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Monte Carlo simulation of nonlinear Couette flow in a dilute gas
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The direct simulation Monte Carlo method is applied to solve the Boltzmann equation in the steady
planar Couette flow for Maxwell molecules and hard spheres. Nonequilibrium boundary conditions
based on the solution of the Bhatnagar–Gross–Krook~BGK! model for the Couette flow are
employed to diminish the influence of finite-size effects. Non-Newtonian properties are
characterized by five independent generalized transport coefficients: a viscosity function, a thermal
conductivity function, two viscometric functions, and a cross coefficient measuring the heat flux
orthogonal to the thermal gradient. These coefficients depend nonlinearly on the shear rate. The
simulation results are compared with theoretical predictions given by the Grad method and the BGK
and the ellipsoidal statistical~ES! models. It is found that the kinetic models present a good
agreement with the simulation, especially in the case of the ES model, while the Grad method is
only qualitatively reliable for the momentum transport. In addition, the velocity distribution function
is also measured and compared with the BGK and ES distributions. ©2000 American Institute of
Physics.@S1070-6631~00!00811-4#
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I. INTRODUCTION

One of the most interesting states for analyzing transp
processes far from equilibrium is the steady planar Cou
flow. The physical situation corresponds to a system
closed between two infinite, parallel plates in relative mot
and, in general, kept at different temperatures. These bo
ary conditions lead to combined heat and momentum tra
port. If x andy denote the coordinates parallel to the flow a
orthogonal to the plates, respectively, then the correspon
steady hydrodynamic balance equations are

]Pxy

]y
5

]Pyy

]y
50, ~1!

Pxy

]ux

]y
1

]qy

]y
50, ~2!

whereu5uxx̂ is the flow velocity,P is the pressure tenso
andq5qxx̂1qyŷ is the heat flux. The presence ofqy in Eq.
~2! indicates that a thermal gradient]T/]y is induced by the
velocity gradient, even if both plates are kept at the sa
temperature. The balance equations~1! and ~2! do not con-
stitute a closed set unless the dependence of the pre
tensor and the heat flux on the hydrodynamic fields
known. If the gradients are small, the fluxesP and q are
described by the Navier–Stokes~NS! constitutive relations,
which in this problem yield

a!Electronic mail: jmm@unex.es
b!Electronic mail: andres@unex.es
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Pxx5Pyy5Pzz, Pxy52h0

]ux

]y
, ~3!

qx50, qy52k0

]T

]y
, ~4!

where h0 and k0 are the NS shear viscosity and therm
conductivity coefficients, respectively. As a consequence
the absence of normal stress differences in the NS des
tion, the hydrostatic pressurep5(Pxx1Pyy1Pzz)/3 is a
constant, on account of balance equation~1!.

Even in the linear regime described by the NS equatio
one still needs to know the spatial dependence of the tra
port coefficients to obtain the exact solution of the hydrod
namic equations. The problem becomes tractable in the
of a low density gas, where the state of the system is co
pletely specified by the velocity distribution functio
f (r ,v;t), which obeys the Boltzmann equation.1 A relevant
dimensionless quantity in a dilute gas is the Knudsen num
Kn5l/ l h , defined as the ratio of the mean free pathl to the
scale length of the hydrodynamic gradientsl h . In many labo-
ratory conditions, Kn!1 and so the Boltzmann equation ca
be solved by means of the Chapman–Enskog method a
expansion of the distribution function in powers of the Knu
sen number.2 The zeroth-order approximation leads to t
Euler hydrodynamic equations, while the first-order appro
mation yields the NS equations with explicit expressions
the transport coefficientsh0 and k0. The results show tha
the ratioh0 /k0 is a constant. Consequently, it then follow
from the NS hydrodynamic equations~1!–~4! that the flow
velocity profile is quasilinear,
0 © 2000 American Institute of Physics
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h0

]ux

]y
5const, ~5!

and the temperature is quasiparabolic,

S k0

]

]yD 2

T52
k0

h0
S h0

]ux

]y D 2

5const. ~6!

Note that the profile ofux is not strictly linear, due to the
space dependence ofh0 through the temperature. Analo
gously, the temperature profile is not strictly quadratic.
fact, the specific form of both profiles depends on the int
action potential under consideration. On the other hand, f
Eqs.~5! and~6! it is easy to derive a nice result, namely th
if the temperatureT is seen as a function ofux rather than as
a function of the coordinate spacey, then one has

]2T

]ux
2

52
h0

k0
. ~7!

This is a sort of nonequilibrium ‘‘equation of state,’’ accor
ing to which the temperature is a quadratic function of
flow velocity. Moreover, the ‘‘curvature’’ of the profile is
practically universal, given the weak influence of the int
action potential on the Prandtl number Pr55kBh0/2mk0. 2

3,
wherekB is the Boltzmann constant andm is the mass of a
particle.

Since the mean free path is inversely proportional to
density, the Knudsen number, at a given value of the s
length l h , increases as the gas becomes more rarefied
general, when the Knudsen number is not small, the NS
lations are not expected to hold and the transport mus
described by nonlinear constitutive equations. In the spe
case of Maxwell molecules~particles interacting via anr 24

potential!, it has been shown3,4 that the Boltzmann equatio
admits a consistent solution in thenonlinear Couette flow
characterized by a constant pressurep and profiles similar to
those obtained in the NS regime, Eqs.~5!–~7!, except thath0

andk0 are replaced by a generalized shear viscosity coe
cient h(a)5h0Fh(a) and a generalized thermal conducti
ity coefficient kyy(a)5k0Fk(a), respectively. Here,a
5(h0 /p)]ux /]y is a constant~dimensionless! shear rate and
Fh and Fk are nonlinear functions ofa. In addition, Pxx

ÞPyyÞPzz and qxÞ0. In this problem, the hydrodynami
scale length can be identified asl h;AkBT/m(]ux /]y)21,
while the mean free path isl;AkBT/m(h0 /p). Thus, the
reduced shear ratea represents the Knudsen number in th
problem, i.e.,a;Kn. Henceforth, we will use the reduce
shear ratea to refer to the Knudsen number Kn. The solutio
considered in Refs. 3 and 4 describes heat and momen
transport for arbitrary velocity and thermal gradients in t
bulk domain, where boundary effects are negligible. On
other hand, the full nonlinear dependence ofFh(a) and
Fk(a) is not explicitly known, since it involves the infinite
hierarchy of moment equations. Their knowledge is limit
to super-Burnett order and the result is4 Fh(a)51
23.111a2 andFk(a)5127.259a2.

