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Abstract

Electrical current density of charged particles across a rare�ed gas of neutral particles under
shear 
ow is analyzed in the limit of small electric �elds. The concentration of the charged
species is assumed to be much smaller than that of the neutral species so that the interactions
of charged–neutral and neutral–neutral type are the dominant ones. The study is made from the
exact Boltzmann equation for Maxwell molecules as well as from a kinetic model for general
repulsive interactions. By performing a perturbation expansion around a nonequilibrium state, the
current density is explicitly evaluated in the �rst order of the external �eld. We get a generalized
Ohm’s law, where an electrical conductivity tensor can be identi�ed. The nonzero elements of
this tensor are nonlinear functions of the shear rate, the mass ratio, the force constant ratio, and
the interaction parameter. c© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

A problem of practical and physical interest is the analysis of transport properties
of charged test particles immersed in a rare�ed gas of neutral particles and subjected
to a constant electric �eld E. The system can be seen as a dilute binary mixture in
which the concentration of the charged particles (labelled with the index 1) is much
smaller than that of the neutral gas (labelled with the index 2). This implies that one
can neglect the e�ect of collisions among the charged particles themselves on the state
of the charged species. In addition, the state of the neutral gas is not disturbed by the
presence of the charged particles. In these conditions (tracer limit), the interactions of
type charged–neutral and neutral–neutral are the dominant ones in the mixture. This
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assumption simpli�es enormously the problem since the long-range Coulomb interaction
does not need to be considered in the description.
When the neutral gas is at equilibrium, Ohm’s law establishes a linear relation

between the electrical current density j1 and the electric �eld E through the electri-
cal conductivity coe�cient �0 : j1 = �0E. Ohm’s law is expected to apply when the
electric �eld is weak and the expression of the transport coe�cient �0 can be ob-
tained, for instance, from the Champman–Enskog method [1]. This situation has been
widely studied in the past years in di�erent contexts [2–7]. Nevertheless, much less is
known when the rare�ed neutral gas is far from equilibrium. This is due basically to
the scarcity of exact solutions to the Boltzmann equation in inhomegeneous situations.
One of the few exact solutions of the Boltzmann equation for a single gas corresponds
to the so-called uniform shear 
ow, namely, a state macroscopically characterized by
a linear velocity �eld and uniform temperature and density. In the case of Maxwell
molecules (repulsive potential of the form r−4), Ikenberry and Truesdell [8,9] derived
explicit expressions for the rheological properties of the gas (non-Newtonian shear vis-
cosity and viscometric e�ects) as functions of the (arbitrary) shear rate. Here, our aim
is to get the current density induced by the action of a weak electric �eld when the
background neutral gas is under uniform shear 
ow. In addition, neutral and charged
particles are mechanically di�erent.
According to the assumptions established in the tracer limit, one can avoid the

Coulomb interaction and the kinetic equations describing the mixture reduce to a
(closed) Boltzmann equation for the velocity distribution function of the neutral parti-
cles f2(r; C; t) plus a Boltzmann–Lorentz equation for the velocity distribution function
f1(r; C; t) of the charged species. We also assume that the mixture is in a strongly
shearing state so that the only nonzero gradient is @ux=@y = a = const, u being the

ow velocity of the mixture. We want to evaluate the in
uence of the shear rate on
the di�usion of charged particles in the limit of small electric �elds. In this case,
one expects that Ohm’s law still holds, but a conductivity tensor �ij instead of a
scalar must be identi�ed. The tensor �ij will be a nonlinear function of a and the
parameters of the system, namely, the mass ratio and the force constant ratio. The
derivation of an expression for the conductivity tensor is the main objective of this
paper.
The Boltzmann–Lorentz equation of the charged particles is solved by carrying out

