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We have derived the Burnett-order transport equations by applying the Hilbert expansion to the
steady BGK equation. The pressure tensor and heat flux vector are computed for potentials of the
form r™*. The calculated transport coefficients are compared with those obtained by means of the
Chapman—-Enskog expansion.

1. Introduction

The kinetic theory of dilute gas is based on the Boltzmann equation') (BE).
The standard method of solving it is the Chapman—Enskog (C-E) expansion.
This method relies upon two assumptions: (a) in the hydrodynamic regime the
entire time dependence of the one-particle distribution function f is through the
locally conserved variables, density n(r;¢), velocity u(r;t) and temperature
T(r; t) (normal solution); (b) f is expandable in a power series of the gradients
of the thermodynamic fields. When this power expansion is substituted in the
expressions of the average fluxes (momentum, heat, . ..), we may derive the
Euler, Navier—Stokes, Burnett, . . . hydrodynamic equations in successive ap-
proximation. The coefficients that appear in this expansion are the so-called
transport coefficients.

However, historically the C-E method was preceded by another expansion
due to Hilbert®). In this method, the local variables n, u and T are expanded in
powers of an auxiliar parameter instead of expanding the transport equations
as in the C-E solution. Thus, the formal expressions of the momentum and
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heat fluxes will be given in terms of the variables which characterize the power
expansions of the hydrodynamic fields n, u and T, and they are not in powers
of the exact (unexpanded) hydrodynamic variables as in the C-E solution.

Nevertheless, although the Hilbert method is previous to the C-E method,
the latter has been used more than the Hilbert one in the last few years.
Perhaps, this may be due to the fact that the Hilbert method is principally a
formal tool that is only slightly used for explicit calculations. The only solution
we are aware of that has applied the Hilbert expansion for solving the BE, has
been that of Delale3). In this study, the expansion has been done up to the
Navier—Stokes approximation. It shows that the thermal conductivity ,and
viscosity coefficients that appear in the steady transport equations are the same
as those obtained by the C-E expansion.

But, in general, due to the complex structure of the Boltzmann collision
integral it is a very hard task to find explicit results. This problem stimulates
the search for simplified models. One expects the most relevant features of the
BE to be reasonably well mimicked by other types of equations. Therefore,
explicit expressions for the transport coefficients can be obtained using a model
of thé Boltzmann collision operator, the nonlinear Bhatnagar—Gross—Krook
(BGK) model’). The BGK equation has been resolved by Cha and McCoy”)
using the C-E method. Detailed calculations for the pressure tensor and the
heat flux vector have been carried out by the super-Burnett hydrodynamic

“order (third approximation).

The aim of this work is to analyze the Hilbert expansion of the BGK
equation. In a previous paper®), we studied the Navier-Stokes order in the
same way as Delale’s work. Now, our purpose is to evaluate the pressure
tensor and the heat flux vector to the nonlinear Burnett order. In doing so, the
expansion is restricted to steady state to avoid the problem of the initial
conditions. On the other hand, we want to note that in this paper we are not
interested in questions about the convergence of the Hilbert series. An
adequate discussion of this problem can be found in the work of Cercignani®).

The Burnett hydrodynamic equations have been extensively dealt with in the
literature from the macroscopic point of view’) as well as from the kinetic
theory®) viewpoint. The results have generally the same form, with terms
which are linear in second derivatives or quadratic in first derivatives of the
thermodynamic variables. According to the proposed Hilbert expansion, the
derived Burnett-order relations are analogous to those given by the C-E
method. Besides, the transport coefficients that appear in the expansion of the
average fluxes happen to be identical to the coefficients given by Cha and
McCoy’) for the hard spheres interaction. In this way, the transport equations
derived from the Hilbert or C-E expansions are in agreement with the
conventional results of macroscopic theory’).
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2. Hilbert expansion of the BGK equation

The BGK model kinetic equation is a version of the nonlinear Boltzmann
equation in which the collision integral is replaced by a simple approximation.
In terms of an auxiliar parameter £, which may be set equal to unity at the end
of the calculations, the BGK equation can be written as

(2 +09)r=—e"2ffie). 10

where f(r, v; ¢) is the one-particle distribution function, {(r; ) is the collision

frequency and f, ;(r, v; f) is the local equilibrium distribution function defined
in the usual form as

fre = ”(%ZBT)M‘“’XP(_ 21:T ©=- ")2) ' @)

Here k; is the Boltzmann constant, m is the mass of a particle, and n(r; 1),
u(r; t) and T(r; ¢) are the local density, velocity and temperature, respectively.
From f, they are given by

n(r; )= f dv f(r,v; 1), (3)
n(r; Du(r; ty= f dvvf(r,v; 1), 4)
in(r; kg T(r; 1) = f dv % (v~ u(r; O))f(r, v;1). 5)

The collision frequency { is velocity independent but depends on space and
time through its dependence on the density and temperatur . In order to carry
out explicit calculations, we consider generic interaction potentials of the form
r~* for which

{onT®, (6)

where o = 1 —2/u.

