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Monte Carlo simulation of nonlinear Couette flow in a dilute gas
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The direct simulation Monte Carlo method is applied to solve the Boltzmann equation in the steady
planar Couette flow for Maxwell molecules and hard spheres. Nonequilibrium boundary conditions
based on the solution of the Bhatnagar—Gross—Kr@&K) model for the Couette flow are
employed to diminish the influence of finite-size effects. Non-Newtonian properties are
characterized by five independent generalized transport coefficients: a viscosity function, a thermal
conductivity function, two viscometric functions, and a cross coefficient measuring the heat flux
orthogonal to the thermal gradient. These coefficients depend nonlinearly on the shear rate. The
simulation results are compared with theoretical predictions given by the Grad method and the BGK
and the ellipsoidal statisticadES) models. It is found that the kinetic models present a good
agreement with the simulation, especially in the case of the ES model, while the Grad method is
only qualitatively reliable for the momentum transport. In addition, the velocity distribution function

is also measured and compared with the BGK and ES distribution20@ American Institute of
Physics[S1070-663100)00811-4

I. INTRODUCTION au,
. . . Pyx= I:’yy: P22, ny: - 7700-,_1 (3
One of the most interesting states for analyzing transport y
processes far from equilibrium is the steady planar Couette
flow. The physical situation corresponds to a system en- oT
closed between two infinite, parallel plates in relative motion ~ dx=0, dy=— Kow. (4)

and, in general, kept at different temperatures. These bound
ary conditions lead to combined heat and momentum trans- ) )

port. If x andy denote the coordinates parallel to the flow andWhere 7o and «o are the NS shear viscosity and thermal
orthogonal to the plates, respectively, then the correspondin nductivity coefficients, respectively. As a consequence of

steady hydrodynamic balance equations are the absence of normal stress differences in the NS descrip-
tion, the hydrostatic pressurp=(Py+Py,+P,)/3 is a
IP P constant, on account of balance equatibn
Xy yy . . . . .
Y (9—z0, (1) Even in the linear regime described by the NS equations,
y y one still needs to know the spatial dependence of the trans-
port coefficients to obtain the exact solution of the hydrody-
. %jL ﬁzo, 2) namic equations. The problem becomes tractable in the case
Yoy = oy of a low density gas, where the state of the system is com-

R pletely specified by the velocity distribution function
whereu=u,x is the flow velocity,P is the pressure tensor, f(r,v;t), which obeys the Boltzmann equatibm relevant
andq=qg,x+ qy§/ is the heat flux. The presence @f in Eq.  dimensionless quantity in a dilute gas is the Knudsen number
(2) indicates that a thermal gradie#it/dy is induced by the Kn=\/I,,, defined as the ratio of the mean free patto the
velocity gradient, even if both plates are kept at the samé&cale length of the hydrodynamic gradiehts In many labo-
temperature. The balance equatighsand(2) do not con-  ratory conditions, Kre1 and so the Boltzmann equation can
stitute a closed set unless the dependence of the pressure solved by means of the Chapman—Enskog method as an
tensor and the heat flux on the hydrodynamic fields isexpansion of the distribution function in powers of the Knud-
known. If the gradients are small, the fluxBsandq are  sen numbef. The zeroth-order approximation leads to the
described by the Navier—Stoké€NS) constitutive relations, Euler hydrodynamic equations, while the first-order approxi-
which in this problem yield mation yields the NS equations with explicit expressions for

the transport coefficientg, and k. The results show that
JElectronic mail: jmm@unex.es the ratio 4/ kg is a constant. Consequently, it then follows
bEJectronic mail: andres@unex.es from the NS hydrodynamic equatiori$)—(4) that the flow
®Electronic mail: vicenteg@unex.es velocity profile is quasilinear,
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Ay puter simulations. In the first alternative, explicit expressions
705 ay =const, (5 for the nonlinear transport coefficients in the Couette flow
have been obtained from exact solutions of the Bhatnagar—
and the temperature is quasiparabolic, Gross—Krook BGK) modef® and related modefs® for gen-
g\2 Ko au, e_raI intc_aracti_ons, as well as from the Grad methdth th_e
(KOW) T=— 77_< 7o &y) — const (6)  simulation side, Risso and Cordétcave recently studied

the shear-rate dependencefof and F, by means of mo-
Note that the profile ofi, is not strictly linear, due to the lecular dynamics simulations of a hard disk gas. Comparison
space dependence OfO through the temperature_ Analo- between the different analytical results with those obtained
gously, the temperature profile is not strictly quadratic. Infrom the simulation shows that the predictions given by ki-
fact, the specific form of both profiles depends on the interhetic models are in better agreement than those given by the
action potential under consideration. On the other hand, frorferad method, especially in the case of the thermal
Egs.(5) and(6) it is easy to derive a nice result, namely that conduct|V|ty Nevertheless, given the difficulties associated
if the temperaturd is seen as a function of, rather than as  With molecular dynamics simulations to achieve large shear

a function of the coordinate spagethen one has rates in a dilute gas, the above comparison is restricted to a
range of shear rates for which non-Newtonian effects are

T 7o hardly significant. For instance, the shear viscosity has only
(?_L])Z(:_K_O' (7 decreased around 10% with respect to its Navier—Stokes

