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Mass and heat transport in a dilute binary mixture of Maxwell molecules under steady shear flow are
studied in the limit of small concentration gradients. The analysis is made from the Gross—Krook
kinetic model of the Boltzmann equation. This model is solved by means of a perturbation solution
around the steady shear flow solutifhys. Fluids8, 2756 (1996], which applies for arbitrary
values of the shear rate. In the first order of the expansion the results show that the mass and heat
fluxes are proportional to the concentration gradient but, due to the anisotropy of the problem,
mutual diffusion and Dufour tensors can be identified, respectively. Both tensors are explicitly
determined in terms of the shear rate and the parameters of the mijarécle masses,
concentrations, and force constantd comparison with the results derived from the exact
Boltzmann equation at the level of the diffusion tensor shows a good agreement for a wide range of
values of the shear rate. ®000 American Institute of Physids$§1070-663(00)02102-4

I. INTRODUCTION Boltzmann equation may be solved for general potentials by
means of the Chapman—Enskog expansiointhe distribu-
When a fluid mixture is simultaneously subjected to bothtion function around the local equilibrium distribution. In the
weak velocity and concentration gradients, the Curiefirst order of the concentration gradiefNavier—Stokes do-
principle’ states that the shear fieltensorial quantitycan-  main), one gets explicit expression for the mutual diffusion
not modify vectorial quantities such as mass and heat fluxeaind Dufour coefficients. Although this method can be in
which are generated by a concentration gradent. As a  principle applied to states far from equilibrium as well, the
consequence, the mutual diffusion coefficiemhich couples  evaluation of the Chapman—Enskog expansion to higher or-
the mass current and the concentration gragiiand the Du-  ders is extremely difficult. In addition, questions about its
four coefficient(which couples the heat flux and the concen-convergence remain still unknown. This gives rise to look
tration gradientdo not depend on the shear field. Neverthe-fo; alternative approaches. One possibility is to expand in
less, when the shear rate is large, nonlinear effects becomgna|| concentration gradients around a more relevant refer-
important so that the Curie principle does not apply and thgnce state than local equilibrium. Since we are interested in
above-mentioned transport coefficients may be modified bY:omputing the influence of shear flow on the diffusion and
the shear flow. If the concentration gradient is weak, ongy,four coefficients, we choose the uniform shear flai&P)
expects that the mass and heat fluxes are still proportional i@ e as the reference state. The USF state is probably the
Vng although the corresponding transport coefficients muséimplest fluid flow problem since the only nonzero hydrody-
be replaced by second-rank tensors with elements that are, vic gradient isju,/dy=a=const, whereu is the flow
nonlinear functions of the shear rate. ~ velocity anda is the constant shear rate. The relevant trans-
In order to gain some insight into this complex nonlinear,,+ cqefficients of USF are the nonlinear shear viscosity
problem, it is useful to consider a somewhat simpler situagetficient and viscometric functions which are related to the
tion for which greater progress can be made. Here, we COMsressure tensofsecond-degree momentrhe USF state is

sider a _b_ingry mixture in the low-density _regime for Whic_h one of the rare exceptions for which the Boltzmann equation
nonequilibrium phenomena are well described by the nonling ynits an exact solutichin the special case of Maxwell
ear Boltzmann equatiohFor states near equilibrium, the molecules(repulsive potential of the form—4), Ikenberry

and Truesdell obtained explicit expressions of the pressure
@Author to whom all correspondence should be addressed at Departmentensor forarbitrary values of the shear rate. Recently, this
de Fsica, Universidad de Extremadura, E-06071 Badajoz, Spain; EIeC'SO|uti0n has been extended to the case of a multicomponent
tronic mail: vicenteg@unex.es ith arbi | ; . d
PAlso consultant at Programa de Simufati®olecular of the Instituto system with arbitrary values of masses, concentrations, an

Mexicano del Peftieo. force constant8.
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As previously mentioned, in this paper we are interested
in analyzing heat flow and mass diffusion in a strongly
shearing binary mixture. The physical situation is such that
an arbitrary shear rate coexists with a weak concentration —vf1—T19), (1)
gradient. Nevertheless, in practice this program cannot be
carried out analytically by using the Boltzmann equation. (i+v.i+ii.Fz)fzz_sz(fz_fzz)

The main reason is that we need the fourth-degree moments \ ot ar - myov

of USF (whose explicit expressions are not known in the — vy(Fy— ). ©)
Boltzmann equationto evaluate the shear-rate dependent

