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Shear-rate dependent transport coefficients in a binary mixture
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Mass and heat transport in a dilute binary mixture of Maxwell molecules under steady shear flow are
studied in the limit of small concentration gradients. The analysis is made from the Gross–Krook
kinetic model of the Boltzmann equation. This model is solved by means of a perturbation solution
around the steady shear flow solution@Phys. Fluids8, 2756 ~1996!#, which applies for arbitrary
values of the shear rate. In the first order of the expansion the results show that the mass and heat
fluxes are proportional to the concentration gradient but, due to the anisotropy of the problem,
mutual diffusion and Dufour tensors can be identified, respectively. Both tensors are explicitly
determined in terms of the shear rate and the parameters of the mixture~particle masses,
concentrations, and force constants!. A comparison with the results derived from the exact
Boltzmann equation at the level of the diffusion tensor shows a good agreement for a wide range of
values of the shear rate. ©2000 American Institute of Physics.@S1070-6631~00!02102-4#
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I. INTRODUCTION

When a fluid mixture is simultaneously subjected to bo
weak velocity and concentration gradients, the Cu
principle1 states that the shear field~tensorial quantity! can-
not modify vectorial quantities such as mass and heat flu
which are generated by a concentration gradient“ns . As a
consequence, the mutual diffusion coefficient~which couples
the mass current and the concentration gradient! and the Du-
four coefficient~which couples the heat flux and the conce
tration gradient! do not depend on the shear field. Neverth
less, when the shear rate is large, nonlinear effects bec
important so that the Curie principle does not apply and
above-mentioned transport coefficients may be modified
the shear flow. If the concentration gradient is weak, o
expects that the mass and heat fluxes are still proportion
“ns although the corresponding transport coefficients m
be replaced by second-rank tensors with elements that
nonlinear functions of the shear rate.

In order to gain some insight into this complex nonline
problem, it is useful to consider a somewhat simpler sit
tion for which greater progress can be made. Here, we c
sider a binary mixture in the low-density regime for whic
nonequilibrium phenomena are well described by the non
ear Boltzmann equation.2 For states near equilibrium, th

a!Author to whom all correspondence should be addressed at Departm
de Fı́sica, Universidad de Extremadura, E-06071 Badajoz, Spain; e
tronic mail: vicenteg@unex.es

b!Also consultant at Programa de Simulacio´n Molecular of the Instituto
Mexicano del Petro´leo.
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Boltzmann equation may be solved for general potentials
means of the Chapman–Enskog expansion3 of the distribu-
tion function around the local equilibrium distribution. In th
first order of the concentration gradient~Navier–Stokes do-
main!, one gets explicit expression for the mutual diffusio
and Dufour coefficients. Although this method can be
principle applied to states far from equilibrium as well, th
evaluation of the Chapman–Enskog expansion to higher
ders is extremely difficult. In addition, questions about
convergence remain still unknown. This gives rise to lo
for alternative approaches. One possibility is to expand
small concentration gradients around a more relevant re
ence state than local equilibrium. Since we are intereste
computing the influence of shear flow on the diffusion a
Dufour coefficients, we choose the uniform shear flow~USF!
state as the reference state. The USF state is probably
simplest fluid flow problem since the only nonzero hydrod
namic gradient is]ux /]y5a5const, whereu is the flow
velocity anda is the constant shear rate. The relevant tra
port coefficients of USF are the nonlinear shear viscos
coefficient and viscometric functions which are related to
pressure tensor~second-degree moment!. The USF state is
one of the rare exceptions for which the Boltzmann equat
admits an exact solution.4 In the special case of Maxwel
molecules~repulsive potential of the formr 24!, Ikenberry
and Truesdell5 obtained explicit expressions of the pressu
tensor forarbitrary values of the shear rate. Recently, th
solution has been extended to the case of a multicompo
system with arbitrary values of masses, concentrations,
force constants.6
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As previously mentioned, in this paper we are interes
in analyzing heat flow and mass diffusion in a strong
shearing binary mixture. The physical situation is such t
an arbitrary shear rate coexists with a weak concentra
gradient. Nevertheless, in practice this program cannot
carried out analytically by using the Boltzmann equatio
The main reason is that we need the fourth-degree mom
of USF ~whose explicit expressions are not known in t
Boltzmann equation! to evaluate the shear-rate depend
Dufour tensor. In order to overcome such difficulty, here
use a convenient kinetic model that preserves the esse
features of the Boltzmann equation but admits more pract
analysis. Specifically, we consider the well-known Gros
Krook ~GK! model7 for a binary mixture, for which an exac
solution of the USF state has also been recently found.8 The
comparison of these results with those from the Boltzma
equation6 at the level of the rheological properties show
good agreement, in general. This fact indicates again the
liability of this kinetic model in computing transport prope
ties in a binary mixture. Very recently, in the context of t
BGK equation for a single gas, a similar study of spatia
inhomogeneous states near USF has been made.9