Consequently, if one wants to get the transport prop
ties for arbitrary values of the shear rate and the ther
gradient, one must resort to approximate schemes or to c
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puter simulations. In the first alternative, explicit expressio
for the nonlinear transport coefficients in the Couette fl
have been obtained from exact solutions of the Bhatnag
Gross–Krook~BGK! model5,6 and related models7–9 for gen-
eral interactions, as well as from the Grad method.10 In the
simulation side, Risso and Cordero10 have recently studied
the shear-rate dependence ofFh and Fk by means of mo-
lecular dynamics simulations of a hard disk gas. Compari
between the different analytical results with those obtain
from the simulation shows that the predictions given by
netic models are in better agreement than those given by
Grad method, especially in the case of the therm
conductivity.9 Nevertheless, given the difficulties associat
with molecular dynamics simulations to achieve large sh
rates in a dilute gas, the above comparison is restricted
range of shear rates for which non-Newtonian effects
hardly significant. For instance, the shear viscosity has o
decreased around 10% with respect to its Navier–Sto
value for the largest value of the shear rate considered
Risso and Cordero.10 In order to overcome such difficultie
and extend the range of values ofa, one may use the so
called direct simulation Monte Carlo~DSMC! method,11

which is known to qualify as an efficient and accura
method to numerically solve the Boltzmann equation.

The aim of this paper is to solve the Boltzmann equat
by means of the DSMC method for a gas subjected to
planar Couette flow. The motivation of this work is twofol
On the one hand, we want to test the reliability of the
from equilibrium results obtained from kinetic models a
the Grad method by making a comparison with the Bol
mann solution in the case of Maxwell molecules, for whi
the form of the hydrodynamic profiles in the bulk region~far
from the boundaries! is known. We will determine not only
the hydrodynamic profiles but also the nonlinear transp
coefficients and the velocity distribution function. On th
other hand, we want to investigate whether the abo
mentioned results for a system of Maxwell molecules exte
to other interaction potentials. This extension holds when
Boltzmann equation is replaced by kinetic models where
terms of a conveniently scaled space variable, all the res
are independent of the interaction law. Thus, we will a
solve numerically the Boltzmann equation by the DSM
method for a hard-sphere gas.

Since we are interested in describing transport proper
in the bulk region, i.e., free from finite-size effects, we ne
to use appropriate boundary conditions in the simulations
the conventional boundary conditions,10,12the gas is assume
to be enclosed between two baths atequilibrium in relative
motion and, in general, at different temperatures. Un
these conditions, a particle leaving the system is forma
replaced by a particle coming from the bath, so the incom
velocity is sampled from a local equilibrium distribution. A
a consequence, there exists a mismatch between the vel
distribution function of the reemitted particles and that
those particles of the gas located near the wall and mov
along the same direction. In this case, in order to inhibit
influence of boundary effects one needs to take very la
systems~normal distance between the plates much lar
than the mean free path!, which is not practical from a com
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putational point of view. To overcome this difficulty, a po
sibility is to assume that both baths are out of equilibrium
a state close to that of the actual gas. Since such a state
known ‘‘a priori,’’ in this paper we assume that the state
the baths is described by the BGK solution of the pla
Couette flow.6 Although the boundary effects are still un
avoidable, we expect that the above-mentioned mismatch
tween reemitted and gas particles will be much smaller. A
matter of fact, the use of these conditions has been show
be appropriate to analyze bulk transport properties in
special case of planar Fourier flow~both walls at rest!.13

The plan of the paper is as follows. In Sec. II we give
brief description of the planar Couette flow and a summ
of the main results obtained from the Boltzmann equat
and kinetic models. The boundary conditions used in
simulations and the DSMC method are described in Sec.
Section IV presents the main results of the paper, wh
special attention is paid to the nonlinear transport coe
cients. A comparison with the analytical results derived fro
the BGK and the ellipsoidal statistical~ES! models and from
the Grad method is also carried out. The comparison sh
in general a good agreement of the kinetic models with co
puter simulations, even for large shear rates. In addition,
velocity distribution function obtained from the simulation
the bulk domain is compared with the ones given by
kinetic models. It is shown again that the agreement is qu
tatively good. We close the paper in Sec. V with some c
cluding remarks.

II. DESCRIPTION OF THE PROBLEM AND SUMMARY
OF THEORETICAL RESULTS

Let us consider a dilute gas. In this case, a kinetic
scription is sufficient to characterize the state of the sys
by means of the velocity distribution functionf (r ,v;t). This
distribution function obeys the nonlinear Boltzmann equ
tion, which in the absence of external forces is given by1

] f

]t
1v•¹ f 5J@ f , f #, ~8!

where

J@ f , f #5E dv1E dk̂ gI~g,k̂!@ f ~v8! f ~v18!2 f ~v! f ~v1!#

~9!

is the collision operator. In this equation,I (g,k̂) is the dif-
ferential cross section,g[uv2v1u being the relative velocity,
and (v8,v18) are precollisional velocities yielding postcoll
sional velocities (v,v1). From the distribution function, one
may define the hydrodynamic quantities

n5E dv f , ~10!

u5
1

nE dv vf , ~11!

3

2
nkBT5

m

2 E dv V2f , ~12!
not
f
r

e-
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and the momentum and heat fluxes

P5mE dv VV f , ~13!

q5
m

2 E dv V2V f . ~14!

Here,n is the number density,u is the flow velocity,T is the
temperature,P is the pressure tensor,q is the heat flux, and
V5v2u is the peculiar velocity. In addition, the equation
state is that of an ideal gas, i.e.,p5nkBT.

Most of the known solutions to Eq.~8! for spatially in-
homogeneous states14 correspond to the special case of Ma
well molecules, namely, a repulsive potential of the fo
V(r );r 24. For this potential, the collision rategI(g,k̂) is
independent of the relative velocity and this allows the in
nite hierarchy of velocity moments to be recursively solv
in some specific situations. Furthermore, the NS transp
coefficientsh0 and k0 can be exactly obtained from th
Chapman–Enskog method.2 They are given by

h05
p

n
, k05

15

4

kB

m
h0 , ~15!

wheren5un, u being an eigenvalue of the linearized Bolt
mann collision operator.15

In this paper we are interested in studying the pla
Couette flow for a dilute gas. We consider a gas enclo
between two parallel plates in relative motion and ma
tained at different temperatures. Under these conditions,
system is driven out of equilibrium by the combined acti
of the velocity and thermal gradients along the direction n
mal to the plates. After a transient period, the gas is expe
to reach a steady state and the corresponding Boltzm
equation reads

vy

]

]y
f 5J@ f , f #, ~16!

where we have chosen the axisy as the one normal to the
plates. In general, this equation must be solved subjecte
specific boundary conditions. Nevertheless, in the same s
as in the Chapman–Enskog method,2 one may look for ‘‘nor-
mal’’ solutions in which all the space dependence of t
distribution function occurs through a functional dependen
on the hydrodynamic fields. The normal solution describ
the state of the gas in the hydrodynamic regime, namely,
times much longer than the mean free time and for distan
from the walls much larger than the mean free path. As m
tioned in Sec. I, it has been proved3,4 that, in the case of
Maxwell molecules, Eq.~16! admits an exact solution corre
sponding to the planar Couette flow problem. This solut
belongs to thenormal class, so that no explicit boundar
conditions appear. In other words, all the space depende
of f is given through the local density, the local velocity, t
local temperature, and their gradients. The solution is ch
acterized by hydrodynamic profiles that are a simple gen
alization of those predicted by the NS approximation, E
~5!–~7!, namely

p5const, ~17!
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1

n~y!