Dufour tensor. In order to overcome such difficulty, here weHere, f5(r,v;t) is the one-particle velocity distribution func-
use a convenient kinetic model that preserves the essentién of species, ms is the mass of a particle of specesnd
features of the Boltzmann equation but admits more practicdfs is an external force acting on particles of speciealso,
analysis. Specifically, we consider the well-known Gross-the model introduces the distributiofig as

STVt __'Fl)f1: —vu(fi—fip)

Krook (GK) modef for a binary mixture, for which an exact m 312

solution of the USF state has also been recently félifide f n,(ﬁ) ex;{ ~ 2K _rl_ (V—uy)?|, 3)

comparison of these results with those from the Boltzmann T8 lrs Blrs

equatiofi at the level of the rheological properties showswhere

good agreement, in general. This fact indicates again the re-

liability of this kinetic model in computing transport proper- rs:w, (%)

ties in a binary mixture. Very recently, in the context of the m; + Mg

BGK equation for a single gas, a similar study of spatially mm m

inhomogeneous states near USF has been thade. Trs:Tr+2(err—ms)2{(Ts_Tr)+ 6T5(ur_us)z . (5
The plan of the paper is as follows. In Sec. Il, we intro- re s B

duce the model and define the transport coefficients to bg Egs.(4) and(5) the number density,, the mean velocity
evaluated. In Sec. lll, we give a brief summary of relevantu,, and temperaturd of speciess, are defined, respec-
results concerning the USF problem in the framework of theively, as

GK model. Since we are interested in making connection

with computer simulations, we also introduce thermostat {ns=nsu31nskBTs}:J dv
forces to compensate for the viscous heating and achieve a

steady state. Section \Y contain_s the main results of the pg=;om the partial quantities appearing (), one can define
per. We describe the perturbation scheme around the USfre total number densitp=n, +n,, the flow velocity u
distribution and explicitly compute the mass and heat fluxes:(p1u1+p2u2)/(pl+pz) ps=m¢n, being the mass density

to linear order in the concentration gradient. The associategg speciess, and the temperature of the mixtufe(which is
transport coefficients are identified and given as nonlineage relevant one at a hydrodynamic levas

functions of the shear rate and the parameters of the mixture
(mass ratio, concentration ratio, and force constants jatios 1 5

The shear-rate dependence of these coefficients is illustrated ”kBT:SZzl NsKeTs+ 3 ps(Us—U)7. (7

and compared with some previous results obtained from the

Boltzmann equation for the diffusion tens8rSuch a com-  The quantitiesi,s, andT,s are determined by imposing that
parison shows that the GK predictions are in a reasonabghe total momentum and energy are conserved and that the
good agreement with the Boltzmann ones. We close the pdlst five collisional moments as computed with the GK col-

per in Sec. V with a discussion of the results presented. lision term be the same as those computed with the exact
Boltzmann collision operator for Maxwell molecules,

namely, a repulsive potential of the formr —*. In this
case, the effective collision frequeney; can be identified as

1
1v, §ms(v—us)2> fs. (6)

2

II. KINETIC MODEL AND TRANSPORT COEFFICIENTS "

, ®

m, +m;

Kpe————
rs mrms

Let us consider a binary mixture in the low-density re- Vis=Ans
gime. In this limit, the time evolution of the system is de-
scribed by the set of nonlinear Boltzmann equatiohev- ~ WhereA is a constant to be fixed by requiring that the model
ertheless, exact or even approximate solutions to th&eproduces some transport coefficient of the Boltzmann
Boltzmann equation far from equilibrium are scarce, due baequation. Although the GK model can be extended to more
sically to the intricacy of its collision operat8rTherefore, ~general repulsive interaction$for the sake of concreteness,
for practical purposes, it is convenient to introduce kineticwe will restrict ourselves to Maxwell molecules.
models that replace the Boltzmann collision operator with a ~ The corresponding balance equations associated with
more tractable operator that retains the essential features Bf, U, andT define the dissipative fluxes of mass
the exact one, such as the conservation laws. In the case of a
binary mixture, a popular model is the one proposed by JS=J dvmg(v—u)fs=pg(us—u), (9)
Gross and KrookGK).” The GK model is given by the set of
two equations: momentum(pressure tenspr
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2 2 actual Boltzmann equation. Nevertheless, in some cases the
P=> | dvmgv—u)(v—u)fs=>, P, (100  GK model can be explicitly solved. One of them is the so-
s=1 s=1 called uniform shear flowUSP.*!? The USF state is a pla-
and energyheat flux nar flow where the only nonzero hydrodynamic gradient cor-
2 responds to th& component of the flow velocities along the
m i
q:E dV7S(V— U)Z(V— u)fs. (11) y direction:
s=1
Usyi:Ui:aijr]‘ y aij=a5ixﬁjy, (17)