The plan of the paper is as follows. In Sec. II, we intr
duce the model and define the transport coefficients to
evaluated. In Sec. III, we give a brief summary of releva
results concerning the USF problem in the framework of
GK model. Since we are interested in making connect
with computer simulations, we also introduce thermos
forces to compensate for the viscous heating and achie
steady state. Section IV contains the main results of the
per. We describe the perturbation scheme around the
distribution and explicitly compute the mass and heat flu
to linear order in the concentration gradient. The associa
transport coefficients are identified and given as nonlin
functions of the shear rate and the parameters of the mix
~mass ratio, concentration ratio, and force constants rat!.
The shear-rate dependence of these coefficients is illustr
and compared with some previous results obtained from
Boltzmann equation for the diffusion tensor.10 Such a com-
parison shows that the GK predictions are in a reasona
good agreement with the Boltzmann ones. We close the
per in Sec. V with a discussion of the results presented.

II. KINETIC MODEL AND TRANSPORT COEFFICIENTS

Let us consider a binary mixture in the low-density r
gime. In this limit, the time evolution of the system is d
scribed by the set of nonlinear Boltzmann equations.2 Nev-
ertheless, exact or even approximate solutions to
Boltzmann equation far from equilibrium are scarce, due
sically to the intricacy of its collision operator.4 Therefore,
for practical purposes, it is convenient to introduce kine
models that replace the Boltzmann collision operator wit
more tractable operator that retains the essential feature
the exact one, such as the conservation laws. In the case
binary mixture, a popular model is the one proposed
Gross and Krook~GK!.7 The GK model is given by the set o
two equations:
d
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S ]

]t
1v"

]

]r
1

1

m1

]

]v
"F1D f 152n11~ f 12 f 11!

2n12~ f 12 f 12!, ~1!

S ]

]t
1v"

]

]r
1

1

m2

]

]v
"F2D f 252n22~ f 22 f 22!

2n21~ f 22 f 21!. ~2!

Here, f s(r ,v;t) is the one-particle velocity distribution func
tion of speciess, ms is the mass of a particle of speciess, and
Fs is an external force acting on particles of speciess. Also,
the model introduces the distributionsf rs as

f rs5nr S mr

2pkBTrs
D 3/2

expF2
mr

2kBTrs
~v2urs!

2G , ~3!

where

urs5
mrur1msus

mr1ms
, ~4!

Trs5Tr12
mrms

~mr1ms!
2 F ~Ts2Tr !1

ms

6kB
~ur2us!

2G . ~5!

In Eqs.~4! and~5! the number densityns , the mean velocity
us , and temperatureTs of speciess, are defined, respec
tively, as

$ns ,nsus ,nskBTs%5E dvS 1,v,
1

3
ms~v2us!

2D f s . ~6!

From the partial quantities appearing in~6!, one can define
the total number densityn5n11n2 , the flow velocity u
5(r1u11r2u2)/(r11r2), rs5msns being the mass densit
of speciess, and the temperature of the mixtureT ~which is
the relevant one at a hydrodynamic level! as

nkBT5(
s51

2 S nskBTs1
1

3
rs~us2u!2D . ~7!

The quantitiesurs , andTrs are determined by imposing tha
the total momentum and energy are conserved and tha
first five collisional moments as computed with the GK co
lision term be the same as those computed with the e
Boltzmann collision operator for Maxwell molecule
namely, a repulsive potential of the formk rsr

24. In this
case, the effective collision frequencyn rs can be identified as

n rs5AnsS k rs

mr1ms

mrms
D 1/2

, ~8!

whereA is a constant to be fixed by requiring that the mod
reproduces some transport coefficient of the Boltzma
equation. Although the GK model can be extended to m
general repulsive interactions,11 for the sake of concretenes
we will restrict ourselves to Maxwell molecules.

The corresponding balance equations associated
ns , u, andT define the dissipative fluxes of mass

Js5E dv ms~v2u! f s5rs~us2u!, ~9!

momentum~pressure tensor!
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P5(
s51

2 E dv ms~v2u!~v2u! f s5(
s51

2

Ps , ~10!

and energy~heat flux!

q5(
s51

2 E dv
ms

2
~v2u!2~v2u! f s . ~11!

These fluxes define the relevant transport coefficients of
mixture. In particular, in a mixture the presence of a conc
tration gradient not only induces a mass current but als
heat flux. According to linear irreversible thermodynami
the macroscopic linear relations governing such fluxes i
binary mixture can be written as1

Js52
m1m2n

r
D0“ns , ~12!

Jq[q2
5

2
kBT(

s51

2 Js

ms
52

kBr

r1r2
L0“n1 . ~13!

In writting these equations, for simplicity, we have assum
that n and T are constants and have chosen2“@(m1

2m2)#/T[2(kBr/r1r2)“n1 as the force conjugate toJs

andJq , ms being the chemical potential of speciess. In Eqs.
~12! and ~13!, we have introduced the mutual diffusion c
efficient D0 and the Dufour coefficientL0 . Microscopic ex-
pressions for these coefficients can be obtained from the
model by using, for instance, the Chapman–Ensk
expansion.3 In this case, it is easy to get the following re
sults:

D05
kBT

nt
, ~14!