]ux

]y
[a5const, ~18!

F 1

n~y!

]

]yG2

T52Pr
2m

kB
g~a!. ~19!

The dimensionless parameterg(a) is a nonlinear func-
tion of the reduced shear ratea that, by construction, behave
asg'a2/5 in the limit a→0. Again, the temperature can b
seen as a quadratic function of the flow velocity, but now
coefficienth0 /k0 appearing in Eq.~7! is replaced by a shear
rate dependent coefficient (h0 /k0)5g(a)/a2. Furthermore,
in this solution the pressure tensor is independent of the t
mal gradient and the heat flux vector is linear in the therm
gradient, but all these fluxes are nonlinear functions of
shear rate. This nonlinear dependence can be characte
through five generalized transport coefficients. First,
shear stressPxy defines a generalized shear viscosityh(a) as

Pxy52h~a!
]ux

]y
[2h0Fh~a!

]ux

]y
. ~20!

Analogously, the component of the heat flux parallel to
thermal gradient defines a generalized thermal conducti
coefficientkyy(a):

qy52kyy~a!
]T

]y
[2k0Fk~a!

]T

]y
. ~21!

The dimensionless functionsFh(a) andFk(a) are the most
relevant quantities of the problem. They are related to
function g(a) by g(a)5a2Fh(a)/5Fk(a). Normal stress
differences are different from zero and are measured by
viscometric functionsC1,2(a) defined by

Pyy2Pxx

p
5C1~a!a2, ~22!

Pzz2Pyy

p
5C2~a!a2. ~23!

Another interesting quantity related to the pressure tenso
the friction coefficientm(a)52Pxy /Pyy . To NS order, we
simply havem(a)5a. In the non-Newtonian regime, w
generalize this coefficient asm(a)5aFm(a), where the fric-
tion functionFm(a) is

Fm~a!5
Fh~a!

12@C2~a!2C1~a!#a2/3
. ~24!

Finally, there exists a nonzero component of the heat
orthogonal to the thermal gradient given by

qx52kxy~a!
]

]y
T[2k0F~a!a

]

]y
T. ~25!

The three functionsC1,2(a) andF(a) are generalizations o
Burnett coefficients. In fact,C1(0)5214/5, C2(0)54/5,
and F(0)527/2 for Maxwell molecules and for har
spheres in the first Sonine approximation.2 The determina-
tion of the nonlinear transport coefficientsFh , Fk , C1,2,
andF would imply the solution of an infinite hierarchy tha
cannot be solved in a recursive way.3 This hierarchy can only
e

r-
l
e
zed
e

e
ty

e

o

is

x

be solved step by step when one performs a perturba
expansion in powers of the shear rate. In fact, Tij and San4

determined the solution up to super-Burnett order:

Fh~a!5123.111a21O~a4!, ~26!

Fk~a!5127.259a21O~a4!. ~27!

From Eqs. ~26! and ~27! it follows that g(a)5(a2/5)@1
14.148a21O(a4)#. In addition, Fm(a)5121.911a2

1O(a4).
Although the above-given analyses are valuable, th

have two main limitations. On the one hand, they are
stricted to the special case of Maxwell molecules. For ot
interaction potentials~e.g., hard spheres!, the collisional mo-
ments involve all the moments of the distribution functio
and, as a consequence, the hydrodynamic profiles~17!–~19!
are notstrictly true. On the other hand, even for Maxwe
molecules, the above-given perturbative solution is not u
ful for finite shear rates. These two limitations can be ov
come, in the context of analytical methods, by introduci
additional approximations, such as the Grad method,10 or by
describing the system by means of kinetic models.5,7–9 In
these approaches, one looks for a solution having the s
hydrodynamic profiles as in the case of the Boltzmann eq
tion, cf. Eqs.~17!–~19!. As before, this solution describes th
properties of the system in the bulk region, which is inse
sitive to the details of the boundary conditions. From t
Grad method and from the BGK and ellipsoidal statistic
~ES! kinetic models, one explicitly gets the full nonlinea
shear-rate dependence of the transport coefficients in a
perturbative way. Moreover, the results areuniversal,
namely the functionsFh(a), Fk(a), . . . are independent o
the interaction potential, provided that the reduced shear
is defined as in Eq.~18! with n5p/h0.

The thirteen-moment Grad method consists of replac
the actual distribution by

f→ f LH 11
m

n~kBT!2 F S mV2

5kBT
21DV•q

1
1

2
~Pi j 2pd i j !ViVj G J , ~28!

where

f L5nS m

2pkBTD 3/2

expS 2
mV2

2kBTD ~29!

is the local equilibrium distribution function. When the a
proximation~28! is inserted into the Boltzmann equation~8!
and velocity moments are taken, one gets a closed se
equations forn, u, P, andq. According to the geometry o
the planar Couette flow, there are eight independent m
ments instead of the original thirteen moments appearin
Eq. ~28!. Risso and Cordero10,16 found that the set of inde
pendent moment equations, neglecting nonlinear terms in
fluxes, admits a solution consistent with the profiles~17!–
~19!. In addition, they obtained explicit expressions for t
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above-introduced transport coefficients as nonlinear fu
tions of the reduced shear ratea. Those expressions are di
played in the Appendix.