a perturbative expansion in powers of the external �eld. The main peculiarity of this
expansion is that the reference state (zeroth-order approximation) is not the local equi-
librium but a nonequilibrium state with arbitrary values of the shear rate. To �rst
order in the �eld, an explicit expression for �ij is obtained. The derivation of such
an expression is made from the exact Boltzmann equation in the particular case of
Maxwell molecules, as well as from a kinetic model for general repulsive interac-
tions. The results show that �xx = �yy = �zz and that the only nonzero o�-diagonal
element is �xy. In general, the diagonal elements decrease as the shear rate increases
while the o�-diagonal element is negative and its magnitude increases with the shear
rate.
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The paper is organized as follows. In Section 2 we describe the problem and provide
a brief account of uniform shear 
ow in the tracer limit. Section 3 is devoted to the
calculation of the electrical conductivity tensor. First, we evaluate it for the Maxwell
interaction in the context of the exact Boltzmann equation and then, in order to consider
the e�ect of more general interactions, we get the same quantity by using a kinetic
model that incorporates a temperature dependence of the collision frequencies. Finally,
in Section 4 the results are discussed and compared with a previous work.

2. Description of the problem

We consider an ensemble of charged test particles (of mass m1, charge q, and number
density n1) dispersed in a dilute gas of neutral particles (of mass m2 and number density
n2). We suppose that n1.n2, so that the interactions of charged–charged type can be
neglected in the kinetic equation of f1. Besides, the state of the neutral gas is not
a�ected by the presence of the charged species. Consequently, only interactions of
type 1–2 and 2–2 will be taken into account in the description. Let us assume that the
mixture is under uniform shear 
ow, namely, a state characterized by

ns = const (s= 1; 2) ; (1)

∇Ts = 0; (2)

us; i = ui = aijrj; aij = a�i x�jy; (3)

where a is the constant shear rate. This parameter measures the departure of the system
from equilibrium. Besides, we have introduced the number density ns, the mean velocity
us, and the temperature Ts of species s de�ned as

{ns; nsus; nskBTs}=
∫
dC{1; C; 13ms(C− us)2}fs : (4)

The temperature of the mixture T is de�ned by the relation nT = n1T1 + n2T2, where
n= n1 + n2 is the total number density. Shearing motion produces viscous heating and
so the temperature increases in time. However, from a computational point of view, it
is desirable to measure the rheological properties in a steady state. For this reason, it is
usual in molecular dynamics simulations [10] to include an external (nonconservative)
force to achieve a constant temperature. The simplest form is Fs = −ms�V , where
Vi = vi − aijrj. The parameter �, which plays the role of a thermostat, is a function
of the shear rate to be determined by consistency. In the case of Maxwell molecules,
the presence of the thermostat does not play any role in the results, while a certain
in
uence may exist for other interaction potentials [11–14].
We assume now that we perturb the steady shear 
ow state by introducing a uniform

electric �eld E. Under the geometry established in the shear 
ow problem, the set of
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steady coupled Boltzmann equations becomes

− @
@Vi
(aijVj + �Vi)f2 = J22 [f2; f2] ; (5)

− @
@Vi
(aijVj + �Vi)f1 +

qE
m1

· @
@V
f1 = J12[f1; f2] ; (6)

where Jrs is the Boltzmann collision operator [1], which in standard notation reads

Jrs[fr; fs] =
∫
dC1

∫
dkB(C− C1; k̂)[fr(C′)fs(C′1)− fr(C)fs(C1)] : (7)

Upon writing Eqs. (5) and (6) we have taken into account that the uniform shear 
ow
state becomes spatially homogeneous in the Lagrangian frame moving with the 
ow
velocity u. In this new frame, the distribution functions adopt the form fs(r; C) ≡ fs(V).
We are interested in deriving an expression for the current electrical density j1 when
the system is under shear 
ow in the limit of small electric �elds. The current density
is de�ned as

j1 = q
∫
dCVf1(V) : (8)

Since the strength of the electric �eld E is weak, we will solve the Boltzmann–
Lorentz equation (6) by means of a perturbative expansion in powers of E. As said in
the Introduction, and in contrast to the conventional Chapman–Enskog expansion [1],
the reference state retains all the hydrodynamic orders in the shear rate. Therefore, we
write f1 = f

(0)
1 + f(1)1 + · · · ; where f(k)1 is of order k in E but it is highly nonlinear

in a. In this paper, we will restrict ourselves to the �rst order in the expansion. The
zeroth-order approximation is concerned with a situation where E = 0, so that the
current vanishes. It is described by Eq. (5) and the zeroth-order of (6). This reference
state has been widely studied by the authors in the past years from the exact Boltmann
equations for Maxwell molecules (repulsive potential of the form �rs=�rsr−4) [11,12]
as well as from a generalization of the well-known Gross–Krook (GK) kinetic model
for r−‘-repulsive interactions [13,14]. This kinetic model is de�ned in Appendix A.
As seen later, in order to get the current density j (1)1 we only need the knowledge of
the shear-rate dependence of the thermostat parameter �. The explicit expressions of
such a parameter as given from the Boltzmann and GK equations are also quoted in
Appendix A.