L050, ~15!

where

t5
m1m2

m11m2

n12

n2
. ~16!

The fact that the Dufour coefficient vanishes is due to
interaction potential considered~Maxwell molecules!, since
this result is identical to the one obtained from the Bol
mann equation for Maxwell molecules. For more general
teraction potentials, the Boltzmann equation leads to a
tional crossed contributions to the heat flux.3 With respect to
the diffusion coefficient, it has the same structure as the
obtained from the Boltzmann equation. As a matter of fa
Eq. ~14! coincides with the Boltzmann result if one conv
niently adjusts the constantA appearing in the definition o
n12, cf. Eq. ~8!. In this case, ifA51.69p, the mutual diffu-
sion coefficient given by the GK model is the same as
one given from the Boltzmann equation.3 Henceforth, we
will take this choice for the constantA.

III. UNIFORM SHEAR FLOW IN A BINARY MIXTURE

The fact that the distributionsf rs depend on space an
time through their dependence on the densities, veloci
and temperatures~which are functionals of the actual distr
butions f s! makes the GK equation more nonlinear than
e
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actual Boltzmann equation. Nevertheless, in some cases
GK model can be explicitly solved. One of them is the s
called uniform shear flow~USF!.4,12 The USF state is a pla
nar flow where the only nonzero hydrodynamic gradient c
responds to thex component of the flow velocities along th
y direction:

us,i5ui5ai j r j , ai j 5ad ixd jy , ~17!

a being the constant shear rate. This parameter~which may
be arbitrarily large! measures the distance of the mixtu
from equilibrium. This state is generated by a period
boundary condition in the Lagrangian frame.13 These bound-
ary conditions induce viscous heating so that the tempera
increases in time. In order to prevent this effect, it is usua
computer experiments to introduce external forces which
move the heat at the same rate as it is produced. The sim
choice ~which is based on Gauss’ principle of least co
straint! is a nonconservative force proportional to the pec
liar velocity Vi5v i2ai j r j , i.e.,14

F52msaV, ~18!

where the thermostat parametera is adjusted to maintain a
constant temperature. In the case of Maxwell molecules,
important to remark that in the USF problem there is
exact equivalence between the results obtained with
without a thermostat force.15,6,8 In addition, the uniform
shear flow becomes spatially homogeneous in the fra
moving with the flow velocityu. Thus, in this frame the
velocity distribution function adopts the formf s(r ,v)
5 f s(V).

Under the above-mentioned conditions, the set of G
equations~1! and ~2! becomes

2
]

]Vi
~ai j Vj1aVi ! f 152n11~ f 12 f 11!2n12~ f 12 f 12!

~19!

and a similar equation holds forf 2 . To get the rheological
properties of the mixture it is convenient to define the
duced velocity moments corresponding to each species. T
are defined as

Mk,l ,m5
1

n1
S 2kBT

m1
D 2~1/2!~k1 l 1m!E dV Vx

kVy
l Vz

mf 1~V!,

~20!

Nk,l ,m5
1

n2
S 2kBT

m2
D 2~1/2!~k1 l 1m!E dV Vx

kVy
l Vz

mf 2~V!.

~21!

Recently, explicit expressions of these moments have b
obtained.8 They are given by

Mk,l ,m5 (
q50

k
k!

~k2q!!
~2a!q@n11~k1 l 1m!a#2~11q!

3Ak2q,l 1q,m@n11x1
~k1 l 1m!/21n12x12

~k1 l 1m!/2#,

~22!

where
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Ak,l ,m5p23/2GS k11

2 DGS l 11

2 DGS m11

2 D ~23!

if ~k,l,m! are even, being zero otherwise. Further, we ha
introduced the quantities

x1[
T1

T
5F11

3a~n112a!22a2n1

Mn12~11d!@3~n112a!212a2#G
21

,

~24!

n15n111n12, M[m/(11m)2, and x12[T12/T5x1

12M (11d)(12x1). In these expressions,m[m1 /m2 is
the mass ratio, andd[n1 /n2 is the concentration ratio. Th
momentsNk,l ,m can be easily obtained from Eq.~22! by the
adequate changes:m↔m21, d↔d21, k11↔k22. Finally,
the thermostat parametera can be obtained from the consi
tency condition:2(12x1)d1x251. This leads to a sixth-
degree algebraic equation, whose largest~real! root givesa
as a function of the shear rate and the parameters of
mixture. However, from a practical point of view, it is con
venient to takea as independent variable~instead ofa! and
express the shear rate in terms ofa. The result is

a252 1
2 ~P1AP224Q!, ~25!

where

P5
3

n1n2~11d!22Mz~dn11n2!
$4a3~11d!~2Mz

2n12n2!14a2@Mz~dn11n2!22n1n2~11d!#

1a@2Mz~dn1
21n2

2!24Mzn1n2~11d!

2zn1n2~n11n2!~11d!#2Mzn1n2~n11dn2!%,

~26!