value for the largest value of the shear rate considered by
This is a sort of nonequilibrium “equation of state,” accord- Risso and Cordert. In order to overcome such difficulties
ing to which the temperature is a quadratic function of theand extend the range of values af one may use the so-
flow velocity. Moreover, the “curvature” of the profile is called direct simulation Monte CarléDSMC) method!!
practically universal, given the weak influence of the inter-which is known to qualify as an efficient and accurate
action potential on the Prandtl number=5kg 70/2mko=3, method to numerically solve the Boltzmann equation.
wherekg is the Boltzmann constant amd is the mass of a The aim of this paper is to solve the Boltzmann equation
particle. by means of the DSMC method for a gas subjected to the
Since the mean free path is inversely proportional to theplanar Couette flow. The motivation of this work is twofold.
density, the Knudsen number, at a given value of the scal®n the one hand, we want to test the reliability of the far
length I,,, increases as the gas becomes more rarefied. linom equilibrium results obtained from kinetic models and
general, when the Knudsen number is not small, the NS rethe Grad method by making a comparison with the Boltz-
lations are not expected to hold and the transport must bmann solution in the case of Maxwell molecules, for which
described by nonlinear constitutive equations. In the specighe form of the hydrodynamic profiles in the bulk regidar
case of Maxwell moleculegparticles interacting via an~*  from the boundarigsis known. We will determine not only
potentia), it has been showhf that the Boltzmann equation the hydrodynamic profiles but also the nonlinear transport
admits a consistent solution in thr@nlinear Couette flow  coefficients and the velocity distribution function. On the
characterized by a constant presspirend profiles similar to  other hand, we want to investigate whether the above-
those obtained in the NS regime, E®—(7), except thaty, mentioned results for a system of Maxwell molecules extend
and ko are replaced by a generalized shear viscosity coeffito other interaction potentials. This extension holds when the
cient n(a) = 7oF ,(a) and a generalized thermal conductiv- Boltzmann equation is replaced by kinetic models where, in
ity coefficient « (a)=«oF.(a), respectively. Here,a  terms of a conveniently scaled space variable, all the results
=(mo/p)duy/dy is a constantdimensionlessshear rate and are independent of the interaction law. Thus, we will also
F, and F, are nonlinear functions o& In addition, P,,  solve numerically the Boltzmann equation by the DSMC
+* pyy;e PZZ and g,#0. In this problem, the hydrodynamic method for a hard-sphere gas.
scale length can be identified &g~ VkgT/m(du,/ay) 1, Since we are interested in describing transport properties
while the mean free path s~ kgT/m(7y/p). Thus, the in the bulk region, i.e., free from finite-size effects, we need
reduced shear rat represents the Knudsen number in thisto use appropriate boundary conditions in the simulations. In
problem, i.e.,a~Kn. Henceforth, we will use the reduced the conventional boundary conditiots!?the gas is assumed
shear rate to refer to the Knudsen number Kn. The solution to be enclosed between two bathseguilibrium in relative
considered in Refs. 3 and 4 describes heat and momentumotion and, in general, at different temperatures. Under
transport for arbitrary velocity and thermal gradients in thethese conditions, a particle leaving the system is formally
bulk domain, where boundary effects are negligible. On thaeplaced by a particle coming from the bath, so the incoming
other hand, the full nonlinear dependence Fof(a) and  velocity is sampled from a local equilibrium distribution. As
F.(a) is not explicitly known, since it involves the infinite a consequence, there exists a mismatch between the velocity
hierarchy of moment equations. Their knowledge is limiteddistribution function of the reemitted particles and that of
to super-Burnett order and the result® i {@8)=1  those particles of the gas located near the wall and moving
—3.111a% andF ,(a)=1—7.25%>. along the same direction. In this case, in order to inhibit the
Consequently, if one wants to get the transport properinfluence of boundary effects one needs to take very large
ties for arbitrary values of the shear rate and the thermadystems(normal distance between the plates much larger
gradient, one must resort to approximate schemes or to conthan the mean free pathwhich is not practical from a com-
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putational point of view. To overcome this difficulty, a pos- and the momentum and heat fluxes

sibility is to assume that both baths are out of equilibrium in

a state close to that of the actual gas. Since such a state is not p= mf dv VT, (13)
known “a priori,” in this paper we assume that the state of

the baths is described by the BGK solution of the planar m

Couette flow? Although the boundary effects are still un- g= EJ dv V2Vf. (14)
avoidable, we expect that the above-mentioned mismatch be-

tween reemitted and gas particles will be much smaller. As &lere,n is the number density is the flow velocity,T is the
matter of fact, the use of these conditions has been shown temperaturep is the pressure tensag,is the heat flux, and
be appropriate to analyze bulk transport properties in the/ =v—u is the peculiar velocity. In addition, the equation of
special case of planar Fourier flofvoth walls at rest3 state is that of an ideal gas, i.@=nkgT.

The plan of the paper is as follows. In Sec. Il we give a  Most of the known solutions to E¢8) for spatially in-
brief description of the planar Couette flow and a summaryjhomogeneous statédxorrespond to the special case of Max-
of the main results obtained from the Boltzmann equatiorwell molecules, namely, a repulsive potential of the form
and kinetic models. The boundary conditions used in the/(r)~r~*. For this potential, the collision ratgl(g,IZ) is
simulations and the DSMC method are described in Sec. lllindependent of the relative velocity and this allows the infi-
Section IV presents the main results of the paper, whereite hierarchy of velocity moments to be recursively solved
special attention is paid to the nonlinear transport coeffiin some specific situations. Furthermore, the NS transport
cients. A comparison with the analytical results derived fromcoefficients 5, and x, can be exactly obtained from the

the BGK and the ellipsoidal statisticdtS) models and from  Chapman—Enskog methédrhey are given by

the Grad method is also carried out. The comparison shows

in general a good agreement of the kinetic models with com- o:B: KO:l_SE 70 (15)
puter simulations, even for large shear rates. In addition, the 4 4 m
velocity distribution function obtained from the simulation in wherev= 6n, 6 being an eigenvalue of the linearized Boltz-
the bulk domain is compared with the ones given by theqann collision operatd®

kinetic models. It is shown again that the agreement is quali- | this paper we are interested in studying the planar

tatively good. We close the paper in Sec. V with some conggette flow for a dilute gas. We consider a gas enclosed
cluding remarks. between two parallel plates in relative motion and main-
tained at different temperatures. Under these conditions, the
system is driven out of equilibrium by the combined action
Il. DESCRIPTION OF THE PROBLEM AND SUMMARY of the velocity and thermal gradients along the direction nor-
OF THEORETICAL RESULTS mal to the plates. After a transient period, the gas is expected

Let us consider a dilute gas. In this case, a kinetic dez0 rea}ch a steady state and the corresponding Boltzmann
quation reads

scription is sufficient to characterize the state of the systen?
by means of the velocity distribution functidtr,v;t). This d
distribution function obeys the nonlinear Boltzmann equa- Uy@f:J[f’f]' (16)

tion, which in the absence of external forces is giveh by _
where we have chosen the ayisas the one normal to the

ﬁ+v-Vf=J[f ] ®) plates. In general, this equation must be solved subjected to
at Y specific boundary conditions. Nevertheless, in the same spirit
where as in the Chapman—Enskog mettfashe may look for “nor-

mal” solutions in which all the space dependence of the
_ - 0 , "o distribution function occurs through a functional dependence
T f dvlf dk gl(g.k)LF(V)T(va) =T (V)T (vy)] on the hydrodynamic fields. The normal solution describes
) the state of the gas in the hydrodynamic regime, namely, for
is the collision operator. In this equatior(g,k) is the dif- times much longer than the mean free time and for distances
ferential cross sectiom=|v—v,| being the relative velocity, from the walls much larger than the mean free path. As men-

and (/',v}) are precollisional velocities yielding postcolli- 10n€d in Sec. |, it has been provetithat, in the case of
sional velocities ¥,v;). From the distribution function, one Maxwell molecules, Eq(16) admits an exact solution corre-

may define the hydrodynamic quantities sponding to the planar Couette flow problem. This solution
belongs to thenormal class, so that no explicit boundary
n:J dv f (10 conditions appear. In other words, all the space dependence
' of f is given through the local density, the local velocity, the