These fluxes define the relevant transport coefficients of the

mixture. In particular, in a mixture the presence of a concena being the constant shear rate. This parametéich may
tration gradient not only induces a mass current but also &e arbitrarily largg measures the distance of the mixture
heat flux. According to linear irreversible thermodynamics,from equilibrium. This state is generated by a periodic
the macroscopic linear relations governing such fluxes in &oundary condition in the Lagrangian frarieThese bound-

binary mixture can be written &s ary conditions induce viscous heating so that the temperature
increases in time. In order to prevent this effect, it is usual in
Jo=— MM DoVng (12 ~ computer experiments to introduce external forces which re-

move the heat at the same rate as it is produced. The simplest

2 choice (which is based on Gauss’ principle of least con-

5 J k L : .
Jo=9— EkBTE == LPLOan_ (13 §tramt) is a nonconservative flo4rce proportional to the pecu-
s=1 Mg p1p2 liar velocity Vi=v;—a;r;, i.e.,
In writting these equations, for simplicity, we have assumed  g_ _ ., v (18)
S )

that n and T are constants and have chosenv[(u;

— o)/ T=—(kgp/p1p2) VN, as the force conjugate tds  where the thermostat parameteris adjusted to maintain a
andJ,, us being the chemical potential of specedn Egs.  constant temperature. In the case of Maxwell molecules, it is
(12) and (13), we have introduced the mutual diffusion co- important to remark that in the USF problem there is an
efficient Dy and the Dufour coefficierit,. Microscopic ex- exact equivalence between the results obtained with and
pressions for these coefficients can be obtained from the GMithout a thermostat forc®:®® In addition, the uniform
model by using, for instance, the Chapman—Enskoghear flow becomes spatially homogeneous in the frame
expansiort. In this case, it is easy to get the following re- moving with the flow velocityu. Thus, in this frame the

sults: velocity distribution function adopts the fornfg(r,v)
=f4(V).
DO:kB_T, (14) Under the above-mentioned conditions, the set of GK
nr equationg1) and(2) becomes
LOZO, (15) J
where _a_\h(aijvj"_avi)fl:_Vll(fl_fll)_vlz(fl_flz)
mim; vy (19

T m;+m, n_2 (16) and a similar equation holds fd,. To get the rheological

The fact that the Dufour coefficient vanishes is due to thé:)ropertles O.f the mixture it is convgment o defme.the re-
. . . . : duced velocity moments corresponding to each species. They
interaction potential considerg®laxwell moleculey since

this result is identical to the one obtained from the Boltz-are defined as

mann equation for Maxwell molecules. For more general in- 1 [ 2kgT) ~(HAk+1+m) o
teraction potentials, the Boltzmann equation leads to addi- Mk,l,m:n_( m ) jdV ViV (V),
tional crossed contributions to the heat fiiwith respect to ! ! (20)
the diffusion coefficient, it has the same structure as the one
obtained from the Boltzmann equation. As a matter of fact, 1 (2kgT)~M2k+I+m)

i ; ; Ny m=— dVv VRV VE (V)
Eqg. (14) coincides with the Boltzmann result if one conve- k,I,m N, m, xVyVz T2(V).
niently adjusts the constawt appearing in the definition of (21

v1o, Cf. EQ.(8). In this case, ifA=1.69r, the mutual diffu- o )
sion coefficient given by the GK model is the same as thERecz_ently, explicit expressions of these moments have been
one given from the Boltzmann equatidrdenceforth, we obtained’ They are given by

will take this choice for the constait k
Migim= 2 q—arr (- @) vt (k1 +m)a] =79
I1l. UNIFORM SHEAR FLOW IN A BINARY MIXTURE d=o (k=q)!
The fact that the distributionf,s depend on space and XA g+ gl xR ppy MR
time through their dependence on the densities, velocities, 22)

and temperature@vhich are functionals of the actual distri-
butionsf) makes the GK equation more nonlinear than thewhere
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Ak,l,m a ZF( 2 ( 2 2 ) (23)
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Since all the velocity moments and the distribution func-
tions of the GK equation in the steady USF problem are
explicitly known, we are in a position to evaluate the diffu-

if (k,I,m) are even, being zero otherwise. Further, we havesion and Dufour coefficients when the mixture is strongly

introduced the quantities

3a(v,+2a)?—a’y, -1

Ty
TV 2 2
V12(1+5)[3(V1+26l) +2a. ]

Xlz?

(24)

vi=vt e, M=u/(1+p)?  and xp=T/T=x;
+2M(1+6)(1—x1). In these expressiongy=m;/m, is

sheared. This will be done in Sec. IV.