3. Electrical current density under shear 
ow

Once the reference state is well characterized, the objective now is to study the e�ect
of the shear 
ow on the di�usion of charged particles in terms of the shear rate a,
the mass ratio � = m1=m2 and the force constant ratio w = �12=�22. The analysis will
be made from the exact Boltzmann–Lorentz equation for Maxwell molecules and from
the GK model for general repulsive interactions.
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3.1. Current density from the Boltzmann equation

In the �rst order of the expansion, the Boltzmann–Lorentz equation (6) becomes

− @
@Vi
(aijVj + �Vi)f

(1)
1 +

qE
m1

· @
@V
f(0)1 = J12[f

(1)
1 ; f2] : (9)

At this order, the current electrical density is given by

j (1)1 = q
∫
dCVf(1)1 : (10)

This quantity can be obtained from Eq. (9) by multiplying it by qV and integrating
over V . Thus, one �nds

aikj
(1)
1; k + �j

(1)
1; i −

n1q2

m1
Ei =−n2�12

m1
j(1)1; i ; (11)

where

�12 = 1:69�
[
�12

m1m2
m1 + m2

]1=2
; (12)

and we have used the relation (which only holds for Maxwell molecules) [15,16]∫
dCVJ12[f(1)1 ; f2] =−n2�12

m1q
j(1)1 : (13)

The solution to Eq. (11) can be recast into the form of a generalized Ohm’s law, i.e.,

j(1)1; i = �ijEj ; (14)

where the electrical conductivity tensor is

�ij =
n1q2

m1�
1

1 + 
�∗

(
�ij − 


a∗ij
1 + 
�∗

)
(15)

with �= n2�12=m1; a∗ij = aij=�22; �
∗ = �=�22; �22 = 1:85�n2(�22=m2)1=2, and


=
�22
�
= 1:095

[
�(1 + �)
w

]1=2
: (16)

Eq. (15) describes the di�usion of charged test particles through a strongly shearing
neutral gas in the limit of zero electric �eld. When a=0; �ij=�0�ij, where �0=n1q2=m1�
is the electrical conductivity coe�cient, and one recovers usual Ohm’s law [1]. The
nonzero elements of �ij are �xx = �yy = �zz and �xy. They are nonlinear functions of
the shear rate, the mass ratio, and the force constant ratio. For small shear rates, they
behave as �ii=�0 ≈ 1 − 1

3
a
∗2, and �xy=�0 ≈ −
a∗(1 − 2

3

2a∗2). Since the diagonal

elements couple the ith component of the current to the ith component of the �eld,
they can be interpreted as a generalization of the conductivity coe�cient �0 when the
bath is far from equilibrium. The o�-diagonal element �xy measures cross e�ects in
the transport of charge since it gives the current along the x direction due to the com-
ponent y of the electric �eld. It is negative and vanishes for zero shear rates. In
Figs. 1 and 2, we plot the reduced elements �ii=�0 and −�xy=�0, respectively, as
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Fig. 1. Plot of the reduced diagonal element �ii=�0 versus the reduced shear rate a∗ for several values of
the mass ratio � = m1=m2. The force constants have been assumed to be of the form �rs ˙ (mrms)1=2. The
solid lines refer to Boltzmann results for Maxwell molecules while the dashed and dotted lines correspond
to kinetic model results for Maxwell molecules and hard spheres, respectively.

Fig. 2. The same as in Fig. 1 but for the reduced element −�xy=�0.

functions of the reduced shear rate a∗ for several values of the mass ratio �. In
both �gures, we have assumed that the force constants have a mass dependence of
the form �rs ˙ (mrms)1=2. Such a dependence has been proposed [17] to model the
cross section observed in disparate-mass binary mixtures. In the case of the diagonal
element, we observe that it decreases as the shear rate increases independently of the
mass ratio considered. At a given value of a, the inhibition of �ii is more signi�cant
as the charged particles are heavier than the particles of the neutral gas. With respect
to the o�-diagonal element, and in the range of shear rates considered, we see that in
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general its magnitude increases with the shear rate, although for �¿ 1 the opposite
happens for large shear rates (say, for instance a∗ ≈ 2).