1 local temperature, and their gradients. The solution is char-
u= _f dv Vi, (11)  acterized by hydrodynamic profiles that are a simple gener-

n alization of those predicted by the NS approximation, Egs.
(5)—(7), namely

T nkaT = m 2
nks f dv V7T, (12 p=const, (17
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1 duy be solved step by step when one performs a perturbation
——-=a=const, (18)  expansion in powers of the shear rate. In fact, Tij and S&ntos
v(y) dy ) . _
determined the solution up to super-Burnett order:
1 4 2T 5 2m () 19 , ,
—— —| T=—Pr—1y(a). =1-
W(y) dy Ke Y F,(a)=1-3.11]a°+0(a"), (26)
The dimensionless parametg(a) is a nonlinear func- F.(a)=1-7.25%®%+0O(a%). (27)

tion of the reduced shear ratghat, by construction, behaves
asy~a?/5 in the limita— 0. Again, the temperature can be From Egs.(26) and (27) it follows that y(a)=(a%/5)[1
seen as a quadratic function of the flow velocity, but now the+4.14&2+O(a*]. In addition, F,(a)=1-1.911a
coefficientz,/ ko, appearing in Eq(7) is replaced by a shear- +O(a%).
rate dependent coefficienty§/«o)5y(a)/a. Furthermore, Although the above-given analyses are valuable, they
in this solution the pressure tensor is independent of the thehave two main limitations. On the one hand, they are re-
mal gradient and the heat flux vector is linear in the thermaktricted to the special case of Maxwell molecules. For other
gradient, but all these fluxes are nonlinear functions of thenteraction potentialée.g., hard sphergsthe collisional mo-
shear rate. This nonlinear dependence can be characterizaténts involve all the moments of the distribution function
through five generalized transport coefficients. First, theand, as a consequence, the hydrodynamic profilés-(19)
shear stresB,, defines a generalized shear viscosj) as  are notstrictly true. On the other hand, even for Maxwell
molecules, the above-given perturbative solution is not use-
Uy AUy - >
Pu=—n(a) ——=—noF (a) —. (20  ful for f_|n|te shear rates. These_ two limitations can be over-
ay y come, in the context of analytical methods, by introducing

Analogously, the component of the heat flux parallel to theadditional approximations, such as the Grad mettiat, by

thermal gradient defines a generalized thermal conductivitflescribing the system by means of kinetic modéfs. In
coefficientx,,(a): these approaches, one looks for a solution having the same

hydrodynamic profiles as in the case of the Boltzmann equa-
tion, cf. Egs.(17)—(19). As before, this solution describes the
properties of the system in the bulk region, which is insen-
sitive to the details of the boundary conditions. From the
Grad method and from the BGK and ellipsoidal statistical
?ES) kinetic models, one explicitly gets the full nonlinear
Shear-rate dependence of the transport coefficients in a non-
perturbative way. Moreover, the results armiversal

B 07T_ . oT 21
qy__Kyy(a)Wz_KO K(a)W' (21)

The dimensionless functiorfs, (a) andF ,(a) are the most
relevant quantities of the problem. They are related to th
function y(a) by y(a)zazF,,(a)ISFK(a). Normal stress
differences are different from zero and are measured by twi
viscometric functionst'; J(a) defined by

namely the function§ ,(a), F(a), ... are independent of
Pyy—Pxx ) the interaction potential, provided that the reduced shear rate
- a@)ah (22 is defined as in Eq18) with v=p/ 7,.
The thirteen-moment Grad method consists of replacing
P,,—P istributi
zzp yyzllfz(a)az. 23) the actual distribution by
. . . . m mV?2
Another interesting quantity related to the pressure tensoris  f_.f ¢ 1+ H__l)v.q
the friction coefficientu(a) = — Py, /Py,. To NS order, we n(kgT)2L ! SkeT
simply have u(a)=a. In the non-Newtonian regime, we
generalizg this coefficient as(a)=aF,(a), where the fric- i E(P” _ p5ij)ViVJ} ' (29)
tion functionF ,(a) is 2
F. (a
F (a)= (@) . (24 where
1_[\1}2(3.)_\1,1(3)]3. /3 m 3/2 mV2
Finally, there exists a nonzero component of the heat flux fL=n m) exp{ - 2kBT) (29
orthogonal to the thermal gradient given by
9 9 is the local equilibrium distribution function. When the ap-
qy=— ny(a)WTE_ K0<I>(a)aWT. (25 proximation(28) is inserted into the Boltzmann equati®)

and velocity moments are taken, one gets a closed set of
The three function® ; J(a) and®(a) are generalizations of equations fom, u, P, andqg. According to the geometry of
Burnett coefficients. In fact¥,(0)=—14/5, ¥,(0)=4/5, the planar Couette flow, there are eight independent mo-
and ®(0)=—7/2 for Maxwell molecules and for hard ments instead of the original thirteen moments appearing in
spheres in the first Sonine approximatfoifhe determina- Eq. (28). Risso and Cordet8'® found that the set of inde-
tion of the nonlinear transport coefficients,, F,, ¥, ,, pendent moment equations, neglecting nonlinear terms in the
and® would imply the solution of an infinite hierarchy that fluxes, admits a solution consistent with the profi({@3)—
cannot be solved in a recursive wayhis hierarchy can only  (19). In addition, they obtained explicit expressions for the
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above-introduced transport coefficients as nonlinear func- 2kgT 29 4
tions of the reduced shear raie Those expressions are dis- 62( ) > —InT (39
played in the Appendix.
Now we consider the kinetic model approach. The basids a (local) reduced thermal gradient. Equati¢83) shows
idea is to replace the detailed Boltzmann collision operatothat the distribution function is a highly nonlinear function of
by a much simpler term that otherwise retains the mairthe reduced gradiengsande.
physical properties of the original operattjif,f]. The most In Ref. 9 a comparison between the analytical results
familiar choice is the BGK modé, obtained from the Grad method and the BGK and ES models
with those obtained from molecular dynamics simulati8ns
I = —w(f=10), (30 for hard disks was carried out. It was found that the three

where v is an effective collision frequency that depends ontheories reproduced quite well the simulation data oy,

the temperature, according to the interaction potential. Th&Ut the Grad method failed fd¥, and®. The latter quantity

