! ,

~14!

whereJsr
(1)5Jsr@ f s

(0) , f r
(1)#1Jsr@ f s

(1) , f r
(0)#.

Some remarks follow from the structure of the balan
equations associated with Eq.~14! and its counterpart for
f 2

(1) . First, the mass balance implies thatai j r j (]n1 /]r i)50
and consequently]n1 /]x50. This means that, in order t
maintain the mixture in a steady state, the concentration
dient must be orthogonal to the direction of the shear flo
On the other hand, the total momentum balance equa
leads to

aikuk
~1!1aui

~1!52
1

r

]

]r k
Pik

~0! , ~15!

whereu(1) is the first order perturbation to the velocity of th
mixture, i.e.,

u~1!5
1

r(
s51

2 E dvmsV f s
~1! , ~16!

andP(0) is the total pressure tensor in the uniform shear fl
state. According to Eq.~15!, only in the case that the tota
pressure tensor is uniform the velocity field is not perturb
by the presence of the concentration gradient. Ifa50,
Pi j

(0)5nkBTd i j 5const, sou(1)50. For nonzero shear rate
there are only two limit cases for whichP(0) is constant: the
case of mechanically equivalent particles (m51,
k115k225k12) @7# and the tracer limit (n1!n2) @9#. In both
cases,Pi j

(0)5nkBTF(a* ), F(a* ) being a nonlinear function
of the constantshear ratea* . Beyond these limit cases th
pressure tensor depends on space through its dependen
or
s.

d
t

e.

-

-

,
ate,

e

a-
.
n

d

on

n, so that the concentration gradient not only induces a m
flux but it also disturbs the linear shear flow. The solution
Eq. ~15! is

ui
~1!52

1

raS d ik2
aik

a D ]

]r j
Pk j

~0! . ~17!

We are interested in computing the mass fluxj1
(1) across

the system. Taking into account the relation~6!, the mass
flux at this order can be written as

j1
~1!5m1E dvV f 1

~1!2r1u~1![ j̃ 1
~1!2r1u~1!, ~18!

where j̃ 1
(1) is the mass flux defined with respect to the L

grangian frame moving with the unperturbed veloc
ui

(0)5ai j r j . The quantityj̃ 1
(1) can be obtained from the Bolt

zmann equation~14! after multiplying it by m1Vi and inte-
grating overV. Thus, one finds that

aik j̃ 1,k
~1!1a j̃ 1,i

~1!1
rl12

m1m2
j̃ 1,i

~1!5
rl12

m1m2
r1ui

~1!2
]

]r k
P1,ik

~0! ,

~19!

wherel12 is defined in Eq.~A1! and we have used the rela
tion @15#

E dvm1Vi~J11
~1!1J12

~1!!52
rl12

m1m2
~ j̃ 1,i

~1!2r1ui
~1!!.

~20!

The solution to Eq.~19! is

j̃ 1,i
~1!52

1

a1~l12/m1m2!rS d ik2
aik

a1~l12/m1m2!r D
3S ]

]r j
P1,k j

~0! 2
l12r1

m1m2
ruk

~1!D . ~21!

From Eqs.~17!, ~18!, and ~21!, one can write the explicit
expression ofj1

(1) . After some manipulations, it is easy t
show that the mass flux can be cast in the form of a gen
alized Fick’s law:

j 1,i
~1!52

m1m2n

r
Di j

]

]r j
n1 ~22!

with the mutual diffusion tensor given by

Di j 5
kBT

nl12

~11mn!~11n!2

mn
tH 1

a* 1b
S d ik2

aik*

a* 1b
D

3F ]

]n
P1,k j* ~0!1tLk jG2

mn

11mn
L i j J , ~23!

where

L i j 5
1

a*
S d ik2

aik*

a*
D ]

]n
Pk j* ~0! , ~24!
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510 57C. MARÍN AND V. GARZÓ
and we have introduced the dimensionless quantit
aik* 5aik /z, a* 5a/z, andPi j*

(0)5Pi j
(0)/nkBT. Furthermore,

b5
g12

2

~11m!~11mn!

m~11n!
, ~25!

t5
g12

2

n~11m!

11n
, ~26!

andg1250.648 is defined in the Appendix.
Equations~22!–~24! represent the major result of this pa

per. They provide an explicit expression of the mutual diff
sion tensor of a dilute binary mixture of Maxwell molecule
under shear flow. The components of this tensor give all
information on the physical mechanisms involved in th
mass transport in a strongly sheared mixture. They have b
derived keeping the first order in the gradient of concent
tion, but no restriction on the values of the shear rate,
mass ratio, the concentration ratio, and/or the force const
ratios have been considered. In the limits of tagged partic
and tracer particles we recover previous results derived
the self-diffusion@7# and tracer diffusion tensors@9#, respec-
tively.