3.2. Current density from the GK equation

The results derived in the previous section cannot be seen as general, since a model
of Maxwell molecules is somewhat limited. Nevertheless, if one wants to derive an
explicit expression of the current density for non-Maxwell molecules, one needs to use
a kinetic model. As described in Appendix A, here we will start from a generalization of
the familiar GK model [18] that incorporates a temperature dependence in the collision
frequencies. This allows for the consideration of a general repulsive r−‘-interaction. The
reliability of this kinetic model has been assessed in several nonequilibrium problems
[19,20] by comparison with exact analytical results [21] as well as with Monte Carlo
simulations of the Boltzmann equation [22].
In the context of the GK model [see Eqs. (A.5)–(A.7)], the corresponding Boltzmann–

Lorentz equation (9) becomes

− @
@Vi
(aijVj + �Vi)f

(1)
1 +

qE
m1

· @
@V
f(0)1 =−�12(f(1)1 − f(1)12 ) ; (17)

where

f(1)12 =
m1
q

�
1 + �

V · j(1)1
n1kBT12

f(0)12 (18)

and

f(0)12 = n1

(
m1

2�kBT12

)3=2
exp

(
− m1
2kBT12

V 2
)
: (19)

Let us introduce the dimensionless moments corresponding to the �rst-order distribution
f(1)1 as

M (1)
k; ‘; m =

1
n1

(
2kBT2
m1

)−1=2(k+‘+m) ∫
dCV kx V ‘y Vmz f

(1)
1 : (20)

Taking velocity moments in Eq. (17) one gets the hierarchy

�a∗kM (1)
k−1; ‘+1; m + [1 + ��

∗(k + ‘ + m)]M (1)
k; ‘; m = Rk; ‘; m ; (21)

where a∗ = a=�22; �∗ = �=�22,

�= w(�−1)=2
(
2�
1 + �

)1=2(1 + �
� + �

)�=2
; (22)

Rk; ‘; m = �[kM
(0)
k−1; ‘; m�x + ‘M

(0)
k; ‘−1; m�y + mM

(0)
k; ‘; m−1�z] +

2�
1 + �

�1=2(k+‘+m−1)12

×[Ak+1; ‘; mM (1)
1; 0; 0 + Ak;‘+1;mM

(1)
0; 1; 0 + Ak; ‘; m+1M

(1)
0; 0; 1] ; (23)

and

�i =
1
�22

(
m1
2kBT2

)1=2 q
m1
Ei : (24)
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In the above equations, � ≡ T1=T2; �12 ≡ T12=T2 = (1− 2M)�+2M; M ≡ mrms=(mr +
ms)2; � = 1 − 4=‘; M (0)

k; ‘; m refers to the zeroth-order moments whose expressions are
known [19], and

Ak; ‘; m = �−3=2�
(
k + 1
2

)
�
(
‘ + 1
2

)
�
(
m+ 1
2

)
(25)

if (k; ‘; m) are even, being zero otherwise. The solution to Eq. (21) can be cast into
the form

M (1)
k; ‘; m =

k∑
q=0

�q(−a∗)q k!
(k − q)! [1 + ��

∗(k + ‘ + m)]−(1+q)Rk−q; ‘+q; m : (26)

From this equation, and after some manipulations, it is easy to show that the current
density obeys a generalized Ohm’s law (14), where the conductivity tensor is given
by

�ij =
n1q2

m1�

(
1 + �
� + �

)�=2 1
1 + 
�∗

(
�ij − 


a∗ij
1 + 
�∗

)
; (27)

where, in the context of the GK equation, �= w(1−�)=2[2�(1 + �)]−1=2�22 and


= (1 + �)�=
[
2�(1 + �)

w

]1=2(
w
1 + �
� + �

)�=2
: (28)