Q5
9a~11d!~a1zM !~2a1n1!2~2a1n2!2

n1n2~11d!22Mz~dn11n2!
, ~27!

with z5(n/n2)n12. According to Eqs.~22!–~27!, it is appar-
ent that the moments exhibit a highly nonlinear depende
on all the parameters of the problem, i.e.,a, m, d, andk rs .
The shear-rate dependence of the second-degree mom
presents an excellent agreement with the one obtained
the Boltzmann equation.6

The use of a kinetic model allows us to derive the e
plicit expressions of the velocity distribution functionsf s .
This is one of the main advantages of using kinetic mod
In the steady shear flow state, the distributionf 1 can be
written as f 1(V)5n1(m1/2kBT)3/2g1(j), where j
[(m1/2kBT)1/2V and the reduced distributiong1 is

g1~j!5p23/2E
0

`

dt e2~n123a!t@n11x1
23/2

3exp~2x1
21e2atj"Gt"j!1n12x12

23/2

3exp~2x12
21e2atj"Gt"j!#. ~28!

Here, Gt is the matrix defined asG i j (t)5d i j 1a2t2d iyd jy

1at(d ixd jy1d iyd jx). According to ~28!, g1 has a highly
nonlinear dependence on the parameters of the problem
e

he

e

nts
m

-

s.

Since all the velocity moments and the distribution fun
tions of the GK equation in the steady USF problem a
explicitly known, we are in a position to evaluate the diff
sion and Dufour coefficients when the mixture is strong
sheared. This will be done in Sec. IV.

IV. SHEAR-RATE DEPENDENT TRANSPORT
COEFFICIENTS

In this section we are interested in studying what is
effect of the shear flow on the mass and heat fluxes in
limit of small concentration gradients. In this case, one
pects that the above-mentioned fluxes are still proportiona
the concentration gradient, Eqs.~12! and ~13!, although the
coefficientsD0 andL0 must be replaced by their correspon
ing shear-rate dependent mutual diffusion and Dufour t
sors, respectively. The presence of new transport coeffici
~which do no exist for hydrodynamics near equilibrium! is a
consequence of the anisotropy introduced in the fluid by
presence of the shear flow. The evaluation of the abo
mentioned tensors is the main goal of this paper.

Let us assume that we perturb the steady USF by in
ducing a weak concentration gradient“ns . On physical
grounds, we also assume that the total densityn and tempera-
tureT are constant. As a consequence, the concentration
dients are not independent but satisfy the relation“n1

52“n2 . These are the typical experimental conditions
measuring the mutual diffusion coefficient in a binary mi
ture close to equilibrium. At a kinetic level, we will look fo
solutions in which all the space dependence occurs throu
functional dependence on the densitiesns , since the space
dependence on the flow velocity is completely absorbed
the peculiar velocityV. In other words, we look fornormal
solutions of the formf s(r ,v)5 f s(n1(r ),n2(r );V). There-
fore, in the steady state, the set of GK Boltzmann equati
are obtained from Eqs.~1! and ~2! by

2
]

]Vi
~ai j Vj1aVi ! f 11~Vi1ai j r j !

]

]r i
f 11n1f 1

5n11f 111n12f 12, ~29!

and similarly for f 2 . Here, we have introduced again th
thermostat force~18! to keep the temperature constant. In t
following we will focus on the properties of species 1. In th
same spirit as the usual Chapman–Enskog expansion,3 we
solve Eq.~29! by means of an expansion in powers of“n1

but taking the pure shear flow distribution~28! as the zeroth-
order approximation. This is the main feature of our meth
Thus, we write

f 15 f 1
~0!1 f 1

~1!1¯ , ~30!

where f 1
(k) is of orderk in “n1 but retains all the hydrody-

namic orders in the shear rate. The distribution functionf 1
(0)

is the same as in Eq.~28! except that now the densitiesns are
nonuniform. In this paper, we will only consider the fir
order of the expansion.

In this first-order approximation, the kinetic equation
f 1

(1) becomes
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2
]

]Vi
~ai j Vj1aVi ! f 1

~1!1~Vi1ai j r j !
]

]r i
f 1

~0!1n1f 1
~1!

5n11f 11
~1!1n12f 12

~1! , ~31!

where

f 11
~1!5

1

n1kBT1
V"J̃1

~1! f 11
~0! , ~32!

f 12
~1!5

1

n1kBT12
S m

12d

11m
V"J̃1

~1!1r1

11md

11m
V"u~1!D f 12

~0! ,

~33!

f i j
~0!5ni S mi

2pkBTi j
D 3/2

expS 2
miV

2

2kBTi j
D , ~34!

and

J̃1
~1!5m1E dv V f 1

~1! . ~35!