In the absence of the shear field (a50), Di j 5D0d i j ,
D05kBT/nl12 being the mutual diffusion coefficient given
by the Chapman-Enskog method@16#. Furthermore, accord-
ing to Eq. ~23!, Dxz5Dyz5Dzy50, in agreement with the
symmetry of the problem. Since no concentration gradie
exists along thex direction, the only relevant components ar
Dyy5Dzz, and Dxy . Notice that the equalityPs,yy5Ps,zz
implies thatDyy5Dzz. This fact is probably a consequenc
of the particular interaction considered since only for Ma
well molecules theyy andzzelements of the pressure tenso
are equal. For non-Maxwell molecules, recent simulation
sults performed in the case of a single dilute hard sphere
show that these elements are in general different@17#. This is
also consistent with the simulation results obtained for
Lennard-Jones mixture@11#, whereDyy.Dzz. In Figs. 1 and

FIG. 1. Plot of the reduced diagonal element of the difusio
tensor Dyy5Dyy /D0 vs the reduced shear ratea* 5a/z for
k115k225k12, and several values of the concentration rat
n5n1 /n2 and the mass ratiom5m1 /m2 : ~a! n53, m510; ~b!
n53, m50.1, ~c! the mixture considered in Ref.@11#, i.e., n51,
m50.48; and~d! m51.
s
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2 we have plotted the reduced diffusion tensorDi j 5Di j /D0

as a function of the reduced shear ratea* for n53,
k115k225k12, and several values of the mass ratio. A
though we have only consideredn.1, the corresponding
behavior forn,1 can be easily inferred when one takes in
account that the diffusion tensor is invariant under th
changesm↔m21, n↔n21, andk11↔k22. In the region of
shear rates analyzed, non-Newtonian effects are import
since, for instance, ata* .5 in the case ofm51, the shear
viscosity is about 88% smaller than its Navier-Stokes valu
We observe that in general the influence of the shear flow
the mass transport is quite important. Figure 1 shows that
value ofDyy decreases relative to its value in the absence
shear for all shear rates. Consequently, the shear flow inh
its the mass transport along the direction of the gradient
the flow velocity (y axis!. Furthermore, this inhibition be-
comes more significant when the mass ratio is different fro
1 than in the case of identical particles~self-diffusion!. The
shear flow induces cross effects in the diffusion of particle
This is measured by the off-diagonal elementDxy . It gives
the transport of mass along thex axis due to a concentration
gradient parallel to they axis. This element is negative and
independently of the mass ratio, its shape is quite simil
there is a region of values ofa* for which 2Dxy increases
with the shear rate while the opposite happens for larg
shear rates. Once the shear-rate dependence of the elem
of the diffusion tensor has been studied, it is also interest
to analyze the global effect of the shear field on the ma
transport. In order to illustrate this effect, we assume th
]ns /]z50 and plot the magnitude of the mass flux relativ
to its Navier-Stokes value, namely, F1(a* )[
u j1

(1)(a* )u/u j1
(1)(0)u. This is done in Fig. 3 for the same case

as in previous figures. We see that, for not too larges sh
rates~say a* .1), the presence of shear flow enhances t
total mass flux when the deffect species are lighter than
excess species while the opposite happens when the m
ratio is larger than one. Anyway, in the limit of large shea

FIG. 2. Plot of the reduced off-diagonal element of the difussio
tensor 2Dxy52Dxy /D0 vs the reduced shear ratea* 5a/z for
k115k225k12, and several values of the concentration rat
n5n1 /n2 and the mass ratiom5m1 /m2 : ~a! n53, m510; ~b!
n53, m50.1, ~c! the mixture considered in Ref.@11#, i.e., n51,
m50.48; and~d! m51.
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57 511MUTUAL DIFFUSION IN A BINARY MIXTURE UNDER . . .
rates, u j1
(1)(a* )u/u j1

(1)(0)u;a* 21/3 so that the mass flux is
significantly reduced with respect to its Navier-Stokes va
as the shear rate increases.