Eq. (27) provides the expression of the electrical conductivity tensor given by the
GK model for r−‘-potentials. When a= 0; �ij = �0�ij, with �0 = n1q2=m1�. For small
shear rates, one has �ii=�0 ≈ 1− Ba∗2 and −�xy=�0 ≈ −Ca∗(1− 2Ba∗2), where

B=
C
3
+

�D
2(1 + �)

; (29)

C = w(�−1)=2[2�(1 + �)]1=2 ; (30)

D =
1− E
3ME2

; (31)

E = w(�−1)=2
(
1 + �
2�

)1=2
: (32)

In Figs. 1 and 2, we show the shear-rate dependence of �ii=�0 and −�xy=�0 given by the
GK model in the extreme cases of Maxwell molecules (�=0) and hard-spheres (�=1).
Notice that in the case of mechanically equivalent particles (� = 1), the GK results
are universal, independent of the interaction potential. On the other hand, and in order
to make a comparison with the Boltzmann results for Maxwell molecules, we have
taken for the constant A appearing in Eq. (A.6) the value that gives the same results
between the GK and Boltzmann equations in the pure shear 
ow problem for a single
gas [8,9]. With this choice the reduced shear rate a∗ is common in both descriptions.
We observe that the GK predictions show a quite good agreement with those given from
the Boltzmann equation for Maxwell molecules, especially when the charged particles
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are lighter than the neutral particles. In general, it is shown that the qualitative trends
observed for Maxwell molecules can be extended to non-Maxwell molecules, except
for �¡ 1 where there is a small region of shear rates in which �ii increases as a∗

increases. This is consistent with the small shear-rate behavior. For �¡ 1, given a �xed
value of the shear rate, the numerical values of the �ii and −�xy elements increase
as the potential becomes harder while the opposite happens for �¿1. This tendency
changes in the case of −�xy for large shear rates and mass ratios larger than 1.

4. Discussion

In this paper we have analyzed the di�usion of charged particles in a rare�ed neutral
gas under the action of a weak electric �eld. We have assumed that the molar fraction
of the charged particles x1 = n1=n2 is much smaller than 1 (tracer limit) so that the
state of the neutral gas is not perturbed by the presence of the charged particles.
In addition, the state of the charged particles is only a�ected by cross-collisions of
type neutral–charged, and consequently the Coulomb interaction does not need to be
included in the description of the problem. In the limit of small electric �elds E and
when the neutral background is at equilibrium, the current density j1 obeys Ohm’s law,
i.e., j1 = �0E, where �0 is the electrical conductivity coe�cient. These are the usual
conditions for measuring the transport properties of ions or electrons in gases. Here,
we have generalized the above description to the case in which the neutral gas is under
uniform shear 
ow, namely, a state macroscopically characterized by constant density
and temperature and a velocity �eld given by ui=aijrj, where aij=a�i x�jy, a being the
constant shear rate. We have focused our attention on the evaluation of the in
uence of
shear rate on the current density when the electric �eld is weak. Furthermore, our study
is not restricted to speci�c values of the masses and sizes of the particles of the mixture.
Under the assumptions established in the tracer limit, the kinetic equation for the

distribution function f2 of the neutral gas reduces to the (closed) nonlinear Boltzmann
equation for a single gas while the distribution function f1 of the charged particles
veri�es a Boltzmann–Lorentz equation. The current density is obtained by solving the
Boltzmann–Lorentz equation from a perturbation expansion in powers of the electric
�eld, taking the pure shear 
ow state as the reference one. The key point is that
an exact description of the zeroth-order approximation (which is characterized by the
absence of current but with arbitrary values of a) has been given from the Boltzmann
equation for Maxwell molecules [11,12] and from a kinetic model for general repulsive
interactions [13,14]. The knowledge of such a solution allows us to get the current
density j(1)1 to �rst order in the external �eld. We �nd a generalized Ohm’s law, where
an electrical conductivity tensor �ij can be identi�ed. This tensor has really two relevant
(independent) elements: one diagonal (�xx=�yy=�zz) and one o�-diagonal (�xy). These
elements are nonlinear functions of the reduced shear rate a∗, the mass ratio �=m1=m2,
the force constant ratio w=�12=�22, and a parameter characterizing the interaction law
considered. Our results indicate that the net consequence of the presence of the shear
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ow on the di�usion of charge is to inhibit the current density along the y direction.
In general, this inhibition is more signi�cant as the mass ratio is larger than 1. With
respect to the x direction, −�xy is not a monotonic function of the shear rate and, for a
given value of a, its magnitude increases as the mass of the charged particle increases.
Concerning the in
uence of the interaction potential, we conclude that the values of
�ii and −�xy decrease as the potential becomes softer (harder) when the mass ratio is
smaller (larger) than 1. Besides, the comparison between the Boltzmann and kinetic
model equations in the case of Maxwell molecules shows a good agreement even for
large values of a and/or disparate values of � and w.
Finally, it is interesting to constrast the results presented here with those recently