The BGK equation is a model that preserves the most relevant properties of
the BE. It has five collision invariants (mass, momentum and energy) and
verifies an H theorem. Then, by taking moments in velocity space the BGK
equation leads to familiar transport equations,
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an

” +uVin=-nVu,, 7
du, '

mn[? + u].Vju,.] = —V]-Pl-]- R (8)

3 aT

. nkB[E + u].V].T] = —V,J,— 1P (Y, + V), ©)

where the summation convention has been used and we have introduced the
pressure tensor P, and the heat flux vector J; given respectively by

P,= [ dvm(, ~ u)w,~ u)f (10)
5= [ 0% 0~ wpe, - u)f. (1)

Assuming that f does not explicitly depends on r and ¢, we construct a normal
solution of the BGK equation in the form of a series,

f=2 %, (12)

Similarly, in the Hilbert theory the hydrodynamic fields n, u; and T can be
expanded in powers of ¢:

(k)

n © n
{u'}: 2 ul (13)
k=0

r T

where the parameters denoted by ¢ ®) = {n<k), ui-k), T(k)} are for the moment
left arbitrary. Clearly, every function that depends on these variables will be
able to be expanded in an analogous way.

In order to get information about the terms appearing in eq. (13) we use the
hydrodynamic balance equations (7)-(9). Thus, we must consider the corre-
sponding expansions in (7)—(9) and collect the terms of equal power in ¢
together. In this way, we obtain a self-consistent solution of the BGK equation
since f(r, v; t) reproduces the five hydrodynamic moments n, nu; and Ink,T,
for each approximation. Therefore, we obtain for the f ) approximations the
so-called solvability conditions.

When we insert (12), (13) into the BGK equation (1) and separate terms for
each order, we obtain the equations
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(0) _ £(0)
f —JLE>

FO = 0 (;t >f(0)

o
£ = @) L) (ai >f(1) ‘o (FO - Fy
. (14)

f(k) () _ % <§t+ V)f(" 1 L) j [O(fED — pby

where now f© is zeroth order in gradients of the variables £ (the local

equilibrium approximation), f*) is zeroth order in gradients of the variables
£D and first order in gradients of the variables ¢£'”, etc. Eq. (14) are algebraic
and can be solved sequentially. At each stage, five arbitrary functions appear in
the solution. These functions satisfy certain partial differential equations that
correspond to the well-known Euler, Navier—Stokes, . . . transport equations.
So, in contrast to what happens in the BE, from the BGK equation we can
evaluate exactly the transport coefficients at each order.

In order to neglect the effects of the initial distribution function, our
discussion is limited to the steady state. Thus, in the previous expressions all
the partial time derivatives disappear.

3. Burnett hydrodynamic order

According to eqs. (14), at the zeroth order the distribution function corre-
sponds to the local equilibrium function defined from the variables n'”, u'®
and T(O),

3/2
m m
fO=f2= n(0)<27rk—BT(0)> exP(_Z—kﬁm (v-— u(o))2> : (15)

This characteristic happens to be a basic difference from the C-E expansion,
because in the C-E method the fluid variables appearing in the Maxwellian
(zeroth order) are exact and hence no corrections are permitted. By using eqs.
(7)-(9), we obtain easily the Euler steady transport equations:
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0 0
V].(n( )u§ N=0, (16)
pOuOVu® = -v,p® (17)
WOV TO = — 37OV (18)

where J =0, and we have introduced the density p@=mn” and the
pressure p@= n(o)k T in the zeroth approximation.

Solving sequentially, and after some manipulations, we find that the first-
order approximation (Navier—Stokes order) to f is given by

1) 0)? (
FO = f(O)[ ; <mV _ _3_> T, m YOy
1)
( ) 2kBT( ) 2 T( ) kBT( Yy T j
VE_O) < mV(0)2 5 V]-T(O)
- ;@ 2kBT(0) ) T®

m
kg, TOr©

2
(V,(-O)Vfo) _ %V(O) 3i]_)V].ufO)] ’ (19)

where V= v, — 4. In (19) we have introduced the quantities ", 4 and
T™ defined respectively by

n® = [ av o, 20)
nOul? =fdv VO, (21)
2p(l) — 3(n(0)k T 4 O T(O)) fd 174 f(l) . (22)

From the expression for ")) we can compute the pressure tensor and the heat
flux vector in that order. Taking into account only first order terms, it is
straightforward to show that®)