The quantityJ̃1
(1) represents the mass flux of species 1 w

respect to a reference frame moving with the linear veloc
profile ui

(0)5ai j r j . As we will see later, the linear shear flo
can be disturbed by the presence of the concentration g
ent. For this reason, we have introduced the first-order
turbation to the velocity of the mixtureu(1), which is defined
as

u~1!5
1

r (
s51

2 E dv msV f s
~1! . ~36!

To first order in the expansion the conservation laws of m
and momentum imply that

ai j r j

]

]r i
n150, ~37!

aikuk
~1!1aui

~1!52
1

r

]

]r k
Pik

~0! , ~38!

whereP(0) refers to the total pressure tensor of the mixtu
in the USF, whose expression can be readily obtained f
Eq. ~22! and its counterpart forf 2

(0) , but will be omitted. In
addition, in writting such balance equations we have ta
into account thatPs

(1)50 since f s
(1) is an odd function onV.
y

di-
r-

s

m

n

Equation~37! implies that, in order to keep the mixture in
steady state, the concentration gradient must be orthogon
the direction of the shear flow, i.e.,]n1 /]x50. On the other
hand, according to Eq.~38!, only in the case that the tota
pressure tensor is uniform the velocity field is not perturb
by the presence of the concentration gradient. Ifa50, Pi j

(0)

5nkBTd i j 5const, sou(1)50. For nonzero shear rates, the
are only two limit cases for whichP(0) is constant: the case
of mechanically equivalent particles16 ~m51, k115k22

5k12! and the tracer limit (n1!n2).17 In both cases, the
pressure tensor can be written asPi j

(0)5nkBTF(a), F(a)
being a nonlinear function of theconstantshear ratea. Be-
yond these limit cases the pressure tensor depends on s
through its dependence on the partial densities, and co
quently the velocity field is modified by the concentratio
gradient. The solution to Eq.~38! is

ui
~1!52

1

ra S d ik2
aik

a D ]

]r j
Pk j

~0! . ~39!

We are interested in computing the mass and heat flu
At this order, taking into account relations~9! and~11!, they
are given, respectively, by

J1,i
~1!5m1E dv Vi f 1

~1!2r1ui
~1![ J̃1,i

~1!2r1ui
~1! , ~40!

qi
~1!5(

s51

2
ms

2 E dv V2Vi f s
~1!2

3

2
pui

~1!2Pi j
~0!uj

~1!

[(
s51

2

q̃s,i
~1!2

3

2
pui

~1!2Pi j
~0!uj

~1! , ~41!

where the partial contributionq̃s
(1) to the heat flux is defined

as

q̃s
~1!5

ms

2 E dv V2V f s
~1! . ~42!

In order to get the fluxesJ̃1
(1) and q̃s

(1) , it is convenient to
introduce the dimensionless momentsMk,l ,m

(1) . They are simi-
larly defined as in Eq.~20!, but settingf 1

(1) instead off 1 .
The corresponding hierarchy that such moments obey ca
obtained by multiplying both sides of Eq.~31! by Vx

kVy
l Vz

m

and integrating over the velocity space. Thus, one finds

akMk21,l 11,m
~1! 1@n11a~k1 l 1m!#Mk,l ,m

~1! 5Rk,l ,m , ~43!

where
Rk,l ,m52zF11~11d!d
]

]dG~Mk,l 11,m
~0! e1,y1Mk,l ,m11

~0! e1,z!12n11x1
~1/2!~k1 l 1m21!@Ak11,l ,mM1,0,0

~1! 1Ak,l 11,mM0,1,0
~1!

1Ak,l ,m11M0,0,1
~1! #12

m

11m
~12d!n12x12

~1/2!~k1 l 1m21!@Ak11,l ,mM1,0,0
~1! 1Ak,l 11,mM0,1,0

~1! 1Ak,l ,m11M0,0,1
~1! #

2
md

11m
~11d!2n12x12

~1/2!~k1 l 1m21!@Ak11,l ,mLxye1,y1Ak,l 11,mLyye1,y1Ak,l ,m11Lzze1,z#. ~44!
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Here, Mk,l ,m
(0) refers to the moments of the pure USF sta

given by Eq.~22! and we have introduced the reduced co
centration gradient

e15S 2kBT

m1
D 1/21

z
“ ln n1 , ~45!

and the dimensionless tensor

L i j 5
1

nkBT

z

a S d ik2
aik

a D ]

]d
Pk j

~0! . ~46!

The solution to Eq.~43! can be written as

Mk,l ,m
~1! 5 (

q50

k
k!

~k2q!!
~2a!q@n11~k1 l 1m!a#2~11q!

3Rk2q,l 1q,m . ~47!
l-

q.

n
o
e

-

-

an
-
o
w

-
Equation~47! is still formal since we need to know th

first degree moments, which are related to the fluxJ̃1
(1) . Af-

ter some manipulations, it is easy to see that these mom
are given by

M0,1,0
~1! 52D̃yye1,y , ~48!

M0,0,1
~1! 52D̃zze1,z , ~49!

M1,0,0
~1! 52D̃xye1,y , ~50!

where
D̃yy5D̃zz5

~11m!zF11~11d!d
]

]dGM0,2,0
~0! 1

1

2
dm~11d!2n12Lyy

~11m!a1n12~11dm!
, ~51!
ced

s

od
the
fect

ass
na-
es
shear

ann
D̃xy5
1

2@~11m!a1n12~11dm!#

3H d~11d!2mn12Lxy22a~11m!D̃yy

12~11m!zF11~11d!d
]

]dGM1,1,0
~0! J . ~52!