Now we consider the kinetic model approach. The ba
idea is to replace the detailed Boltzmann collision opera
by a much simpler term that otherwise retains the m
physical properties of the original operatorJ@ f , f #. The most
familiar choice is the BGK model,1

J@ f , f #→2n~ f 2 f L!, ~30!

wheren is an effective collision frequency that depends
the temperature, according to the interaction potential.
NS transport coefficients of the BGK model areh05p/n and
k055pkB/2mn. Thus the BGK model has the drawback th
it predicts an incorrect value for the Prandtl number, Pr51.
This is a consequence of the fact thatn is the only adjustable
parameter in the model. This deficiency is corrected by
so-called ellipsoidal statistical~ES! model,1 in which case

J@ f , f #→2z~ f 2 f R!, ~31!

where z is again an effective collision frequency and t
reference functionf R is

f R5np23/2~det A!21/2exp~2A21:VV !, ~32!

where Ai j 5(2kBT/m)Pr21 d i j 22(Pr2121)Pi j /mn. The
NS coefficients are now h05p/(z Pr21) and k0

55pkB/2mz. If, as in Eq. ~15!, we define a collision fre-
quencyn5p/h0, thenn5z Pr21 in the ES model. Note tha
the ES model reduces to the BGK model if we forma
make Pr51. Therefore, the ES model can be seen as
extension of the BGK model to account for the corre
Prandtl number, which can be particularly relevant in t
Couette flow where heat transport and momentum trans
are coupled. The results derived from the BGK and the
models for the Couette flow problem are also given in
Appendix. Apart from obtaining the transport properties,
velocity distribution function can be explicitly written. In
particular, the BGK distribution is given by6

f ~r ,v!5nS m

2pkBTD 3/22a~11a!3/2

eujyu

3E
t0

t1
dt@2t2~12a!t2#25/2

3expH 2
2a

11a

12t

ejy
2

11a

2t2~12a!t2

3F S jx1
2aa

11a

12t

e D 2

1jy
21jz

2G J . ~33!

Here, (t0 ,t1)5(0,1) if jy.0 and (t0 ,t1)5@1,2/(12a)# if
jy,0. Besides,j[(m/2kBT)1/2V,

a5
e

~e218g!1/2
, ~34!

and
c-

ic
r

n

e

t

e

n
t
e
rt

S
e
e

e5S 2kBT

m D 1/21

n

]

]y
ln T ~35!

is a ~local! reduced thermal gradient. Equation~33! shows
that the distribution function is a highly nonlinear function
the reduced gradientsa ande.

In Ref. 9 a comparison between the analytical resu
obtained from the Grad method and the BGK and ES mod
with those obtained from molecular dynamics simulation10

for hard disks was carried out. It was found that the th
theories reproduced quite well the simulation data forFh ,
but the Grad method failed forFk andF. The latter quantity
was reproduced better by the ES model than by the B
model. Notwithstanding this, more definite conclusio
could not be reached because the simulation data were
stricted to rather small shear rates, namelya&0.2. In this
range of shear rates, non-Newtonian effects are not e
cially significant. In addition, although the molecular dynam
ics simulations correspond to a very dilute gas~area fraction
f'1%), thecollisional contributions to the transport coe
ficients ~absent in a Boltzmann description! are notstrictly
zero. Finally, as a minor point, conclusions drawn in t
context of two-dimensional systems should not be extra
lated without caution to the more realistic case of three
mensions. As said in Sec. I, the aim of this paper is to so
numerically the Boltzmann equation by means of the DSM
method for the planar Couette flow and compare the res
with the theoretical predictions. We will consider thre
dimensional systems of Maxwell molecules and hard sphe
subjected to shear rates as large asa.1.2. In addition to the
nonlinear transport coefficients, the comparison will be e
tended to the level of the velocity distribution function itse

III. BOUNDARY CONDITIONS AND MONTE CARLO
SIMULATION

A. Boundary conditions

The goal now is to solve numerically the Boltzman
equation corresponding to the planar Couette flow by us
the successful DSMC method.11 The gas is enclosed betwee
two parallel plates located aty50 andy5L, which are mov-
ing along thex direction with velocitiesU05U0x̂ and UL

5ULx̂, respectively. In addition, they are kept at tempe
turesT0 andTL , respectively. In order to solve Eq.~16!, we
need to impose the corresponding boundary conditions. T
can be expressed in terms of the kernelsK0,L(v,v8) defined
as follows. When a particle with velocityv8 hits the wall at
y5L, the probability of being reemitted with a velocityv
within the rangedv is KL(v,v8)dv; the kernelK0(v,v8) rep-
resents the same but aty50. The boundary conditions ar
then17

Q~6vy!uvyu f ~y5$0,L%,v!

5Q~6vy!E dv8uvy8uK0,L~v,v8!

3Q~7vy8! f ~y5$0,L%,v8,t !. ~36!
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In this paper we consider boundary conditions of compl
accommodation with the walls, so thatK0,L(v,v8)5K0,L(v)
does not depend on the incoming velocityv8 and can be
written as

K0,L~v!5A0,L
21Q~6vy!uvyuf0,L~v!,

~37!

A0,L5E dv Q~6vy!uvyuf0,L~v!,

wheref0,L(v) represents the probability distribution of a fi
titious gas in contact with the system aty5$0,L%. Equation
~37! can then be interpreted as meaning that when a par
hits a wall, it is absorbed and then replaced by a part
leaving the fictitious bath. Of course, any choice off0,L(v)
must be consistent with the imposed wall velocities and te
peratures, i.e.,

U0,L5E dv vxf0,L~v!, ~38!

kBT0,L5
1

3
mE dv~v2U0,L!2f0,L~v!. ~39!

The simplest and most common choice is that of a Maxwe
Boltzmann~MB! distribution:

f0,L
MB~v!5S m

2pkBT0,L
D 3/2

expF2
m~v2U0,L!2

2kBT0,L
G . ~40!

Under these conditions, the system is understood to be
closed between two independent bathsat equilibrium. While
the conditions~40! are adequate for analyzing bounda
effects,1,18 they are not very efficient when one is interest
in obtaining the transport properties in the bulk region.
order to inhibit the influence of boundary effects, it is mo
convenient to imagine that the two fictitious baths are
nonequilibriumstates resembling the state of the actual
near the walls. More specifically, we can assume that
fictitious gases are described by the BGK equation, wh
exact solution for the steady planar Couette flow is given
Eq. ~33!. In this case, the probability distributionsf0,L(v)
are

f0,L
BGK~v!5p23/2

m

kBT0,L

a0,L~11a0,L!3/2

e0,Luvyu
E

t0

t1
dt

3@2t2~12a0,L!t2#25/2

3expH 2S 2kBT0,L

m D 1/2 2a0,L

11a0,L

12t

e0,Lvy

2
m

2kBT0,L

11a0,L

2t2~12a0,L!t2 F S vx2U0,L

1
2a8a0,L

11a0,L

12t

e0,L
D 2

1vy
21vz

2G J , ~41!

where (t0 ,t1)5(0,1) if vy.0 and (t0 ,t1)5@1,2/(12a0,L)#
if vy,0, anda0,L5e0,L /@e0,L

2 18gBGK(a8)#1/2. Here,a8 is
theestimatedvalue of the reduced shear rate, as predicted
the BGK model for specific values of the boundary para
eters U0,L and T0,L , and gBGK(a8) is obtained from Eq.
e
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–
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s
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~A6!. Given the values of the four independent bounda
parametersU0,L and T0,L ~as well as the distanceL), the
shear ratea8 and the local thermal gradientse0,L are fixed by
the conditions~17!–~19!. Therefore,

a85
UL2U0

L , ~42!

e0,L5
1

L S 2kBT0,L

m D 1/2FTL2T0

T0,L
6

mgBGK~a8!Pr

kBT0,L
L 2G . ~43!