IV. DISCUSSION

The problem of diffusion of particles in a fluid unde
shear flow has been a subject of interest in the last few ye
Usually, theoretical analysis as well as nonequilibrium co
puter simulations have been restricted to the special cas
which all the particles are mechanically equivalent~self-
diffusion!. This situation involves only single-particle mo
tion and is therefore somewhat simpler to treat. In this pa
we have investigated the influence of shear flow on the m
flux in a binary mixture constituted by particles mechanica
different. Specifically, we have considered a dilute bina
mixture of Maxwell molecules described by the Boltzma
equation. The system is in a steady inhomogeneous s
characterized by a constant pressure and temperature,
uniform partial densities of each species and a linear pro
of the x component of the flow velocity along they direc-
tion. We are mainly interested in the physical situation wh
a weak concentration gradient simultaneously coexists wi
strong shear rate. Under these conditions, the mass flu
still a linear function of the concentration gradient althoug
shear-rate-dependent mutual diffusion tensor rather tha
scalar can be defined. The explicit determination of this t
sor has been the goal of this paper. It is important to rem
that our description has not been restricted to specific va
of the parameters of the mixture~mass ratio, concentratio
ratio, and force constant ratios! and progress has been po
sible here due to previous results derived in the limit case
self-diffusion @7# and tracer particles@9#.

The Boltzmann equation has been solved by means
perturbation expansion around the uniform shear flow st
The knowledge of the pressure tensor of the mixture in
pure shear flow state@3# allows one to get an explicit expres
sion of the diffusion tensorDi j in the first order of the ex-
pansion. According to the geometry of the problem, the e

FIG. 3. Plot of the magnitude of the mass flux relative to
Navier-Stokes valueF15u j1

(1)(a* )u/u j1
(1)(0)u vs the reduced shea

ratea* 5a/z for k115k225k12, and several values of the conce
tration ratio n5n1 /n2 and the mass ratiom5m1 /m2 : ~a! n53,
m510; ~b! n53, m50.1, ~c! the mixture considered in Ref.@11#,
i.e., n51, m50.48; and~d! m51.
e
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ments Dyy5Dzz and Dxy are the relevant transpor
coefficients. While the diagonal elements are even functi
of the shear rate,Dxy is an odd function. In general, the
exhibit a highly nonlinear dependence on the shear rate
the parameters of the mixture. The diagonal elements ofDi j
can be interpreted as generalizations of the conventional
tual diffusion coefficient since they conjugate thei th compo-
nent of the mass flux vector with thei th component of the
concentration gradient. The off-diagonal elementDxy can be
seen as a generalization of a nonlinear Burnett coefficien
it measures cross-coupling effects. With respect to the
pendence of such elements on the shear rate, we conc
that the net effect of the shear flow on the mass transpo
to produce an inhibition of the transport of particles alo
the direction of the gradient of the flow velocity (y axis!. In
the case of thex direction,2Dxy presents a maximum at
given value of the shear rate. These results show that d
sion under shear flow is a very complex problem due ba
cally to the anisotropy induced in the system by the prese
of the shear field.

It is apparent that the derivation of explicit expressio
for the transport properties involved in a nonequlibriu
problem may be useful for interpreting computer simulatio
results. In this context, recently Sarman, Evans, and Ba
yai @11# have performed simulations in a strongly sheari
Lennard-Jones binary mixture to evaluate the mutual dif
sion tensor by means of a Green-Kubo formula@10#. To the
best of our knowledge, this is the only computer experim
in which mass transport under shear flow has been analy
They considered an equimolar Lennard-Jones mixture at
different densities and the parameters in the potential w
chosen to model an argon-krypton mixture. Although t
Lennard-Jones fluid has an attractive tail~absent in our
model!, in an attempt to make a comparison of theory a
simulation, we have applied our results to this type of m
ture. Specifically, we have takenn51, m50.48, and since
the two components of the mixture are fairly similar we ha
also assumed thatk115k225k12. According to the behavior
of Di j displayed in the figures, we observe that the gene
shear-rate dependence of the diffusion tensor agrees qu
tively well with the simulation results, at least for the lowe
density considered@11#. As a matter of fact, for small shea
rates, for this mixture one has thatDyy'120.962a* 2 and
Dxy'22.214a* . Nevertheless, as far as quantitative effe
are concerned, simulation results predict an influence of
shear flow on the diffusion tensor more modest than the
obtained here, especially in the case of the diagonal
ments. Perhaps these discrepancies are due to the fac
the shear rates applied in the simulation are not large eno
to clearly observe nonlinear effects. For instance, if one
trapolates our definition of the collision frequenc
z5@2kBT/g12(m11m2)D0# to dense fluids@18#, one can es-
timate that the range of shear rates considered here is m
larger than the one used in computer simulations. As an
ternative to overcome the difficulties associated with m
lecular dynamics simulations in the low-density regime, o
could perhaps use the direct simulation Monte Carlo met
@19#, which has been shown to be fruitful in the past yea
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APPENDIX