NS transport coefficients of the BGK model ajg=p/v and  Was reproduced better by the ES model than by the BGK
xo=5pke/2mv. Thus the BGK model has the drawback that Model. Notwithstanding this, more. defln_lte conclusions
it predicts an incorrect value for the Prandtl number=r ~ could not be reached because the simulation data were re-
This is a consequence of the fact theis the only adjustable Stricted to rather small shear rates, nameiy0.2. In this

parameter in the model. This deficiency is corrected by th&2nge of shear rates, non-Newtonian effects are not espe-
so-called ellipsoidal statisticdES) model? in which case cially significant. In addition, although the molecular dynam-
ics simulations correspond to a very dilute gasea fraction

Jf.f]——4(f—1R), (3)  ¢~1%), thecollisional contributions to the transport coef-
ficients (absent in a Boltzmann descriptioare notstrictly
where { is again an effective collision frequency and the zero. Finally, as a minor point, conclusions drawn in the
reference functiorfy is context of two-dimensional systems should not be extrapo-
_ ap 1y 1. lated without caution to the more realistic case of three di-

fr=nm*A(detA)” Yexp —A"1WV), (32) mensions. As said in Sec. |, the aim of this paper is to solve
where A;;=(2kgT/m)Pr ! §;—2(Pr1-1)P; /mn. The numerically the Boltzmann equation by means of the DSMC
NS coefficients are now 7,=p/({ Pr'l) and «, Method for the planar Couette flow and compare the results
=5pkg/2m¢. If, as in Eq.(15), we define a collision fre- With the theoretical predictions. We will consider three-
quencyv = p/ 7o, thenv={¢ Pr ! in the ES model. Note that dimensional systems of Maxwell molecules and hard spheres
the ES model reduces to the BGK model if we formally Subjected to shear rates as largenasl.2. In addition to the
make Pe=1. Therefore, the ES model can be seen as afonlinear transport coefficients, the comparison will be ex-
extension of the BGK model to account for the correcttended to the level of the velocity distribution function itself.
Prandtl number, which can be particularly relevant in the
Couette flow where heat transport and momentum transport
are coupled. The results derived from the BGK and the ES|I. BOUNDARY CONDITIONS AND MONTE CARLO
models for the Couette flow problem are also given in thesjMULATION
Appendix. Apart from obtaining the transport properties, the .
velocity distribution function can be explicitly written. In /- Boundary conditions
particular, the BGK distribution is given By The goal now is to solve numerically the Boltzmann
equation corresponding to the planar Couette flow by using

m

f(r,v)=n m )3/22“(1"' )*? the successful DSMC methddThe gas is enc!osed between
27kgT €l&y two parallel plates located gt=0 andy=L, which are mov-
ty ing along thex direction with veIocitiesU0=U0§< and U_
th df2t—(1—a)t?] 52 =U,_x, respectively. In addition, they are kept at tempera-
0 turesTy, andT_, respectively. In order to solve E(L6), we
20 1—t 1+« need to impose the corresponding boundary conditions. They
xex;{ “17a p: o 2 can be expressed in ter.ms of. the kerrjejﬁ(y,v’) defined
vy 2t=(1-aet as follows. When a particle with velocity hits the wall at
20 1—t)2 y=L, the probability of being reemitted with a velocity
x| | &+ T T) +E+E ] _ (33 within the rangedv is K (v,v')dv; the kemnelKo(v,v") rep-
reser;ts the same but y&=0. The boundary conditions are
Here, ¢o.t;)=(0,1) if §,>0 and ¢o.t;)=[1,2/(1—a)] if thert
£,<0. Besidesg=(m/2kgT) Y2V, O(*vy)|vylf(y={0L},v)
€
a:(62+—8‘y)1/2, (34) =®(ivy)J dv’ vy Ko (V,V')

and XO(Fvy)f(y={0L},v',1). (36)
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In this paper we consider boundary conditions of completdA6). Given the values of the four independent boundary
accommodation with the walls, so thig, (v,v')=Kq (V) parameterdJy, and Ty, (as well as the distanck), the
does not depend on the incoming velocity and can be shear rat@’ and the local thermal gradients, are fixed by
written as the conditiong17)—(19). Therefore,

Ko (V=Ag1O(=0v,)|v V), U —u
oLV =Ag O (v )|vy|do (V) a9 Yo 42
(37 L
A = | dv O(= V),
o,L f ( Uy)|Uy|¢O,L( ) _1 (2kBT0’L)1/Z[TL_TO+m7BGK(a’)Pr£2 43
whereg,, (V) represents the probability distribution of a fic- ~ °~~ £\ m Tor ~  ksToL - 43

fitious gas in contact with the systemyat-{0.L}. Equation In these equations, is related to the actual separatian

(37) can then be interpreted as meaning that when a patrticl : .
hits a wall, it is absorbed and then replaced by a particlegetween the plates through the nonlinear equation

leaving the fictitious bath. Of course, any choiceds; (v) L ds
must be consistent with the imposed wall velocities and tem- = J 0 ¥(3)’ (44)
peratures, i.e.,
wheres is a variable in terms of which the temperature is a
UOL:f dv v o (V), (38) quadratic function, namelyT(s)=To[1+ eo(m/2ksT,)*%s
' ’ —mrygek(a@’)Prs?/kgTy], and thes dependence of the col-
1 lision frequencyv(s) appears only through the temperature
kBTO,,_=§mf dv(v—Ugy ) %o, (V). (39 (taking into account thgb= const). The solution of the non-
linear set of equation$42)—(44) givesa’, €y, and L for
The simplest and most common choice is that of a Maxwell-any choice ofU,, , Ty, , andL. Nevertheless, from a prac-

Boltzmann(MB) distribution: tical point of view, it is more convenient to fidg, To, , @',
m 312 m(v— Uy, )2 andeg as independent parameters. Without loss of generality
PaE(v)= ) ;{— —} (40) we takeUy=0 andT_ =1. In addition, we will choose:

' 2mkgToL 2kgToL =0. This implies that, if boundary effects were absent, the
Under these conditions, the system is understood to be etemperature would have a maximum at the lower phate
closed between two independent baghequilibrium While ~ =0. Thus,
the colr198itions(40) are adequate for analyzing boundary A 12

effects,”™ they are not very efficient when one is interested  ; — 4/,
. .. . . . L )
in obtaining the transport properties in the bulk region. In

order to inhibit the influence of boundary effects, it is more

convenient to imagine that the two fictitious baths are in E =—2£ (46)
nonequilibriumstates resembling the state of the actual gas - L’

near the walls. More specifically, we can assume that thc?n Egs. (45) and (46) A=T,—1 and we have takem=1
. - 0 -

fictitious gases are described by the BGK equation, whos 1 . .
exact solution for the steady planar Couette flow is given by%jindkB 2- Finally, the actual distandeis given by Eq(44).