From Eqs.~40!, and ~48!–~52!, the mass fluxJ1
(1) can be

finally obtained. It can be written in the form of a genera
ized Fick’s law, Eq.~12!,

J1,i
~1!52

m1m2n

r
Di j

]

]r j
n1 , ~53!

with a mutual diffusion tensor given by

Di j 5D0

1

11m F2
11md

11d
D̃ i j 2md~11d!L i j G , ~54!

D0 being the mutual diffusion coefficient at equilibrium, E
~14!. According to Eq.~54!, Dxz5Dyz5Dzy50, which is
consistent with the symmetry of the problem. In additio
since]n1 /]x50, the only relevant components of this tens
areDyy5Dzz andDxy . They are nonlinear functions of th
shear ratea and the parameters of the mixturem, d, k11/k12,
andk22/k12. Whena50, Di j 5D0d i j and one gets the ex
pected result. For small shear rates,Dyy'D02Dyy

(2)a2 and
Dxy'2Dxy

(1)a, whereDyy
(2) and Dxy

(1) depend on the param
eters of the mixture. Notice that the equalityPs,yy5Ps,zz,
which is also present in the case of the exact Boltzm
equation,10 implies thatDyy5Dzz. This is probably a pecu
liarity of the Maxwell interaction since Monte Carl
simulations18 for a dilute single gas of hard spheres sho
that Ps,yyÞPs,zz.
,
r

n

Figures 1 and 2 show the dependence of the redu
diffusion tensorDi j* 5Di j /D0 on the reduced shear ratea*
5a/z for d[n1 /n255, k115k225k12, and m[m1 /m2

50.5, and 2. The behavior ford,1 can be easily inferred by
taking into account thatDi j is invariant under the change
m↔m21, d↔d21, and k11↔k22. We have also included
the results obtained from the Boltzmann equation.10 We ob-
serve that the GK predictions present a qualitative go
agreement with the Boltzmann ones, especially when
mass of the excess component is larger than that of the de
component. The influence of the shear flow on the m
transport is quite significant in the region of shear rates a
lyzed. In the case ofDyy* , we see that this element decreas
as the shear rate increases so that the presence of the

FIG. 1. Plot of the reduced diagonal element of the diffusion tensorDyy*
5Dyy /D0 as a function of the reduced shear ratea* 5a/z for k115k22

5k12 , d[n1 /n255, andm[m1 /m250.5, andm52. The solid lines cor-
respond to the GK results while the dashed lines refer to the Boltzm
results.
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flow inhibits the mass transport along the direction of t
gradient of the flow velocity~y axis!. This inhibition be-
comes more significant when the defect species is hea
than the excess species. The componentDxy* ~which is zero
in the absence of shear flow! gives the mass flux along thex
direction due to a concentration gradient along they direc-
tion. It can be seen as a measure of the anisotropy gene
in the system by the action of the shear field. It is negat
and its dependence on the shear rate is quite similar, reg
less of which mass ratio considered: for small shear ra
2Dxy* increases witha* while the opposite happens for larg
shear rates. As noted in the previous Boltzmann work,10 the
dependence ofDi j on a found here agrees qualitatively we
with the one observed in molecular dynamics simulation19

in a strongly shearing Lennard-Jones binary mixture.
Once the mass fluxesJs

(1) have been obtained, all th
velocity moments off s

(1) can be explicitly determined from
Eq. ~47! and its corresponding counterpart for the compon
2. An interesting moment corresponds to the heat flux c
ated by the gradient of concentration. The total heat flux
q(1)5q1

(1)1q2
(1) where the partial contributionsqs

(1) are

FIG. 2. Plot of the reduced diagonal element of the diffusion tensorDxy*
52Dxy /D0 as a function of the reduced shear ratea* 5a/z for k115k22

5k12 , d[n1 /n255, andm[m1 /m250.5, andm52. The solid lines cor-
respond to the GK results while the dashed lines refer to the Boltzm
results.

FIG. 3. Plot of the reduced diagonal element of the Dufour tensorLyy* as a
function of the reduced shear ratea* 5a/z for k115k225k12 , d[n1 /n2

55, andm[m1 /m250.5, andm52.
ier

ted
e
rd-
s

t
-

is

given by Eq.~41! and its counterpart. The fluxesq̃s
(1) can be

obtained from~47! after some simple algebra and their e
plicit expressions are given in the Appendix. By collectin
all the contributions coming from both species, the fluxJq

can be obtained and consequently, the generalized Du
tensorL identified. The calculation of such tensor is one
the main achievements of this paper. Its explicit express
is

Li j 5
kBT2

m1z

r1r2

r F2~S1,i j 2mS2,i j !2
m~11d!3

11md

3S 3

2
L ik1Pik

~0!* DLk j2
5

2

~12m2!~11d!

11md
Di j* G ,

~55!

where Pi j
(0)* [Pi j

(0)/nkBT and the nonzero elements of th
tensorSs are given in the Appendix.