IV. SHEAR-RATE DEPENDENT TRANSPORT
COEFFICIENTS

In this section we are interested in studying what is the

the mass ratio, and=n, /n, is the concentration ratio. The effect of the shear flow on the mass and heat fluxes in the

momentsNy | ,, can be easily obtained from E(R2) by the
adequate changegi—u ", 6~6 1 ki ky,. Finally,

limit of small concentration gradients. In this case, one ex-
pects that the above-mentioned fluxes are still proportional to

the thermostat parametercan be obtained from the consis- the concentration gradient, Eqd.2) and(13), although the

tency condition:—(1— x4) 8+ x»,=1. This leads to a sixth-
degree algebraic equation, whose largesa) root givesa

coefficientsDy andL, must be replaced by their correspond-
ing shear-rate dependent mutual diffusion and Dufour ten-

as a function of the shear rate and the parameters of thg0rs, respectively. The presence of new transport coefficients

mixture. However, from a practical point of view, it is con-

venient to takew as independent variablenstead ofa) and
express the shear rate in termsaofThe result is

a’=—3(P+(P-4Q), (25
where
- 3 .
P= v1vo(1+8) —2M{(Svy+ 1)) {4a°(1+6)(2M¢

— 11— 1) A’ [ML(Svy+vp) —2v11,(1+ 6)]

+ a[2M {(6v3+ v3) — AM {vivyp(1+ 6)

—{v1va(v1+ 1) (14 8) |- M v vy(vy+ 6vy)},
(26)

B 9a(1+ 8)(a+ (M) (2a+v)?(2a+v,)?
B v1vo(1+ 8)—2M{(Svy+ 1) ’

(27)

with {=(n/n,)v,,. According to Eqs(22)—(27), it is appar-

(which do no exist for hydrodynamics near equilibriuim a
consequence of the anisotropy introduced in the fluid by the
presence of the shear flow. The evaluation of the above-
mentioned tensors is the main goal of this paper.

Let us assume that we perturb the steady USF by intro-
ducing a weak concentration gradieNtng. On physical
grounds, we also assume that the total densépd tempera-
tureT are constant. As a consequence, the concentration gra-
dients are not independent but satisfy the relatdn;
=—Vn,. These are the typical experimental conditions for
measuring the mutual diffusion coefficient in a binary mix-
ture close to equilibrium. At a kinetic level, we will look for
solutions in which all the space dependence occurs through a
functional dependence on the densities since the space
dependence on the flow velocity is completely absorbed by
the peculiar velocity/. In other words, we look fonormal
solutions of the formfy(r,v)="fs(n.(r),ny(r);V). There-
fore, in the steady state, the set of GK Boltzmann equations
are obtained from Eqg1) and(2) by

14
ent that the moments exhibit a highly nonlinear dependence- W(a‘JVJ+ aVi)fi+(Vi+ar;) Wfﬁ vifq
i i

on all the parameters of the problem, i.&.,u, 6, andx,s.

The shear-rate dependence of the second-degree moments =vy,f 11+ viof 1o,

(29

presents an excellent agreement with the one obtained from

the Boltzmann equatioh.

The use of a kinetic model allows us to derive the ex-

plicit expressions of the velocity distribution functiofig.

This is one of the main advantages of using kinetic model

In the steady shear flow state, the distributibn can be
written as fy(V)=n;(my/2kgT)%%g,(£€), where &
=(my/2kgT)Y?/ and the reduced distributiogy is

91(5)27773/210 dre*(y:_*Sa)T[VllXIS/Z

Xexp( — x; €2V TET &) + vy
X exp(— x5 €2 EL 8]

Here, I', is the matrix defined a§;(7)= 3, +a’r*s,d;,
+ar(ix )yt diydjx). According to(28), g; has a highly
nonlinear dependence on the parameters of the problem.

(28)

and similarly forf,. Here, we have introduced again the
thermostat forc€18) to keep the temperature constant. In the
following we will focus on the properties of species 1. In the
same spirit as the usual Chapman—Enskog expansies,
solve Eq.(29) by means of an expansion in powersWh,

but taking the pure shear flow distributi¢®8) as the zeroth-
order approximation. This is the main feature of our method.

Thus, we write

fi=fO 4L (30)

wheref{¥) is of orderk in Vn, but retains all the hydrody-
namic orders in the shear rate. The distribution funcfi
is the same as in E28) except that now the densitieg are
nonuniform. In this paper, we will only consider the first
order of the expansion.