Eq. (33). In this case, the probability distributions,, (v) However, from .the simulation pom.t .Of view, Il more use-
' ful to expresd. in terms of the collision frequency corre-

: (45

2 Pryggk(a')

are
3 sponding to the temperatuiig and the average density In
$BK(y) = -2 m  ag (1+ag) J‘l at other words, instead of E¢44) we use
oL kBTO,L 60,L|Uy| to 1L 102 n(s)
X2t~ (1 ap)t2] 52 S A K 40
» 2kgTo 12 209, 1-t to determinel. For the sake of concreteness, let us consider
ex m 1+ag €y repulsive potentials, for whiclr=v(n/n)(T/T_ ), wherew
ranges from O(Maxwell molecule to 3 (hard spherés In
m 1+ag ( U that case,
_ vo—
2kgTop 2t—(1— a2l ok 1rc
L::f dgT(s)] “. 48)
2a’ag 1-t\2 S1o 49T (
T a : — +oytoy| (s (41) o
oL *oL For Maxwell molecules, this simply reduces to=/L/v,

where (o,t;)=(0,1) if v,>0 and ¢o,t;)=[1,2/(1- )]  while for hard spheres one has=(£/v)tan }(yA)//A. In

if v,<0, andagy =€y, /[ €5, +8yaax(a’)]*% Here,a’ is  summary, given the values @ and A, the separatior.

the estimatedralue of the reduced shear rate, as predicted bypetween the plates and the velocity of the upper glatare

the BGK model for specific values of the boundary param-uniquely determined. In addition, the thermal gradient at the
etersUg, and Ty, , and yggk(a') is obtained from Eq. upper platee_ is also determined, while the value at the
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lower plate is fixed ago=0. The knowled'ge of thege pound— 0,(y)=1 if y belongs to layera and is zero otherwise.
ary parameters allows one to obtain the distributionsgimilarly, the flow velocity, the temperature, the pressure

¢oL(v), according to Eq(41). tensor, and the heat flux of layer are
B. The DSMC method 1
. . . . uazN_ 2 ®a(yi)vi ’ (50)
Now, we briefly describe the numerical algorithm we ai=1
have employed to solve the Boltzmann equation by means of o m N
the soig:alled_ direct S|mulat|on_ Mo_nte_ C_arI(DSM_C) _ KeT,=—% = 2 @,(y)(v;—u,)?, (51)
method.~ In this method, the velocity distribution function is 3N, i=
represented by the velocitigs;} and positions{y;} of a N
sufficiently large number of particléd. Given the geometry P — L mE O, (y)(Vi—u,)(Vi—u,) (52)
of the problem, the physical system is split into layers of ® Noy & xSVt Telth Hal
width 8y, sufficiently smaller than the mean free path. The N
velocities and coordinates are updated from tine time t L m 2
+ 8t, where the time stept is much smaller than the mean 9= Noy 2 ,21 ©a(y1) (Vi = Ua) "(Vi ~ Ug). (53

free time, by applying a streaming step followed by a colli- N .
sion step. In thestreaming stepthe particles are moved bal- From these quantities one can get local values of the gradi-
listically, y;—;+v;, &t. In addition, those particles crossing ents and of the transport coefficients. For instance, the re-

the boundaries are reentered with velocities sampled frorfuced shear rate is

the corresponding probability distributidf, (v). Suppose n T\ eu “u

that a particlé crosses the lower plate between tinteand aa:__(_L —atlx Tax (54)
t+4t, i.e., yi+v;,6t<0. Then, regardless of the incoming v\ Ta 5y

velocity v;, a new velocityv; is assigned according to the and the viscosity function is

following rules. First, a velocity; (with v;,>0) is sampled

with a probability proportional tgv,| g2 (v). If one is con- - Paxy (55)

sidering the MB boundary conditions, this velocity is ac- T AuPa

cepted directly. Otherwise, the above acts as a "filter” 10 aq said before, in the simulations we take units such that
optimize the acceptance—rejection procedure and the velog; _ 1 T,=1, andkg=%. It remains to fix the time unit or

ity v; is accepted with a probability proportional to the ratio equivalently, the length unit. The standard definition of mean
6K (v)/ B (v). If the velocity is rejected, a new velocity free path in the case of hard spheréds is
Vv, is sampled and the process is repeated until acceptance.
The new position is assigned 5@,(&+yi/viy). The pro- A= ;
cess is analogous in the case of the upper plate. 2nmo?’
Thecollision stepproceeds as follows. For each layer

(56)

where o is the diameter of the spheres. The Navier—Stokes

a pair of potential collision partnerisandj are chosen at shear viscosity is(in the first Sonine approximating
X . o L 0
random with equiprobability. The collision between those:S(kaT/w)l’zlleaz. Conseguently, the effective collision

particles is then accepted with a probability equal to the cor;
) o . frequencyv=p/ 7y and the mean free path are related as
responding collision rate timest. For hard spheres, the col- — (8/5y7)(2kgT/m) Y2\ As usual, we choose the mean
lision rate is proportional to the relative velocityi—vj|, v & B o ' -
while it is independent of the relative velocity for Maxwell €€ path corresponding to the average densitys the
moleculesan angle cutoff is needed in the latter dagkthe  length unit. This in turn implies that=8/5\/7=0.903. For
collision is accepted, the scattering direction is randomlyconvenience, we take the latter value for Maxwell molecules
chosen according to the interaction law and postcollisionafs Well. The typical values of the simulation parameters are
velocities are assigned to both particles, according to th&l=2x 10 particles, a layer widtky=0.02, and a time step
conservation of momentum and energy. After the collision isét=0.003.
processed or if the pair is rejected, the routine moves againto  The procedure to measure the relevant quantities of the
the choice of a new pair until the required number of candifroblem is as follows. First the values of the imposed shear
date pairs has been taken. rate a’ and the temperature difference are chosen. This
In the course of the simulations, the following “coarse- choice fixes the system sizg as well as the upper velocity
grained” local quantities are computed. The number density. and the upper thermal gradieet, according to Egs.
in layer « is (45), (46), and(48). Starting from an equilibrium initial state
with T=T,, the system evolves driven by the boundary con-
o ditions described before. After a transient peritgbically
— N, n o up tot=25), the system reaches a steady state in which the
Ne=NNIL) sy ~ Noy izl 0.4(yi), (49 qguantities fluctuate around constant values. In this state, the
balance equations predict that the quantities Py, Py,
andu,P,,+q, are spatially uniform and this is used in the
where ® ,(y) is the characteristic function of layer, i.e.,  simulations as a test to make sure that the steady state has
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0.L