In these equations,L is related to the actual separationL
between the plates through the nonlinear equation

L5E
0

L ds

n~s!
, ~44!

wheres is a variable in terms of which the temperature is
quadratic function, namelyT(s)5T0@11e0(m/2kBT0)1/2s
2mgBGK(a8)Pr s2/kBT0#, and thes dependence of the col
lision frequencyn(s) appears only through the temperatu
~taking into account thatp5const). The solution of the non
linear set of equations~42!–~44! gives a8, e0,L , andL for
any choice ofU0,L , T0,L , andL. Nevertheless, from a prac
tical point of view, it is more convenient to fixU0 , T0,L , a8,
ande0 as independent parameters. Without loss of genera
we takeU050 andTL51. In addition, we will choosee0

50. This implies that, if boundary effects were absent,
temperature would have a maximum at the lower platey
50. Thus,

UL5a8L, L5F D

2 Pr gBGK~a8!
G 1/2

, ~45!

eL522
D

L . ~46!

In Eqs. ~45! and ~46! D[T021 and we have takenm51
andkB5 1

2. Finally, the actual distanceL is given by Eq.~44!.
However, from the simulation point of view, it is more us
ful to expressL in terms of the collision frequencyn̄ corre-
sponding to the temperatureTL and the average densityn̄. In
other words, instead of Eq.~44! we use

n̄5
1

LE0

L

dy n~y!5
1

LE0

L
ds

n~s!

n~s!
~47!

to determineL. For the sake of concreteness, let us consi
repulsive potentials, for whichn5 n̄(n/n̄)(T/TL)v, wherev
ranges from 0~Maxwell molecules! to 1

2 ~hard spheres!. In
that case,

L5
1

n̄
E

0

L
ds@T~s!#2v. ~48!

For Maxwell molecules, this simply reduces toL5L/ n̄,
while for hard spheres one hasL5(L/ n̄)tan21(AD)/AD. In
summary, given the values ofa8 and D, the separationL
between the plates and the velocity of the upper plateUL are
uniquely determined. In addition, the thermal gradient at
upper plateeL is also determined, while the value at th
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lower plate is fixed ase050. The knowledge of these bound
ary parameters allows one to obtain the distributio
f0,L

BGK(v), according to Eq.~41!.

B. The DSMC method

Now, we briefly describe the numerical algorithm w
have employed to solve the Boltzmann equation by mean
the so-called direct simulation Monte Carlo~DSMC!
method.11 In this method, the velocity distribution function i
represented by the velocities$vi% and positions$yi% of a
sufficiently large number of particlesN. Given the geometry
of the problem, the physical system is split into layers
width dy, sufficiently smaller than the mean free path. T
velocities and coordinates are updated from timet to time t
1dt, where the time stepdt is much smaller than the mea
free time, by applying a streaming step followed by a co
sion step. In thestreaming step, the particles are moved ba
listically, yi→yi1v iydt. In addition, those particles crossin
the boundaries are reentered with velocities sampled f
the corresponding probability distributionK0,L(v). Suppose
that a particlei crosses the lower plate between timest and
t1dt, i.e., yi1v iydt,0. Then, regardless of the incomin
velocity vi , a new velocityṽi is assigned according to th
following rules. First, a velocityṽi ~with ṽ iy.0) is sampled
with a probability proportional touvyuf0

MB(v). If one is con-
sidering the MB boundary conditions, this velocity is a
cepted directly. Otherwise, the above acts as a ‘‘filter’’
optimize the acceptance–rejection procedure and the ve
ity ṽi is accepted with a probability proportional to the ra
f0

BGK(v)/f0
MB(v). If the velocity is rejected, a new velocit

ṽi is sampled and the process is repeated until accepta
The new position is assigned asṽ iy(dt1yi /v iy). The pro-
cess is analogous in the case of the upper plate.

Thecollision stepproceeds as follows. For each layera,
a pair of potential collision partnersi and j are chosen a
random with equiprobability. The collision between tho
particles is then accepted with a probability equal to the c
responding collision rate timesdt. For hard spheres, the co
lision rate is proportional to the relative velocityuvi2vj u,
while it is independent of the relative velocity for Maxwe
molecules~an angle cutoff is needed in the latter case!. If the
collision is accepted, the scattering direction is random
chosen according to the interaction law and postcollisio
velocities are assigned to both particles, according to
conservation of momentum and energy. After the collision
processed or if the pair is rejected, the routine moves aga
the choice of a new pair until the required number of can
date pairs has been taken.

In the course of the simulations, the following ‘‘coars
grained’’ local quantities are computed. The number den
in layer a is

na5n̄
Na

~N/L !dy
5

n̄L

Ndy (
i 51

N

Qa~yi !, ~49!

whereQa(y) is the characteristic function of layera, i.e.,
s

of

f

-

m
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ce.
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Qa(y)51 if y belongs to layera and is zero otherwise
Similarly, the flow velocity, the temperature, the pressu
tensor, and the heat flux of layera are

ua5
1

Na
(
i 51

N

Qa~yi !vi , ~50!

kBTa5
pa

na
5

m

3Na
(
i 51

N

Qa~yi !~vi2ua!2, ~51!

Pa5
L

Ndy
m(

i 51

N

Qa~yi !~vi2ua!~vi2ua!, ~52!

qa5
L

Ndy

m

2 (
i 51

N

Qa~yi !~vi2ua!2~vi2ua!. ~53!

From these quantities one can get local values of the gr
ents and of the transport coefficients. For instance, the
duced shear rate is

aa5
n̄

n̄na
S TL

Ta
D v ua11,x2ua,x

dy
~54!

and the viscosity function is

Fh,a52
Pa,xy

aapa
. ~55!

As said before, in the simulations we take units such t
m51, TL51, andkB5 1

2. It remains to fix the time unit or,
equivalently, the length unit. The standard definition of me
free path in the case of hard spheres is2

l5
1

A2nps2
, ~56!

wheres is the diameter of the spheres. The Navier–Sto
shear viscosity is~in the first Sonine approximation! h0

55(mkBT/p)1/2/16s2. Consequently, the effective collisio
frequencyn5p/h0 and the mean free pathl are related as
n5(8/5Ap)(2kBT/m)1/2/l. As usual, we choose the mea
free path corresponding to the average densityn̄ as the
length unit. This in turn implies thatn̄58/5Ap.0.903. For
convenience, we take the latter value for Maxwell molecu
as well. The typical values of the simulation parameters
N523105 particles, a layer widthdy50.02, and a time step
dt50.003.