In this Appendix, we give the explicit expression of th
partial pressure tensorP1 . Let us introduce the quantities

l rs51.69pS k rs

mrms

mr1ms
D 1/2

, ~A1!

l rs8 52.61pS k rs

mrms

mr1ms
D 1/2

, ~A2!

and the effective collision frequencyz52nl128 /(m11m2).
We definez21 as the time unit and we will use the dime
sionless quantitiesa* 5a/z, anda* 5a/z. Henceforth, we
will omit the asterisks. In terms of the mass ratiom, the
in-
concentration ratio n and the ratios g115l118 /l128 ,
g225l228 /l128 , and g125l12/l128 50.648, the nonzero ele
ments of the tensorP1 are given by@3#

P1,yy

p
5

P1,zz

p
5

Ma21N

Ra21S
, ~A3!

P1,xy

p
52

Q

Ra21S
a, ~A4!

P1,xx

p
53

Ka21L

Ra21S
22

P1,yy

p
, ~A5!

where

M52 B12~A12A212A11A22!, ~A6!
N548A12a
4124a3@2 A12~B111B22!2B12~A111A22!#112a2@A12~B11

2 1B22
2 14 B11B22!2A12B12~A211B21!#

1B12A11~A222B1122 B22!2B12A22~B2212 B11!1B12
2 A21] 16 a@B11B12~A11A222A12A211A21B121A12B21

22 A11B2222 A22B222A22B11!1B12
2 ~A11B211A22B211A21B22!1B12B22~A11A222A12A212A12B212A11B22!

12 A12B11B22~B111B22!#13~B12B212B11B22!@B12~A12A212A11A22!1B11~B12A222A12B22!

1B12~A11B222B12A21!#, ~A7!

Q5224A12a
3112a2@B12~A1112 A22!2A12~B1112 B22!#16 a@2 B12~A12A212A11A22!1A22B12~3B111B22!

2A12~B22
2 12 B11B22!1B12~2 A11B2222 A21B122A12B21!#13 @A12A21B12~B111B22!2A22B11B12~A112B11!

1B12
2 ~A11B212A21B11!A12B11~B12B211B22

2 !1A11B12B22~B222A22!1B12B22~A22B112A21B12!#, ~A8!

K58 a2A1218 a~A12B222A22B12!12 A12~B12B211B22
2!22 A22B12~B111B22!, ~A9!

L53 ~A122B12!@4 a212 a~B111B22!1B11B222B12B21#
2, ~A10!

R58 a2~A122A11!18 a@B12~A212A22!1B22~A122A11!#12 B12~A212A22!~B111B22!12 ~A122A11!~B12B211B22
2!,
~A11!

S53 ~2 a2A111A121B112B12!@4 a212 a~B111B22!1B11B222B12B21#
2. ~A12!
ate

ic
ly.

d

Here, we have introduced the coefficients

A115
g11

2

n

n11

m11

m
1

1

2m~n11!
, ~A13!

A125
1

2

n

n11
, ~A14!

B115A111
g12

n11
, ~A15!

B125A122g12

n

n11
, ~A16!
while the remaining coefficients are obtained by the adequ
changes (m↔m21, n↔n21, g11↔g22). The consistency
condition 1

3 trP5nkBT leads to a sixth-degree algebra
equation ina that, in general, must be solved numerical
This can be written as

a61C5a51C4a41C3a31C2a21C1a1C050,
~A17!

where the coefficientsCi are nonlinear functions ofa, m, n,
g11, andg12. Their explicit expressions are very large an
will not be included here. The largest real root of Eq.~A17!
gives the physical solution to the thermostat parametera.
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On the other hand, in the diffusion problem, the pressure tensor depends on space through its explicit dependencen and
througha(n). The derivative]a/]n can be formally obtained from Eq.~A17! by derivating such equation with respect ton,
namely

]a

]n
52

a5]nC51a4]nC41a3]nC31a2]nC21a]nC11]nC0

6a515a4C514a3C413a2C312aC21C1

. ~A18!

In this way, the elements of the mutual diffusion tensor can be analytically given in terms ofa, a, and the parameters of th
mixture.
s
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@3# C. Marı́n, V. Garzó, and A. Santos, Phys. Rev. E52, 3812
~1995!.

@4# C. Truesdell and R. Muncaster,Fundamentals of Maxwell’s
Kinetic Theory of a Simple Monoatomic Gas~Academic, New
York, 1980!, Chap. XIV.

@5# M. C. Marchetti and J. W. Dufty, J. Stat. Phys.32, 255~1983!.
@6# J. W. Dufty, Phys. Rev. A30, 1465~1984!.
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