In this first-order approximation, the kinetic equation of
() becomes
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J (1)
&V — (@jV;+aV)f+(V, +a”rJ)

f<°>+u fi
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Equation(37) implies that, in order to keep the mixture in a
steady state, the concentration gradient must be orthogonal to
the direction of the shear flow, i.ein,;/dx=0. On the other

=vf P +vfY, (31)  hand, according to E(38), only in the case that the total
where pressure tensor is uniform the velocity field is not perturbed
by the presence of the concentration gradiena=0, P(O)
1 =nkgT ;= const, sau")=0. For nonzero shear rates, there
iy E— OO (32  are only two limit cases for whicR(® is constant: the case
N1kgTy of mechanically equivalent particls (u=1, xj;=xp,
=k, and the tracer limit if;<n,).'” In both cases, the
eV 1 1_5V-3(1)+ 1+M5V‘u<1))f(°) pressure tensor can be written B =nksTF(a), F(a)
2 nkeTp\ M 1ep T TP I, 12> being a nonlinear function of theonstantshear rate. Be-
(33 yond these limit cases the pressure tensor depends on space
. ) through its depen.den.ce on the pgrtial densities, and conse-
f-(-o):n-( i exy{ _ m;V (34) quently the velocity field is modified by the concentration
: "\ 27kgT;; 2kgTij)’ gradient. The solution to E¢38) is
and 1 Q| 9
Ui(l):_ﬁ( ik‘;lk a_rjpffj))' (39)
3(11)2 mlf dv Vf(ll) . (39 We are interested in computing the mass and heat fluxes.

At this order, taking into account relatio®) and(11), they

The quantityJ{") represents the mass flux of species 1 withare given, respectively, by

respect to a reference frame moving with the linear velocity
profile ui(°)= a;jr;. As we will see later, the linear shear flow
can be disturbed by the presence of the concentration gradi-
ent. For this reason, we have introduced the first-order per-
turbation to the velocity of the mixtung‘®), which is defined

as

ud=3®

I =m, f dvVfV—p, —pul, (40)

m 3
TSJ deZVifS)—Epui(l)—Pi(jO)ul(l)

3
PP @D

>
2
-3

where the partial contrlbutloqgl) to the heat flux is defined
To first order in the expansion the conservation laws of masgg

and momentum imply that

u<1>—p 2 fdvm Vi, (36)
&

m
p == J dvV2Vi. (42)
aijrjﬁrh:o, (37) -
' In order to get the fluxed{) andq?, it is convenient to
14 introduce the dimensionless momeMﬁﬁ m- They are simi-
au +aulV=— p aTkP‘(‘?)' (38) larly defined as in Eq(20), but settingf{!) instead off; .

The corresponding hierarchy that such moments obey can be
whereP(® refers to the total pressure tensor of the mixtureobtained by multiplying both sides of E¢31) by v';v;,v;“

in the USF, whose expression can be readily obtained fromand integrating over the velocity space. Thus, one finds that
Eq. (22) and its counterpart fof(zo), but will be omitted. In
addition, in writting such balance equations we have taken
into account thaP{"=0 sincef{! is an odd function otv.  where

akM(kl—)lJ +1mt[vita(k+1+m)]M (k,ll),m: Reim, (43

Rim=—¢1+(1+ 5)5 }(Mkl+1m61y+Mkl mi1€12)+ 20 PR MIUIA mM100+AkI+1mM010
+Aknm4Mooﬂ+2————u. 8) v1ax 32 T TIAG 11 mM TG 0T Akt + 1mM 6 0T At m+ 1M 69 1]
no

12)(k+1 -
TM(1+ 5)2V12X(1]é Jerbem l)[Ak+1,I,mAxy€l,y+Ak,I+1,mAyy51,y+Ak,l,m+lAzz€1,z]- (44)
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Here, M(k(,’,)'m refers to the moments of the pure USF state  Equation(47) is still formal since we need to know the
given by Eq.(22) and we have introduced the reduced con-first degree moments, which are related to the f{i. Af-

centration gradient ter some manipulations, it is easy to see that these moments
2kgT)| 21 are given hy
El:( ) —Vin Nq, (45)
1 4
and the dimensionless tensor MG o= —Dyyery ., (48)
1 ¢ ( Q| 9
Aij=—==| 8= —| =P (46) ~
g nkBT o : (95 ] ME)%()),].: - DZZEJ.,Z’ (49)
The solution to Eq(43) can be written as
Kok M® = —Dyye (50)
MG =2 e (—a) vyt (ke +m)a] 49 oo Hythy
oM g=0 (k—0q)!
XRy_qi+qm- (47)  where
|
d| o .1 5
(w144 9) 855 Mo, ot 5 du(1+ 8)2v1oA
Dyy=Dz= (1+p)atvi1+op) ’ BB
|
_ 1 Figures 1 and 2 show the dependence of the reduced
Dyy= 2[(1+ m)at i1+ 6p)] diffusion tensorDi’j =Dj;/Dg on the reduced shear raté