The procedure to measure the relevant quantities of
problem is as follows. First the values of the imposed sh
rate a8 and the temperature differenceD are chosen. This
choice fixes the system sizeL, as well as the upper velocity
UL and the upper thermal gradienteL , according to Eqs.
~45!, ~46!, and~48!. Starting from an equilibrium initial state
with T5T0, the system evolves driven by the boundary co
ditions described before. After a transient period~typically
up to t525), the system reaches a steady state in which
quantities fluctuate around constant values. In this state,
balance equations predict that the quantitiesuy , Pxy , Pyy ,
and uxPxy1qy are spatially uniform and this is used in th
simulations as a test to make sure that the steady state
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been achieved. Once the steady state is reached, the
quantities~49!–~55! are averaged over typically 100 sna
shots equally spaced betweent525 andt555, which corre-
sponds to about 60 collisions per particle in the case of h
spheres.

C. Test of the numerical algorithm

Before closing this section, it is worthwhile carrying o
a test of the reliability of the numerical method. To that en
we have simulated the BGK equation by a DSMC-li
method similar to the one described in Ref. 19. If the bou
ary conditions are implemented correctly and the simulat
parameters are well chosen, then the simulation res
should agree with the theoretical BGK predictions. We ha
checked that this indeed the case. As an example, con
the hard-sphere situation witha851 andD55. This corre-
sponds to gBGK50.248, L51.81, UL53.17, and eL5
23.15, where in this case Pr51. Figure 1 shows the mar
ginal velocity distributions of particles reemitted by th
walls,

K0,L~jy!5S 2kBT0,L

m D 1/2E
2`

`

dvxE
2`

`

dvz K0,L~v!, ~57!

as functions ofjy5(m/2kBT0,L)1/2vy . The casejy.0 (jy

,0) corresponds to particles that are reemitted from
lower ~upper! plate. The agreement with the imposed dist
bution is excellent. Note the strong asymmetry between
distributions corresponding to both plates, in contrast to
symmetry of the MB distributions obtained from~40!. The
temperature and velocity profiles are shown in Fig. 2. T
simulation values overlap, within statistical fluctuations, w
the theoretical predictions. Apart from the profiles, we ha
verified that the generalized transport coefficients obtai
from the fluxes also agree with the theory. A more string
test is provided in Fig. 3, where the marginal distributi

FIG. 1. Plot of the marginal distribution function of particles reemitted
the walls. The solid line corresponds to the distribution measured in
simulation by applying the BGK boundary conditions~with a851, e050,
andeL523.15), the dashed line is the theoretical BGK distribution~which
is hardly distinguishable from the solid line!, and the dotted line correspond
to the MB boundary conditions.
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FIG. 2. Temperature and velocity profiles for hard spheres in the casL
51.81, UL53.17, andT056. The solid lines are results obtained from
DSMC simulation of the BGK equation, while the dashed lines are
theoretical BGK results.

FIG. 3. Marginal velocity distribution function for hard spheres aty
50.5L in the caseL51.81,UL53.17, andT056. The solid line is obtained
from a DSMC simulation of the BGK equation, while the dashed li
~which is hardly distinguishable from the solid line! is the theoretical BGK
distribution.
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function

w~jy!5
1

n S 2kBT

m D 1/2E
2`

`

dvxE
2`

`

dvz f ~v!,

~58!

jy5S m

2kBTD 1/2

vy

is plotted at the pointy/L50.5, which corresponds to a loca
thermal gradiente520.60. It is apparent again that an e
cellent agreement exists between simulation and theory.

IV. RESULTS

This section is devoted to a comparison between
simulation results for the Boltzmann equation obtained
the simulation method described in Sec. III and the theo
ical predictions provided by the Grad method and the BG
and ES kinetic models. The comparison will be carried ou
the levels of the transport coefficients and the velocity d
tribution, both for Maxwell molecules and hard spheres. B
fore that, the hydrodynamic profiles obtained from the sim
lations by using the two types of boundary conditio
considered in Sec. III are presented.

A. Hydrodynamic profiles

As said in Secs. I and II, the Boltzmann equation
Maxwell molecules admits an exact solution characteri
by Eqs.~17!–~19!. This solution applies to the bulk region
i.e., the region where boundary effects are negligible. Ob
ously, in a simulation with a finite size of the system, it is n
possible to avoid boundary effects completely. On the ot
hand, one can expect that the ‘‘nonequilibrium’’ bounda
conditions based on the BGK distribution, Eq.~41!, inhibit
the boundary effects, as compared with the conventio
‘‘equilibrium’’ boundary conditions ~40!. We have con-
firmed that this is indeed the case. As an illustrative exam
let us considerD55 anda850.92 for Maxwell molecules.
This corresponds togBGK50.21, L54.68, UL53.90, and
eL522.37. Figure 4 shows the temperature and veloc
profiles as obtained by using the MB and BGK bounda
conditions. It is apparent that the velocity slips and the te
perature jumps at the walls are much larger in the form
case than in the latter. Note that the maximum temperatu
not exactly located in the layer adjacent to the lower pl
but it is slightly shifted. It is interesting to remark that whe
plotting the temperatureT as a function of the flow velocity
ux , a parabolic curve is observed with both boundary con
tions, as expected from Eqs.~18! and ~19!. A more evident
proof of the advantage of the BGK conditions is shown
Fig. 5. Since the pressure is a constant in the exact solu
valid in the bulk, any deviation fromp5const can be attrib-
uted to boundary effects. The pressure obtained with
BGK boundary conditions is practically constant, exce
near the upper plate, while the one obtained with the M
conditions is only nearly constant in a small region arou
y/L.0.75. Finally, Fig. 6 shows the ratioa/a8 between the
actual ~local! shear ratea measured in the simulations, c
Eq. ~54!, and the imposed shear ratea8. The ratio is closer to
e
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1 in the case of the BGK boundary conditions than in that
the MB conditions. In addition, in the former case the regi
wherea is practically constant extends to layers closer to
lower plate.

FIG. 4. Temperature and velocity profiles for Maxwell molecules, as
tained from DSMC simulations, in the caseL54.68, UL53.90, andT0

56. The solid lines refer to the results obtained from the BGK bound
conditions and the dashed lines refer to those obtained from the MB bo
ary conditions.