In the same way as the diffusion tensor, the tensorL has
three relevant elements: two diagonalsLyy , and Lzz, and
one off-diagonalLxy . However, in contrast toD, its diagonal
elements are different, which is a consequence of the h
anisotropy induced by the shear field. For zero shear r

n

FIG. 4. Plot of the reduced diagonal element of the Dufour tensorLzz* as a
function of the reduced shear ratea* 5a/z for k115k225k12 , d[n1 /n2

55, andm[m1 /m250.5, andm52.

FIG. 5. Plot of the reduced off-diagonal element of the Dufour tensor2Lxy*
as a function of the reduced shear ratea* 5a/z for k115k225k12 , d
[n1 /n255, andm[m1 /m250.5, andm52.
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one gets the well-known result for Maxwell binary mixtur
near equilibrium, i.e.,Li j 50.3 Also, if m51, the result is
againLi j 50 even foraÞ0. In the limit of small shear rates
Lyy'Lyy

(2)a2, Lzz'Lzz
(2)a2, and Lxy'2Lxy

(1)a, where Lyy
(2) ,

Lzz
(2) , andLxy

(1) are nonlinear functions of the mass ratio, t
concentration ratio, and the potential parameters. In orde
illustrate the dependence of the Dufour tensor ona and the
parameters of the mixture, it is convenient to reduce it i
proper way. Here, we define the dimensionless Dufour ten
L* as

Li j* 5
m1m2

m11m2

z

kBT2

r

r1r2
Li j . ~56!

The reduced tensorLi j* possesses the same invariant prop
ties as the Dufour tensorLi j . In Figs. 3, 4, and 5, we plo
Lyy* , Lzz* , and Lxy* as a function ofa* , respectively. We
consider againd55, k115k225k12, and the same values o
the mass ratio as before, namelym50.5 andm52. To the
best of our knowledge, we are not aware of any previo
simulation or calculation of this tensor so that no comparis
is possible at this stage. As Figs. 3–5 show, the vari
componentsLi j* are nonmonotonic functions ofa* , reaching
either a maximum or a minimum for a given value of t
shear rate. Note that depending on the value of the m
ratio, the shear-rate dependent components of the genera
Dufour tensor may either be negative or positive.

V. DISCUSSION

In a binary mixture, the presence of a concentration g
dient induces mass and heat fluxes. Both fluxes define
relevant transport coefficients: the mutual diffusion coe
cient and the Dufour coefficient. While the description
such processes is well developed when the mixture is c
to equilibrium, much less is known when the system is
from equilibrium. In particular, an interesting question
how the diffusion and Dufour transport coefficients are
fected by the action of a shear field with arbitrary strength
this paper we have addressed this question in the conte
a dilute binary mixture where the Boltzmann equation p
vides a controlled formulation of the problem. However, d
to the complex mathematical structure of this equation, th
are still difficulties for practical applications, so a kinet
model has been used to allow a detailed analysis. Spe
cally, we have considered the GK model of the Boltzma
equation whose reliability has been shown in the past
years in different problems.17,20

The physical situation is such that a linear profile of t
x component of the flow velocity along they direction coex-
ists with a weak concentration gradient. The~constant! shear
rate is arbitrary so that the mass fluxJs and the heat fluxJq

can be modified by the shear flow. In addition, thermos
forces are introduced to prevent the viscous heating ef
and get an stationary state. Under these conditions,Js andJq

are still proportional to the concentration gradient but
diffusion and Dufour coefficients become shear-rate dep
dent tensors. The determination of these tensors in the
of Maxwell molecules has been the objective of this pap
Apart from the limitation of the interaction considered, o
to
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results apply to arbitrary values of masses, concentrati
and force constants. The solution has been obtained fro
generalization of the usual Chapman–Enskog method3 where
the reference state corresponds to the stationary shear
distribution8 instead of the local equilibrium distribution. In
the first-order approximation, we explicitly get the diffusio
Di j and DufourLi j tensors. These results extend previo
works done in the limit cases of mechanically equivale
particles16 and tracer particles.17,11

In the special case of Maxwell molecules, it is we
known that for a dilute binary mixture the heat fluxJq50 in
the absence of shear flow.3 The results obtained here sho
that the shearing induces a nonzero heat flux proportiona
the concentration gradient even for the Maxwell interactio
Furthermore, the mass flux is highly disturbed with resp
to its equilibrium value. In general, the nonzero elements
the mutual diffusion and Dufour tensors present a comp
nonlinear dependence on the shear rate and the paramet
the mixture and, in particular, cross effects in the transpor
mass and energy are generated by the presence of the
flow. For instance, there exist nonzero contributions to thx
component of the mass and heat fluxes due to a conce
tion gradient along they direction. Concerning the diffusion
tensor,Dyy5Dzz and Dxy,0. The net effect of the shea
field on the transport of mass is to inhibit the transport
particles along the direction of the flow velocity~y axis!. In
the case ofx direction,2Dxy is not a monotonic function of
the shear rate and has a maximum for a given value ofa* .
These results agree with those obtained from the Boltzm
equation10 and from molecular dynamics simulations
dense mixtures.19