=a/§ for 5En1/n2:5, K11= K22= K12, and ,(LEmllmz
=0.5, and 2. The behavior f@&<1 can be easily inferred by
taking into account thab;; is invariant under the changes
5 wep t 5671 and ke k. We have also included
1+(1+ 5)5(9_5},\/'(0) ] (52) the results obtained from the Boltzmann equaﬁ%We ob-

x[ 8(1+ 8)2uviph —2a(1+ u)Dy,

+2(1+ o itati
(1+w)¢ 11O serve that the GK predictions present a qualitative good

agreement with the Boltzmann ones, especially when the
mass of the excess component is larger than that of the defect
component. The influence of the shear flow on the mass
transport is quite significant in the region of shear rates ana-
i m;m,n d lyzed. In the case dDy, , we see that this element decreases
Jii=- Dij=—n1, (33 as the shear rate increases so that the presence of the shear
’ P &rJ p

From Egs.(40), and (48—(52), the mass flux){) can be
finally obtained. It can be written in the form of a general-
ized Fick's law, Eq.(12),

with a mutual diffusion tensor given by

l 1+M6~ 1.0 N T T T T T T T T

D”':Dom ZmDij_M(s(l"_‘S)Aij , (549) Dyy Os» \\\\\
D, being the mutual diffusion coefficient at equilibrium, Eq. ““:\ ks
(14). According to Eq.(54), D,,=D,=D,,=0, which is 06 L \\\\\
consistent with the symmetry of the problem. In addition,
sincedn, /9x=0, the only relevant components of this tensor o4l e k=2
areD,,=D,, andD,,. They are nonlinear functions of the
shear rate and the parameters of the mixtyse 8, x11/ 12, sk
and k,,/ k1. Whena=0, D;;=D6;; and one gets the ex- ' “\‘{71 .....
pected result. For small shear ratés, ~D,—D{?a® and o _ w=05
Dyy~—D{)a, whereD{?) andD{}) depend on the param- “ho s 10 s 20 25 30

eters of the mixture. Notice that the equalRy,,=Ps ,,,
which is also present in the case of the exact Boltzmann
equationl,o implies thatDyy= D,,. This is probably a pecu- FIG. 1. Plot of the reduced diagonal element of the diffusion telﬁ!{@,r

liarity of the Maxwell interaction since Monte Carlo  Dyy/Do as afunction of the reduced shear rafe=a/¢ for «i= Kz
. iond® f dilut inal f hard h h =K1z, 0=nNy/N,=5, and,u=m1_/m2—0.5, and,u‘—2. The solid lines cor-
simulations® for a dilute single gas of hard spheres s OWrespond to the GK results while the dashed lines refer to the Boltzmann

thatPg yy# Ps 5, results.
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14 T T T T T T 0.15 T T T T T T T
D * | H = 0.5 AR *
12 p N L. om0
10r 4 T T N ——
=2 S i 0.05
0.8 - r‘, /'/ \\\\‘~‘
4/ 0.00
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0.4 F /
5=15
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a

FIG. 4. Plot of the reduced diagonal element of the Dufour teh$pas a
function of the reduced shear raa& =a/{ for k1= kpo=kK1, 6=n1/N,
=5, andu=m;/m,=0.5, andu=2.

FIG. 2. Plot of the reduced diagonal element of the diffusion telﬁli@,r
=—-D,,/Dg as a function of the reduced shear rate=a/{ for x1;= x5,

=Ky, 6=n,/n,=5, andu=m; /m,=0.5, andu=2. The solid lines cor-
respond to the GK results while the dashed lines refer to the Boltzmann

results.
given by Eq.(41) and its counterpart. The flux@® can be

flow inhibits the mass transport along the direction of theoptgmed "0”.‘(47) after some simple algebra and their ex
. . . o plicit expressions are given in the Appendix. By collecting
gradient of the flow velocity(y axis). This inhibition be- I . .
o L -all the contributions coming from both species, the flyx
comes more significant when the defect species is heavier : .
. o can be obtained and consequently, the generalized Dufour
than the excess species. The compome,*[y (which is zero . o : :
) : tensorL identified. The calculation of such tensor is one of
in the absence of shear flp\gives the mass flux along the . . . o .
e . . ; the main achievements of this paper. Its explicit expression
direction due to a concentration gradient along yhdirec-
tion. It can be seen as a measure of the anisotropy generated

in the system by the action of the shear field. It is negative kT2 p1p> w(l+6)3
i is quite simi C LT | 2 e -
and its dependence on the shear rate is quite similar, regard T my p i ij 1+ud
less of which mass ratio considered: for small shear rates 5
— D}, increases witla* while the opposite happens for large « §A4 PO | A SA-pHA+H
shear rates. As noted in the previous Boltzmann wWotke 2 kT Tk K2 1+us Ik

dependence dD;; on a found here agrees qualitatively well (55)
with the one observed in molecular dynamics simulatidns
in a strongly shearing Lennard-Jones binary mixture. where P{?)"=P{®/nksT and the nonzero elements of the
Once the mass fluxed") have been obtained, all the tensorX are given in the Appendix.