FIG. 5. Same as in Fig. 4, but for the pressure~which is measured in units

of n̄kBTL).
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In summary, the above-mentioned example illustra
that the BGK boundary conditions are much more effici
than the MB ones to measure transport properties in the b
Therefore, in what follows we will only consider the BG
conditions. In each case, we identify a bulk domain co
prised between the layersy5y0 and y5y1 where a
.const, p.const, andg.const, and take averages ofa,
Fh , Fk , C1,2, andF over those layers. Typical values a
y0 /L.0.2 andy1 /L.0.8.

B. Nonlinear transport coefficients

In this section we compare the simulation results
Maxwell molecules and hard spheres obtained from
Monte Carlo simulations with the~universal! predictions of
the Grad method and the BGK and ES kinetic models.
said in Sec. I, we are interested in situations where the Kn
sen number is not small, so that nonlinear effects
important.20 An interesting quantity in thenonlinearCouette
flow is the parameterg, which is related to the curvature o
the temperature profile. Its shear-rate dependence is show
Fig. 7. A remarkable feature is that the simulation data
both interactions seem to lie on a common curve. This in
cates that, as predicted by the models, the transport pro
ties are hardly sensitive to the interaction potential, provid
that the quantities are conveniently scaled. While the kin
models exhibit a good quantitative~in the case of the ES
model! or qualitative ~BGK model! agreement, the Grad
method fails, except for small shear rates. Sinceg(a)
5a2Fh(a)/5Fk(a), one can interpret 5g(a)/a2 as an effec-
tive, shear-rate dependent Prandtl number~relative to the
usual Pr). This quantity is bounded between 1 for small sh
rates and 5/3~in the BGK model! or 5/2 ~in the ES model! in
the limit of large shear rates. This is consistent with the f
that the BGK model underestimates the value ofg.

The most important transport coefficient is the nonline
viscosity represented by the functionFh(a). According to
Fig. 8, the three theories retain the qualitative trends of
simulation data, namely the decrease ofFh with increasinga
~shear thinning effect!. In general, however, the kinetic mod

FIG. 6. Same as in Fig. 4, but for the ratioa/a8 between the actual shea
rate,a, and the one imposed by the BGK boundary conditions,a8.
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els ~especially the BGK model! have a better agreement tha
the Grad method. It is also interesting to remark that a sli
influence of the interaction potential seems to exist, the sh
thinning effect being a little bit more significant for har
spheres than for Maxwell molecules. The nonlinear therm
conductivity Fk(a) is plotted in Fig. 9. It is quite apparen
that Grad’s solution does not capture even the qualita
shape ofFk , as was already noted in the case of hard disk9

Again, the kinetic models present a good agreement, e
cially in the case of the ES model.

Normal stress differences are characterized by the vis
metric functionsC1,2(a). These quantities are well describe
by the kinetic models, as shown in Figs. 10 and 11. A
quantitative level, the agreement is better in the case of M
well molecules. In fact, the viscometric functions, especia
the second one, exhibit a certain influence of the poten
Although the functionsC1,2(a) were not evaluated from the
Grad method in Refs. 10 and 16, the friction functionFm(a)

FIG. 7. Plot of the thermal curvature parameterg as a function of the shea
rate. The symbols are simulation data for Maxwell molecules~circles! and
for hard spheres~triangles!, while the lines are the theoretical prediction
given by the ES kinetic model~solid line!, the BGK kinetic model~dashed
line!, and the Grad method~dotted line!.

FIG. 8. Same as in Fig. 7, but for the viscosity functionFh .
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was calculated. This quantity is plotted in Fig. 12, showi
an agreement between the theories and the simulation
similar to the one found in Fig. 8 for the viscosity functio
The last transport coefficient is the cross-coefficientF de-
fined by Eq.~25!. The comparison with simulation results fo
this quantity is a stringent test of the theories, since it i
generalization of a Burnett coefficient that measures
component of the heat flux orthogonal to the thermal gra
ent. Figure 13 shows that, as happened with the thermal
ductivity function Fk(a), the Grad method gives a wron
prediction for the shear-rate dependence ofF(a). On the
other hand, the kinetic models describe fairly well the no
linear behavior of this function. In the case of the ES mod
the agreement with the simulation data is practically perfe

C. Velocity distribution function

Apart from the transport coefficients, the kinetic mode
provide the velocity distribution function. In the case of t
BGK model, the solution is given by Eq.~33!, while the ES
distribution function can be found in Refs. 8 and 9. In ord

FIG. 9. Same as in Fig. 7, but for the thermal conductivity functionFk .

FIG. 10. Same as in Fig. 7, but for the first viscometric functionC1, relative
to the Burnett valueC1(0). Notethat the Grad prediction is not plotted.
ata
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to assess their reliability, we have computed in the simu
tions the marginal distribution~58! at the layery/L50.5.
The ratio R(jy)[w(jy)/@p21/2exp(2jy

2)#, where w(jy) is
defined by Eq.~58!, is a measure of the departure of th
distribution function from the local equilibrium. This quan
tity is plotted in Fig. 14 for Maxwell molecules in the case
a reduced shear ratea50.636 and a reduced~local! thermal
gradiente520.272. Both theories capture the main featu
of the actual distribution. While the BGK distribution exhib
its a better agreement near the maximum~around jy.
20.5), the ES distribution seems to describe better the
gion jy*1. The case of hard spheres is illustrated in Fig.
which corresponds toa50.419 ande520.195. In this case,
the ES model shows a superiority over the BGK model b
near the maximum and for large positive velocities.

V. CONCLUDING REMARKS

This paper has dealt with the steady planar Couette fl
in a dilute gas beyond the scope of the Navier–Stokes

FIG. 11. Same as in Fig. 7, but for the second viscometric functionC2,
relative to the Burnett valueC2(0). Note that the Grad prediction is no
plotted.

FIG. 12. Same as in Fig. 7, but for the friction functionFm .
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scription. This nonlinear problem had been previously st
ied by means of kinetic theory tools, such as the G
method, and the BGK and ES kinetic models. These theo
predict momentum and heat fluxes characterized by
shear-rate-dependent generalized transport coefficient
viscosity functionFh(a), Eq. ~20!, a thermal conductivity
functionFk(a), Eq.~21!, two viscometric functionsC1,2(a),
Eqs. ~22! and ~23!, and a cross coefficientF(a), Eq. ~25!.
The main motivation of our study has been to perfo
DSMC simulations for Maxwell molecules and hard sphe
in order to assess the reliability of the above-mentioned th
ries in the non-Newtonian regime. Since we have been in
ested in the bulk properties, we have used ‘‘nonequilibrium
boundary conditions to inhibit the influence of finite-size e
fects.

FIG. 13. Same as in Fig. 7, but for the cross coefficientF, relative to the
Burnett valueF(0).