With respect to the Dufour tensor, the results show t
in the presence of the shear flowLyyÞLzz, thatLi j 50 both
for a50 or m51, and that depending on the mass ratio t
Li j , which are nonmonotonic functions of the shear ra
may be either positive or negative, reaching a maximum
minimum for givena* . It is interesting to point out that the
question of the sign of the componentsLi j is not, in prin-
ciple, at odds with the second law of thermodynamics. No
theless, the actual proof of the compatibility of this featu
with irreversible thermodynamics would involve the veri
cation of an inequality that generalizes Eq.~221! in Ref. 1 to
the case of tensorial thermal conductivity, diffusion, a
thermal diffusion. This verification is not feasible at th
stage due to the fact that neither the precise inequality
the shear dependent thermal conductivity for the mixture
presently available. But the point is certainly interesting a
we may address it in the future. To provide a proper persp
tive in which the importance of the calculations involvingLi j

may be further assessed, the following comments are in
der. As said before, to our knowledge this is the first deri
tion of an explicit expression of the shear-rate depend
Dufour tensor. It could be argued that consideration of Ma
well molecules somewhat restricts the usefulness of such
expression. However, it is important to remark that th
choice was motivated by the fact that, in the absence of sh
flow, the GK model yieldsalwaysa zero Dufour coefficient
irrespective of the intermolecular potential, whereas
Boltzmann equation only does it for the case of Maxw
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molecules. Therefore it seemed only natural to conside
potential in which the correct Dufour coefficient is obtain
at zero shear rate. On the other hand, at least for repu
potentials, our previous findings8 indicate that other transpor
coefficients are rather insensitive to the choice of the po
law and on these grounds we would expect this also to be
case for the Dufour tensor.

The results reported here can also be of relevance
connection with computer simulations. We have alrea
mentioned the simulation performed by Sarman, Evans,
Baranyai19 to analyze the shear rate dependence of the
tual diffusion tensor of a dense mixture. Nevertheless, w
one extrapolates our definition of the collision frequencyz to
dense fluids, one estimates that the shear rates applied in
simulation are not large enough to clearly observe nonlin
effects. In the case of the Dufour tensor no simulation d
are known to date, even for dense systems. As we have
dicated in previous works, one possibility to overcome
difficulties inherent to molecular dynamics to achieve lar
shear rates in the low density regime is to use the di
simulation Monte Carlo method.21 We hope that the result
derived here for the mutual diffusion and Dufour tenso
stimulates the performance of computer simulations to ch
the accuracy of our predictions.
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APPENDIX: PARTIAL CONTRIBUTIONS TO THE HEAT
FLUX

In this appendix we explicitly write the nonzero el
mentsLyy , Lzz, andLxy of the Dufour tensorL. First, the
partial contributions to the heat fluxq̃s

(1) can be written as

q̃s
~1!52

m1n1

2 S 2kBT

m1
D 3/2

Ss"es , ~A1!

where the relevant elements ofSs are given by

S1,xy52
1

z1
4 D@6a3M0,4,0

~0! 1az1
2~M0,2,2

~0! 1M0,4,0
~0!

13M2,2,0
~0! !2z1

3~M3,1,0
~0! 1M1,1,2

~0! !

2z1~z1
216a2!M1,3,0

~0! #

2A1

~7z1
2118a2!aD̃yy2~5z1

216a2!z1D̃xy

2~11m!z1
4

2B1

~7z1
2118a2!aLyy2~5z1

216a2!z1Lxy

4~11m!z1
4 ,

~A2!
a

ve

r
he

in
y
d

u-
n

his
ar
ta
in-
e
e
ct

s
k

-

S1,yy5
1

z1
DFM0,2,2

~0! 1M2,2,0
~0! 1

2a21z1
2

z1
2 M0,4,0

~0!

2
2a

z1
M1,3,0

~0! G1A1

~5z1
216a2!D̃yy22az1D̃xy

2~11m!z1
3

1B1

~5z1
216a2!Lyy22az1Lxy

4~11m!z1
3 , ~A3!

S1,zz5
1

z1
DFM2,0,2

~0! 1M0,0,4
~0! 1

2a21z1
2

z1
2 M0,2,2

~0!

2
2a

z1
M1,1,2

~0! G1A1

5z1
212a2

2~11m!z1
3 D̃zz

1B1

5z1
212a2

4~11m!z1
3 Lzz. ~A4!

Here, we have introduced the operator

D@g~d!#5S 11d~11d!
]

]d Dg~d!, ~A5!

and the quantities

z15n113a, ~A6!

A15~11m!n11x11~12d!mn12x12, ~A7!

B15mn12d~11d!2x12. ~A8!

The relevant elements ofS2 can be obtained from Eqs.~A2!
to ~A8! by the changes:m↔m21, d↔d21, andk11↔k22.
The Dufour tensor can be identified from the fluxJq defined
in Eq. ~13!. By collecting all the contributions, it is straight
forward to get the expression~55! appearing in the main text
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