velocity moments of () can be explicitly determined from In the same way as the diffusion tensor, the terisbas
Eq.(47) and its corresponding counterpart for the componenthree relevant elements: two diagonalg,, andL,,, and

2. An interesting moment corresponds to the heat flux creone off-diagonal,, . However, in contrast td, its diagonal
ated by the gradient of concentration. The total heat flux iglements are different, which is a consequence of the high
qW=qM+q$" where the partial contributiong) are  anisotropy induced by the shear field. For zero shear rate,

0.6 T T T T T T
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FIG. 5. Plot of the reduced off-diagonal element of the Dufour tersbf,
as a function of the reduced shear ra&=al/{ for k1= ky=kK1p, O
=n,/n,=5, andu=m; /m,=0.5, andu=2.

FIG. 3. Plot of the reduced diagonal element of the Dufour teh$9las a
function of the reduced shear raaé =a/{ for k1= k=K1, 6=n1/nN,
=5, andu=m,;/m,=0.5, andu=2.
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one gets the well-known result for Maxwell binary mixtures results apply to arbitrary values of masses, concentrations,
near equilibrium, i.e.L;; =03 Also, if u=1, the result is and force constants. The solution has been obtained from a
againL;; =0 even fora+0. In the limit of small shear rates, generalization of the usual Chapman—Enskog métidubre
LH% LPa?, L,~L%a? andL,~-L{)a, whereL{),  the reference state corresponds to the stationary shear flow
LD, andL{} are nonlinear functions of the mass ratio, thedistributior? instead of the local equilibrium distribution. In
concentration ratio, and the potential parameters. In order tthe first-order approximation, we explicitly get the diffusion
illustrate the dependence of the Dufour tensoraoand the  D;; and Dufourl;; tensors. These results extend previous
parameters of the mixture, it is convenient to reduce it in avorks done in the limit cases of mechanically equivalent
proper way. Here, we define the dimensionless Dufour tensgparticles® and tracer particle¥’ '
L* as In the special case of Maxwell molecules, it is well
mm, ¢ p known that for a dilute binary mixture the h?at flox=0in
i*].: 5 i - (56)  the absence of shear flowThe results obtained here show
my+m; KeT* p1p2 that the shearing induces a nonzero heat flux proportional to
The reduced tensd.ri’} possesses the same invariant properihe concentration gradient even for the Maxwell interaction.
ties as the Dufour tensdr;; . In Figs. 3, 4, and 5, we plot Furthermore, the mass flux is highly disturbed with respect
L;,‘y, L%, and L;’y as a function ofa*, respectively. We 1o its equilibrium value. In general, the nonzero elements of
consider agaim="5, k1;= k= K15, and the same values of the mutual diffusion and Dufour tensors present a complex
the mass ratio as before, namely=0.5 andu=2. To the  nonlinear dependence on the shear rate and the parameters of
best of our knowledge, we are not aware of any previoughe mixture and, in particular, cross effects in the transport of
simulation or calculation of this tensor so that no comparisorinass and energy are generated by the presence of the shear
is possible at this stage. As Figs. 3—-5 show, the variou§ow. For instance, there exist nonzero contributions toxthe
Componentii"j are nonmonotonic functions af*, reaching component of the mass and heat fluxes due to a concentra-
either a maximum or a minimum for a given value of thetion gradient along thg direction. Concerning the diffusion
shear rate. Note that depending on the value of the maggnsor,Dy,=D,, and D,,<0. The net effect of the shear
ratio, the shear-rate dependent components of the generalizégld on the transport of mass is to inhibit the transport of
Dufour tensor may either be negative or positive. particles along the direction of the flow velocity axis). In
the case ok direction, — D, is not a monotonic function of
the shear rate and has a maximum for a given valua*of
These results agree with those obtained from the Boltzmann
In a binary mixture, the presence of a concentration graequation® and from molecular dynamics simulations of
dient induces mass and heat fluxes. Both fluxes define twdense mixture$®
relevant transport coefficients: the mutual diffusion coeffi-  With respect to the Dufour tensor, the results show that
cient and the Dufour coefficient. While the description ofin the presence of the shear fldw,#L,,, thatL;;=0 both
such processes is well developed when the mixture is closir a=0 or w=1, and that depending on the mass ratio the
to equilibrium, much less is known when the system is farL;;, which are nonmonotonic functions of the shear rate,
from equilibrium. In particular, an interesting question is may be either positive or negative, reaching a maximum or
how the diffusion and Dufour transport coefficients are af-minimum for givena*. It is interesting to point out that the
fected by the action of a shear field with arbitrary strength. Inquestion of the sign of the componeritg is not, in prin-
this paper we have addressed this question in the context efple, at odds with the second law of thermodynamics. None-
a dilute binary mixture where the Boltzmann equation pro-theless, the actual proof of the compatibility of this feature
vides a controlled formulation of the problem. However, duewith irreversible thermodynamics would involve the verifi-
to the complex mathematical structure of this equation, thereation of an inequality that generalizes E&21) in Ref. 1 to
are still difficulties for practical applications, so a kinetic the case of tensorial thermal conductivity, diffusion, and
model has been used to allow a detailed analysis. Specifthermal diffusion. This verification is not feasible at this
cally, we have considered the GK model of the Boltzmannstage due to the fact that neither the precise inequality nor
equation whose reliability has been shown in the past fewthe shear dependent thermal conductivity for the mixture are
years in different problem¥.?° presently available. But the point is certainly interesting and
The physical situation is such that a linear profile of thewe may address it in the future. To provide a proper perspec-
x component of the flow velocity along thedirection coex-  tive in which the importance of the calculations involvibg
ists with a weak concentration gradient. Tleenstantshear may be further assessed, the following comments are in or-
rate is arbitrary so that the mass flixand the heat flud,  der. As said before, to our knowledge this is the first deriva-
can be modified by the shear flow. In addition, thermostation of an explicit expression of the shear-rate dependent
forces are introduced to prevent the viscous heating effeddufour tensor. It could be argued that consideration of Max-
and get an stationary state. Under these conditiyandJ,  well molecules somewhat restricts the usefulness of such an
are still proportional to the concentration gradient but theexpression. However, it is important to remark that this
diffusion and Dufour coefficients become shear-rate depenchoice was motivated by the fact that, in the absence of shear
dent tensors. The determination of these tensors in the cafiew, the GK model yieldsalwaysa zero Dufour coefficient
of Maxwell molecules has been the objective of this paperirrespective of the intermolecular potential, whereas the
Apart from the limitation of the interaction considered, our Boltzmann equation only does it for the case of Maxwell