1.0
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FIG. 1. Plot of the marginal distribution function of particles reemitted by

the walls. The solid line corresponds to the distribution measured in the
simulation by applying the BGK boundary conditiofwith a’=1, €,=0, u/U O0.6F 1
ande = —3.15), the dashed line is the theoretical BGK distributiahich L
is hardly distinguishable from the solid lipeand the dotted line corresponds
to the MB boundary conditions. 04| J

been achieved. Once the steady state is reached, the local
guantities(49)—(55) are averaged over typically 100 snap-

shots equally spaced between25 andt=55, which corre- 0.0 ! . . .

sponds to about 60 collisions per particle in the case of hard 00 02 04 06 08 10
spheres. yL

C. Test of the numerical algorithm FIG. 2. Temperature and velocity profiles for hard spheres in the lcase

) ] ) o ) ] =1.81, U, =3.17, andT,=6. The solid lines are results obtained from a
Before closing this section, it is worthwhile carrying out DSMC simulation of the BGK equation, while the dashed lines are the

a test of the reliability of the numerical method. To that end,theoretical BGK results.

we have simulated the BGK equation by a DSMC-like

method similar to the one described in Ref. 19. If the bound-

ary conditions are implemented correctly and the simulation

parameters are well chosen, then the simulation results

should agree with the theoretical BGK predictions. We have

checked that this indeed the case. As an example, consider

the hard-sphere situation with =1 andA=5. This corre- L0 T T T
sponds to ypgk=0.248, L=1.81, U, =3.17, and ¢ =
—3.15, where in this case Prl. Figure 1 shows the mar-
ginal velocity distributions of particles reemitted by the
walls,

2KgTo, | M2 (= “
/Co,L(fy)=(%) f_mdva'_xdszo,,_(v), (57)

as functions of¢,=(m/2kgTy ), . The caset,>0 (&,
<0) corresponds to particles that are reemitted from the
lower (uppe) plate. The agreement with the imposed distri-
bution is excellent. Note the strong asymmetry between the
distributions corresponding to both plates, in contrast to the
symmetry of the MB distributions obtained frod0). The
temperature and velocity profiles are shown in Fig. 2. The
simulation values overlap, within statistical fluctuations, with
the theoretical predictions. Apart from the profiles, we haveFlG. 3. Marginal velocity distribution function for hard spheres yat
0.5 inthe casd.=1.81,U =3.17, andT,=6. The solid line is obtained

verified that the generalized transport coefficients obtaineﬁj{om a DSMC simulation of the BGK equation, while the dashed line

from_the ﬂU)_(eS a!so a_gree with the theory. A mor(_a Stringenkwhich is hardly distinguishable from the solid linis the theoretical BGK
test is provided in Fig. 3, where the marginal distribution distribution.
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function 7 r r . .

1(2kgT\ Y2 (= =
¢(§y>=—(—8) | do [ awr 1w,

n m

(58)
m 1/2 T
&=\ 5k Vv
2kgT
is plotted at the poiny/L =0.5, which corresponds to a local

thermal gradient=—0.60. It is apparent again that an ex-
cellent agreement exists between simulation and theory.

IV. RESULTS

This section is devoted to a comparison between the

simulation results for the Boltzmann equation obtained by
the simulation method described in Sec. Il and the theoret- 0.8} )
ical predictions provided by the Grad method and the BGK
and ES kinetic models. The comparison will be carried out at 06l j
. . . ulU

the levels of the transport coefficients and the velocity dis- T L
tribution, both for Maxwell molecules and hard spheres. Be- .
fore that, the hydrodynamic profiles obtained from the simu- 04 ]
lations by using the two types of boundary conditions .
considered in Sec. Ill are presented. 02l |
A. Hydrodynamic profiles

As said in Secs. | and I, the Boltzmann equation for 0'00.0 02 04 0.6 0.8 1.0
Maxwell molecules admits an exact solution characterized YL

.by thS.(17)_—(19).hThISbSO|U(tjlon ap])cfplles to the b|q||_(bt|'eglog, .FIG. 4. Temperature and velocity profiles for Maxwell molecules, as ob-
i.e., the region where boundary effects are negligible. O Vtained from DSMC simulations, in the cate=4.68, U =3.90, andT,

ously, in a simulation with a finite size of the system, it is not=g. The solid lines refer to the results obtained from the BGK boundary
possible to avoid boundary effects completely. On the othegonditions and the dashed lines refer to those obtained from the MB bound-
hand, one can expect that the “nonequilibrium” boundary?Y conditions.

conditions based on the BGK distribution, EdJl), inhibit

the boundary effects, as compared with the conventional

“equilibrium” boundary conditions (40). We have con- 1 in the case of the BGK boundary conditions than in that of
firmed that this is indeed the case. As an illustrative exampleghe MB conditions. In addition, in the former case the region

let us consideld =5 anda’=0.92 for Maxwell molecules. \herea is practically constant extends to layers closer to the
This corresponds toygek=0.21, L=4.68, U =3.90, and  |ower plate.

e, =—2.37. Figure 4 shows the temperature and velocity
profiles as obtained by using the MB and BGK boundary
conditions. It is apparent that the velocity slips and the tem-
perature jumps at the walls are much larger in the former
case than in the latter. Note that the maximum temperature is

not exactly located in the layer adjacent to the lower plate

but it is slightly shifted. It is interesting to remark that when
plotting the temperatur& as a function of the flow velocity 4r ]
u,, a parabolic curve is observed with both boundary condi- P
tions, as expected from Eg€l8) and (19). A more evident

proof of the advantage of the BGK conditions is shownin

Fig. 5. Since the pressure is a constant in the exact solution 3l e RN
valid in the bulk, any deviation frorp=const can be attrib- A
uted to boundary effects. The pressure obtained with the
BGK boundary conditions is practically constant, except
near the upper plate, while the one obtained with the MB 2/ . . . .
conditions is only nearly constant in a small region around 0.0 0.2 0.4 0.6 0.8 1.0
y/L=0.75. Finally, Fig. 6 shows the rat&ya’' between the y/L

actual (local) shear ratea measured in the simulations, cf. FIG. 5. Same as in Fig. 4, but for the press(wich is measured in units
Eq. (54), and the imposed shear raé The ratio is closer to  of nkgT,).
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FIG. 6. Same as in Fig. 4, but for the ratida’ between the actual shear

rate,a, and the one imposed by the BGK boundary conditiis, FIG. 7. Plot of the thermal curvature parameteas a function of the shear

rate. The symbols are simulation data for Maxwell molecitaxles and
for hard spheregtriangles, while the lines are the theoretical predictions
given by the ES kinetic modékolid line), the BGK kinetic modeldashed

In summary, the above-mentioned example illustrated"®: and the Grad methotdiotted ling.