derived for the current density under steady Couette from the GK equation for Maxwell
molecules [23]. While in the uniform shear 
ow problem the system is sheared by
applying Lees–Edwards boundary conditions [10], in the Couette 
ow state the shear

ow is generated by more realistic conditions [24]. As a consequence, the density,
the temperature, and the shear rate are nonhomogeneous. In the case of the electrical
conductivity tensor, comparsion between the results obtained in both states shows that
the shear rate dependence of �ii and �xy is qualitatively similar. Nevertheless, there are
important di�erences between both problems since in the Couette 
ow �xx 6= �yy 6= �zz
and �yx 6= 0 (although it is very small). Besides, at a quantitative level, the numerical
discrepancies between both descriptions increase with the shear rate. For instance, for
� = 1 and a∗ ' 0:4, the discrepancies for the trace (�xx + �yy + �zz)=3 and −�xy
are around 7% and 40%, respectively. The comparsion carried out for the conductivity
tensor is in the same spirit as the ones previously made for the shear viscosity [25] and
for the thermal conductivity tensor [26]. In all the cases, important di�erences between
both states have been found in the nonlinear regime. It is evident that the origin of
these discrepancies lies in the fact that both shear 
ow states are macroscopically
di�erent.
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Appendix A. Explicit expressions of the thermostat parameter as given by the Boltz-
mann and GK equations

In the context of the set of Boltzmann equations and for Maxwell molecules, the
thermostat parameter is �=max(�; �′), where [11,12]

�= �22’(a=�22) ; (A.1)



518 C. Mar��n, V. Garz�o / Physica A 265 (1999) 508–519

�′ = �22�[’(a�=�22)− 0:648�] ; (A.2)

’(x) = 2
3 sinh

2[ 16 cosh
−1(1 + 9x2)] (A.3)

and

� =
[

2w
�(1 + �)3

]−1=2
: (A.4)

Beyond the Maxwell interaction, explicit results can only be obtained by using a
kinetic model. Here, we use the generalized GK model de�ned as [19,20]

JGKrs =−�rs(fr − frs) ; (A.5)

where

�rs = A(�)ns

(
�rs
mr + ms
mrms

)(1−�)=2(2kBTr
mr

+
2kBTs
ms

)�=2
(A.6)

is an e�ective collision frequency for molecules interacting through repulsive potentials
of the form �rsr−l (l = 4; : : : ;∞); � = 1 − 4=l, and A(�) is a constant for a given
potential. Besides, frs is given by

frs = nr

(
mr

2�kBTrs

)3=2
exp

[
− mr
2kBTrs

(C− urs)2
]
; (A.7)

with urs = (mrur +msus)=(mr +ms), and Trs = Tr + 2M [Tr − Ts + (ms=6kB)(ur − us)2].
In the context of the GK model, the thermostat is again �=max(�; �′) where � is also
given by Eq. (A.1) but now �′ is the largest real root obtained numerically from the
following coupled equations [13,14]:

a2�12(1− 2M) = 3(�12 + 2�)2(M�12 + �) ; (A.8)

� =
T1
T2
=

M�12[2a2 + 3(�12 + 2�)2]
3(M�12 + �)(�122�)2 − a2�12(1− 2M) : (A.9)

In the special case of Maxwell molecules (� = 0); �12 does not depend on the
temperature ratio � and Eq. (A.9) reduces to a closed cubic equation for �. Nev-
ertheless, its real solution does not coincide with the one obtained from the Boltzmann
equation, i.e., Eq. (A.2).
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