V. DISCUSSION
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molecules. Therefore it seemed only natural to consider a 1 2a2+ Zi
potential in which the correct Dufour coefficient is obtained El,yyZZ—A M@ o+ M8 o+ —— A0
at zero shear rate. On the other hand, at least for repulsive ! g
potentials, our previous findinfjmdicate that other transport 2a (52§+6a2)5 —2azD,
coefficients are rather insensitive to the choice of the power -—M9 0} +A; A y
law and on these grounds we would expect this also to be the a 2(1+mzy
case for the Dufour tensor. (523+6a%) A, —2az;A
The results reported here can also be of relevance in 1 A1+ )7 , (A3)
connection with computer simulations. We have already Ke
mentioned the simulation performed by Sarman, Evans, and 1 2a%+ 72
Baranyat® to analyze the shear rate dependence of the mu- 21,ZZ=Z—A[ M5 o+ M s+ —=—M3 5
tual diffusion tensor of a dense mixture. Nevertheless, when ! 1
one extrapolates our definition of the collision frequedidy 2a © 52§+ 2a2 _
dense fluids, one estimates that the shear rates applied in this — 7 Mii, +A1m D,
simulation are not large enough to clearly observe nonlinear ! e
effects. In the case of the Dufour tensor no simulation data 5z§+ 2a2
are known to date, even for dense systems. As we have in- 1WAH- (A4)
dicated in previous works, one possibility to overcome the !
difficulties inherent to molecular dynamics to achieve largeHere, we have introduced the operator
shear rates in the low density regime is to use the direct P
simulation Monte Carlo methat. We hope that the results A[g(8)]=|1+8(1+6) —)g(é), (A5)
derived here for the mutual diffusion and Dufour tensors 38
stimulates the performance of computer simulations to checknd the quantities
the accuracy of our predictions. 2,= v+ 3a, (A6)
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APPENDIX: PARTIAL CONTRIBUTIONS TO THE HEAT
FLUX

In this appendix we explicitly write the nonzero ele-
mentsLy, L,,, andL,, of the Dufour tensol. First, the

partial contributions to the heat fli{* can be written as
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no| e
where the relevant elements Bf are given by
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