that the BGK boundary conditions are much more efficient

than the MB ones to measure transport properties in the bulk, :
Therefore, in what follows we will only consider the BGK els (especially the BGK modghave a better agreement than

conditions. In each case, we identify a bulk domain Com_the Grad method. It is also interesting to remark that a slight
: : ' influence of the interaction potential seems to exist, the shear
prised between the layergy=y, and y=y,; where a

— const, p~const, andy—const, and take averages af thinning effect being a little bit more significqnt for hard
FE ' " anél(l) over thosé layers. Typical values,are spheres. than for Maxwell mqlecqles. Thg noql|near thermal
’7/’L 2"0’ 5 al1r21d IL~0.8 ' conductivity F,(a) is plotted in Fig. 9. It is quite apparent
Yo ' Y1 T that Grad's solution does not capture even the qualitative

shape of,, as was already noted in the case of hard disks.
Again, the kinetic models present a good agreement, espe-

In this section we compare the simulation results forcially in the case of the ES model.
Maxwell molecules and hard spheres obtained from the Normal stress differences are characterized by the visco-
Monte Carlo simulations with théuniversal predictions of = metric functions?; (a). These quantities are well described
the Grad method and the BGK and ES kinetic models. Ady the kinetic models, as shown in Figs. 10 and 11. At a
said in Sec. |, we are interested in situations where the Knudguantitative level, the agreement is better in the case of Max-
sen number is not small, so that nonlinear effects aravell molecules. In fact, the viscometric functions, especially
important?® An interesting quantity in theonlinearCouette  the second one, exhibit a certain influence of the potential.
flow is the parametey, which is related to the curvature of Although the functionsV; s(a) were not evaluated from the
the temperature profile. Its shear-rate dependence is shown @rad method in Refs. 10 and 16, the friction functep(a)
Fig. 7. A remarkable feature is that the simulation data for
both interactions seem to lie on a common curve. This indi-
cates that, as predicted by the models, the transport proper- 1.0 . . . . . . .
ties are hardly sensitive to the interaction potential, provided
that the quantities are conveniently scaled. While the kinetic
models exhibit a good quantitativéen the case of the ES 0.8} & _
mode) or qualitative (BGK mode) agreement, the Grad
method fails, except for small shear rates. Sing@) n
=a’F,(a)/5F (a), one can interpret §(a)/a® as an effec- 06 N
tive, shear-rate dependent Prandtl numbetative to the AN
usual Pr). This quantity is bounded between 1 for small shear e
rates and 5/3in the BGK model or 5/2(in the ES modsglin A oo
the limit of large shear rates. This is consistent with the fact
that the BGK model underestimates the valueyof

The most important transport coefficient is the nonlinear
viscosity represented by the functidh,(a). According to 0'20.0 02 04 06 08 10 12 14
Fig. 8, the three theories retain the qualitative trends of the 2
simulation data, namely the decreaséd-gfwith increasinga “
(shear thinning effeg¢t In general, however, the kinetic mod- FIG. 8. Same as in Fig. 7, but for the viscosity functiep.

B. Nonlinear transport coefficients
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FIG. 9. Same as in Fig. 7, but for the thermal conductivity funcfign FIG. 11. Same as in Fig. 7, but for the second viscometric funciign
relative to the Burnett valud’,(0). Note that the Grad prediction is not
plotted.

was calculated. This quantity is plotted in Fig. 12, showing

an agreement between the theories and the simulation dajg 55gess their reliability, we have computed in the simula-

similar to the one found in Fig. 8 for the viscosity function. tions the marginal distributiorf58) at the layery/L=0.5.
The last transport coefficient is the cross-coefficiéntde- The ratio R(¢,)= —12nyn(_ 2 :
y _@(gy)/[ﬂ' exp( §y)], where QD(fy) IS

fined by Eq.(25). The comparison with simulation results for defined by Eq.(58), is a measure of the departure of the

this quantity is a stringent test of the theories, since it iS jigribytion function from the local equilibrium. This quan-
generalization of a Burnett coefficient that measures thgy, is piotted in Fig. 14 for Maxwell molecules in the case of
component of the heat flux orthogonal to the thermal gradl-a reduced shear rate=0.636 and a reducegbcal thermal
ent. Figure 13 shows that, as happened with the thermal cong, jiente= — 0.272. Both theories capture the main features

ducti_vit_y function F (a), the Grad method gives a wrong of the actual distribution. While the BGK distribution exhib-
prediction for the shear-rate dependenceddfa). On the .o 5 petter agreement near the maximuaround &~

other hand, the kinetic models describe fairly well the non-_ g ) "1 ES distribution seems to describe better the re-
linear behavior of this function. In the case of the ES mOdelgion =1. The case of hard spheres is illustrated in Fig. 15,

the agreement with the simulation data is practically perfectwhich corresponds ta=0.419 ande= —0.195. In this case

L ) the ES model shows a superiority over the BGK model both
C. Velocity distribution function near the maximum and for large positive velocities.

Apart from the transport coefficients, the kinetic models
provide the velocity distribution function. In the case of theyy, CONCLUDING REMARKS
BGK model, the solution is given by E€33), while the ES ) _
distribution function can be found in Refs. 8 and 9. In order  1his paper has dealt with the steady planar Couette flow
in a dilute gas beyond the scope of the Navier—Stokes de-

1.0 ———————————————
1 09} % ]
)
/i\ 0.8} 1
3 1
> F BN
" oat RE NG ]
0.6} Tt % """""" N
4
3 -
050 02 04 06 08 10 12 1'4X oSl T
voue mm EEle e 00 02 04 06 08 10 12 14

a
2
a
FIG. 10. Same as in Fig. 7, but for the first viscometric functiop relative

to the Burnett valuel',(0). Notethat the Grad prediction is not plotted. FIG. 12. Same as in Fig. 7, but for the friction functibr) .
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FIG. 13. Same as in Fig. 7, but for the cross coefficiénptrelative to the

Burnett value®(0). FIG. 15. Same as in Fig. 14, but for hard spheres in the aas@419 and
e=—0.195.