FIG. 14. Marginal velocity distribution function, relative to the local equ
librium distribution, for Maxwell molecules aty50.5L in the casea
50.636 ande520.272. The solid line is obtained from a DSMC simul
tion, while the dashed line is the theoretical ES distribution and the do
line is the theoretical BGK distribution.
-
d
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An important outcome of the simulation results is th
as predicted by the kinetic theories considered here,
shear-rate dependence of the transport coefficients is pr
cally insensitive to the interaction potential when the qua
tities are properly nondimensionalized. In particular, the
tual shear rate has been reduced with respect to an effe
collision frequency defined from the Navier–Stokes sh
viscosity coefficient. The simulation results show, howev
that the second viscometric function presents a n
negligible influence of the interaction model, so that the n
mal stress differencePzz2Pyy is smaller for Maxwell mol-
ecules than for hard spheres. The comparison with
theoretical predictions shows that the kinetic models giv
fairly good description of the five transport coefficients. O
the other hand, the Grad method yields a shear viscosit
qualitative agreement with the simulations but it dramatica
fails for the coefficients measuring the heat flux. This is b
sically due to the truncation scheme of the Grad method
the level of the heat flux. The physical idea behind a kine
model is quite different, since it consists of replacing the tr
Boltzmann collision operator by a simple relaxation term b
otherwise all the velocity moments are taken into accou
As a consequence, while in the Grad method one has to s
a closed set of coupled differential equations for the m
ments, in the case of the kinetic model one gets the velo
distribution function and determines the fluxes from it.

In the ES kinetic model the reference distribution fun
tion appearing in the collision operator is an anisotro
Gaussian parametrized by the pressure tensor. This al
the model to give the correct Prandtl number Pr5 2

3 but at the
expense of complicating its mathematical structure. In
case of the BGK model, however, the reference distribut
is that of local equilibrium but the model leads to Pr51. The
agreement with simulation of the ES model is generally b
ter than that of the BGK model, especially in the case ofFk

andF. In spite of this, it is fair to say that the performanc
of the BGK model is quite good, given its simplicity relativ
to that of the ES model. Finally, the results reported in t
paper clearly show the usefulness of kinetic models to a
d

FIG. 15. Same as in Fig. 14, but for hard spheres in the casea50.419 and
e520.195.
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lyze nonlinear transport phenomena in the Couette fl
problem. This complements previous conclusions dra
from other nonlinear problems, such as the uniform sh
flow and the Fourier flow.
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APPENDIX: THEORETICAL EXPRESSIONS FOR THE
TRANSPORT COEFFICIENTS

In this Appendix we list the explicit shear-rate depe
dence of the dimensionless transport coefficients define
Sec. II, according to the Grad method, the BGK model, a
the ES model.

1. The Grad method

From the Appendix of Ref. 10, corrected in Ref. 16, o
has

Fh~a!5
2

11 72
25 a21D~a!

, ~A1!

Fk~a!5
4

12 216
25 a213D~a!

, ~A2!

F~a!527
12 36

125a2

11 6
5 a21~12 63

25 a2!D~a!
, ~A3!

whereD(a)[A11 116
25 a22 864

625a
4. The viscometric functions

are not evaluated in Refs. 10 and 16, although the frict
function is provided. It is given by

Fm~a!5
2

11 12
25 a21D~a!

. ~A4!

Note that Fh(a) and Fm(a) become meaningless fora2

>25(A1057129)/432.3.56, whileFk(a) andF(a) are un-
physical for a2>50/63.0.79. For small shear rates, th
above-mentioned transport coefficients behave asFh.1
2 13

5 a2, Fk.11 21
50a

2, F.2 7
2(12 197

250a
2), andFm.12 7

5a
2.

2. The BGK model

The derivation of the transport coefficients from t
BGK model5 implies the resummation of asymptotic seri
by means of the Borel method. As a consequence, the re
are expressed in terms of the functionsFr(x) defined by the
recurrence relationFr(x)5@(d/dx)x# rF0(x), where

F0~x!5
2

xE0

`

dt te2t2/2K0~2t1/2/x1/4!, ~A5!

K0 being the zeroth-order modified Bessel function. The c
vature parameterg(a) is given by the solution to the follow
ing implicit equation:
w
n
ar

S
e

-
in
d

n

lts

r-

a25g
3F112F2

F1
, ~A6!

where the functionsFr are evaluated atx5g. Next, the
transport coefficients are expressed in terms ofa andFr(g)
as

Fh~a!5F0 , ~A7!

Fk~a!5
F0

5

3F112F2

F1
, ~A8!

C1~a!522F1

3F114F2

3F112F2
, ~A9!

C2~a!54
F1F2

3F112F2
, ~A10!

F~a!52@5F212F31a2~F215F318F414F5!#.

~A11!

For small shear rates, one getsFh.12 18
5 a2, Fk.1

2 162
25 a2, C1.2 14

5 (12 1476
175 a2), C2. 4

5(12 288
25 a2), F.2 14

5 ,
andFm.12 12

5 a2.

3. The ES model

In Refs. 8 and 9 the solution of the ES model is work
out keeping the Prandtl number Pr as a free parameter. H
we particularize the results to the correct value Pr5 2

3. It is
convenient to express the transport coefficients in terms o
auxiliary parameterb, defined as the solution of the implic
equation

a25
4b

9

3
@2b~F112F2!23#2@3F112F222bF1~F112F2!#

F0
2@2b~F11F2!23#1F1@2b~F112F2!23#2

,

~A12!

where now the functionsFr are evaluated atx5b. The re-
lationship between the curvature parameterg andb is

g~a!5 2
9b@322b~F112F2!#. ~A13!

The transport coefficients are

Fh~a!5
9F0

@2b~F112F2!23#2
, ~A14!

Fk~a!5
a2

5g~a!
Fh~a!, ~A15!

C1~a!52
12b

a2

3F114F222bF1~F112F2!

~322bF1!@322bF1~F112F2#
,

~A16!

C2~a!5
24b

a2

F2

~322bF1!@322bF1~F112F2#
, ~A17!
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F~a!5 1
40 C1$a

2@C1
4F0

3~F112F2!29C1
3F0

2~F212F3!

154C1
2F0~F214~F31F4!!2108C1~F215F3

14~2F41F5!!#2C3~C1F0F126F2!

14C1
2F0~F112F2!14C1@C2F0F126~F2

12F3!#224C2F2%. ~A18!

In Eq. ~A18!,

C1[
3

322b~F112F2!
, ~A19!

C2[
3

322bF1
, ~A20!

C3[3a2C1
3F0

214C2$2b@C1~F114F2!13F1#23C1%.

~A21!

For small shear rates, one hasFh.12 21
5 a2, Fk.1

2 197
25 a2, C1.2 14

5 (12 2126
175 a2), C2. 4

5(12 413
25 a2), F.2 7

2,
andFm.123a2.
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