¥

scription. This nonlinear problem had been previously stud-  An important outcome of the simulation results is that,
ied by means of kinetic theory tools, such as the Gradas predicted by the kinetic theories considered here, the
method, and the BGK and ES kinetic models. These theorieshear-rate dependence of the transport coefficients is practi-
predict momentum and heat fluxes characterized by fiveally insensitive to the interaction potential when the quan-
shear-rate-dependent generalized transport coefficients: tiies are properly nondimensionalized. In particular, the ac-
viscosity functionF ,(a), Eqg. (20), a thermal conductivity tual shear rate has been reduced with respect to an effective
functionF (a), Eq.(21), two viscometric function®’ 5(a), collision frequency defined from the Navier—Stokes shear
Egs.(22) and(23), and a cross coefficienb(a), Eq. (25). viscosity coefficient. The simulation results show, however,
The main motivation of our study has been to performthat the second viscometric function presents a non-
DSMC simulations for Maxwell molecules and hard spheresegligible influence of the interaction model, so that the nor-
in order to assess the reliability of the above-mentioned theomal stress differenc®,,— P, is smaller for Maxwell mol-
ries in the non-Newtonian regime. Since we have been interecules than for hard spheres. The comparison with the
ested in the bulk properties, we have used “nonequilibrium”theoretical predictions shows that the kinetic models give a
boundary conditions to inhibit the influence of finite-size ef- fairly good description of the five transport coefficients. On
fects. the other hand, the Grad method yields a shear viscosity in
qualitative agreement with the simulations but it dramatically
fails for the coefficients measuring the heat flux. This is ba-
150 _ sically due to the truncation scheme of the Grad method at
A the level of the heat flux. The physical idea behind a kinetic
model is quite different, since it consists of replacing the true
Boltzmann collision operator by a simple relaxation term but
otherwise all the velocity moments are taken into account.
As a consequence, while in the Grad method one has to solve
a closed set of coupled differential equations for the mo-
ments, in the case of the kinetic model one gets the velocity
distribution function and determines the fluxes from it.

In the ES kinetic model the reference distribution func-
tion appearing in the collision operator is an anisotropic
Gaussian parametrized by the pressure tensor. This allows
the model to give the correct Prandtl numbe=Brbut at the
expense of complicating its mathematical structure. In the
0.00 TP case of the BGK model, however, the reference distribution

20 -15 -10 -05 00 05 10 15 20 is that of local equilibrium but the model leads to=Pk. The
& agreement with simulation of the ES model is generally bet-
ter than that of the BGK model, especially in the casé& pf
FIG. 14. Marginal velocity distribution function, relative to the local equi- gnd®. In spite of this, it is fair to say that the performance

librium distribution, for Maxwell molecules ay=0.5_ in the casea - - . . . - -
=0.636 ande=—0.272. The solid line is obtained from a DSMC simula- of the BGK model is quite good, given its simplicity relative

tion, while the dashed line is the theoretical ES distribution and the dotted© that of the ES model. Finally, the regultg reported in this
line is the theoretical BGK distribution. paper clearly show the usefulness of kinetic models to ana-
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lyze nonlinear transport phenomena in the Couette flow 3F,+2F,
problem. This complements previous conclusions drawn 8=y~ —, (AB)
from other nonlinear problems, such as the uniform shear
flow and the Fourier flow. where the functiond=, are evaluated ak=y. Next, the
transport coefficients are expressed in terma ahdF, ()
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APPENDIX: THEORETICAL EXPRESSIONS FOR THE ¥y(a)= —2F, or1t4Fs (A9)
TRANSPORT COEFFICIENTS . l3F1-|— 2F,’
In this Appendix we list the explicit shear-rate depen- F,F,
dence of the dimensionless transport coefficients defined in ‘I’Z(a)=4w, (A10)
Sec. II, according to the Grad method, the BGK model, and 1rere
the ES model. ®(a)=—[5F ,+2F 3+ a(F,+5F 3+ 8F 4+ 4F5)].
(A11)

1. The Grad method
For small shear rates, one geB,=1-%a? F =1

. : 7
) From the Appendix of Ref. 10, corrected in Ref. 16, one _ 12_652a2’ Py =— Y1 114_7756a2)’ W= 41— zz%saz)’ D=—1
as andF,=1-a’.
2
Fla)=—7F5——, (A1) 3. The ES model
1+ xa +A(a) . .
In Refs. 8 and 9 the solution of the ES model is worked
out keeping the Prandtl number Pr as a free parameter. Here
F.(a)= PEETTICIEYYARY (A2)  we particularize the results to the correct value=Brlt is
258 (a) convenient to express the transport coefficients in terms of an
1— 3642 auxiliary parametep, defined as the solution of the implicit
d(a)=-7 125 , (A3)  equation
1+ ga%+(1- £a?)A(a)
a2=ﬁ
whereA(a)=/1+ fa?— &2a*. The viscometric functions 9

are not evaluated in Refs. 10 and 16, although the friction [2B(F,+2F,) — 3] 3F+ 2F,— 28F 1(F,+ 2F,)]
function is provided. It is given by X

F2[2B(F1+F,)—3]+F[2B(F,+2F,) — 3]
(A4) (A12)

where now the function&, are evaluated at= . The re-
Note thatF,(a) and F,(a) become meaningless f@” lationship between the curvature parameteand g3 is
=25(y/1057+ 29)/432=3.56, whileF .(a) and®(a) are un-
physical for a2=50/63=0.79. For small shear rates, the y(a)= 3B[3—2B(F,+2F,)]. (A13)
above-mentioned transport coefficients behaveFgs=1

— 132 F,=1+%a?, &=—1(1-1a?), andF ,~1—La’ The transport coefficients are

2

F ()= —————.
2 1+ 2a2+A(a)

2. The BGK model 9F

Fol@)= 2B(F1+2F,)—3]% (AL
The derivation of the transport coefficients from the [2B8(F1+2F3)=3]
BGK modeP implies the resummation of asymptotic series a2
by means of the Borel method. As a consequence, the results F _(a)= S—F”(a)’ (A15)
are expressed in terms of the functidhgx) defined by the v(a)
recurrence relatiofr,(x) =[ (d/dx)x]"Fq(x), where 128 3F,+4F,— 2BF(F 1+ 2F,)
1 2 1\ 2
o Vi(a)y=—— ,
Fo(X)= Ef dt te" 2K (2t V2xY4), (A5) @) a? (3—2BF1)[3—2BF(F1+2F,]
XJo (A16)
K, being the zeroth-order modified Bessel function. The cur- 5
vature parametey(a) is given by the solution to the follow- V,(a)= a8 Fa (A17)

ing implicit equation: ? (3—2BF)[3—2BF(F1+2F,]’
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®(a)= %C,{a?[CIF3(F,+2F,)— 9C3F3(F,+2F3)
+ 54C§F0(F2+ 4(F3+F,))—108C(F,+5F;
+4(2F 4+Fs))]— C3(CyFoF 1~ 6F»)
+ 4C§FO(F1+ 2F,)+4C[CyFoF1—6(F5

In Eq. (A18),
C,= 3 A19
1T 3-2p(F,+2F,) (A19)
C,= 3 A20
2= 3-25F," (A20)
C3=3a’C3F3+4C,{2B[C,(F,+4F,)+3F;]—3Cy}.
(A21)

For small shear rates, one has,~1-%a% F,.=1
— 5%, Wi=—$(1-5Fa’%), Vo=§(1-%a?), o=}
andF ,~1-3a?
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