(1) = f do mV(O)V(O)f(l)
=pWs, —n(Vu'l® + Vu® - 25, V,ul”), (23)
J(l) _fdv V(0) V(O)f(l) (0) (1)

= -V, 7O, (24)
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where we have introduced the shear viscosity n and the thermal conductivity A
coefficients given by

0) 0)
n k., T
n=—7%r—, (25)

(0)7,2 ~(0)
o (26)
2 mg( )

The expressions of these coefficients are similar to those given by the
Chapman-Enskog theory’). Its form, as expected, does not depend on the
particular choice for the collision frequency {. When (23), (24) are introduced
into the transport equations (7)—(9), it is a matter of simple manipulation to
find the Navier-Stokes steady equations®):

V(nOul + nOu®y =0, (27)
VLo @uPu + p@uOu® 1 p Oy, 4y
0 0 2 0 —

- TI(V.-”S- "+ Vjuzg = 36ijvkul(< ))] =0, (28)

0 0 1) 1) 0)y 0) 0) 0)
3nOky (VT + 4OV TO) =V (AV.T?) — p OV, uf

Q 1 Q Q Q Q Q 0)y2
— n kg TOVWD + n(VaulOVu® + VulOVu®) - v ud)
(29)

where p(l) =mn". These equations are the same as those obtained by
Delale*) from the BE. The steady field equations are linear in ‘", ¢ and
T™ and can be solved from the Euler solution.

Nevertheless, as noted in the introduction, we are interested in the second-
order (Burnett) transport constitutive relations for the momentum and heat
fluxes. Therefore, it will be possible to compare the transport coefficients
obtained from the Hilbert expansion with those given in the C-E theory.

At the Burnett order, by utilizing (3)-(5), we introduce the hydrodynamic
variables n*, u® and T through the relations

anfdvﬂn, (30)
n Oy = f do VO & — My (31)

2p® = 21Ok, T + 1@, T + nWg TW)
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fdv AQK G PONONON (32)

Therefore, considering only second-order terms in (10), (11), we get the
following relations for the pressure tensor and heat flux vector:

(2) — J' do mv(o)v(o) f(2) (0) (1) (1) (33)
](2) — J' dv = V(O) V(O) f(2) (1) (1) p(O)u§2) _ ug_l)ngl) . (34)

The evaluation of these expressions is straightforward but tedious. In order to
obtain (33), (34) in a compact form, we have considered adequate to express
the results in terms of well-known quantities as

DY =5Vl + V.u®) s the strain rate at kth order, (35)
DO =pP =v.u® (36)
f]k) =3V, u® —Vu{?) is the vorticity at kth order . (37)

In this way, when the extensive manipulations required to obtain the fluxes are
performed, one obtains finally the following expressions:

P(z) — p(2)5 - 27]([7(1) o)~ _ g(l)g(o) _1)(D§]_0) _ %Si]-D(O))
_ 1) _ (1)
27](D 6ijD )
s 2 ks
+nd 5i,'{ 3 mT®

+§(1—2a)D(°)2 2,07 1)~ 1(Vp(0)) +2p©° 1V2 ©)

[(@ = 1)(VTO) - TOVTO]

_ 2(D(0)D(0) + w(O) ))+ 2,© “lr(o “VP(O) ,VT(O)}
+HENOTEOVTO — (o - T Y, 7OV, TO)

— 77§(0) _lp(O) ‘IT(O) "I(Vip(O)VjT(O) + V].p(o)ViT(O))

— 29 @ Tp©@ (WY, p® = p@ 7'y, pOy p@)

+ 2l @ T(DPDY + 0P 0 () ~ 3(1-2a)m @ DD

~mi @7 (DR 0 + DY), (38)
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]52) — —/\(P(I)P(O) -t {(1)5(0) _l)ViT(O) — /\VL-T(I)
+ 1@ 21 -20)DPV, TV +20 PV, T
~2(2 - 3a)DOVTO - ETOVD® + 2TOV]
~2mp @ "¢ (DR - 18, DW, (39)

where « is the interaction parameter introduced in (6).

As expected, in the Hilbert theory the Burnett equations are formed by
terms up to second derivatives in u® and T (linear terms in second
derivatives and quadratic terms in first derivatives), up to first derivatives in
u and T™, combinations of them plus a linear form of the pressure p®.

In order to carry out a closer comparison with the results given by Cha and
McCoy”) from the C-E expansion we have considered the hard sphere model
(e = 1). However, the Burnett equations derived from the Hilbert theory
cannot be compared directly with the results obtained by means of the C-E
expansion since the latter has been defined in terms of the exact (unexpanded)
hydrodynamic variables. The transport equations derived from the C-E
method must be expressed in terms of the £¢*) parameters (eq. (13)). Then, in
an attempt to carry out a comparison we have expanded in powers of ¢ the
hydrodynamic variables that appear in the results of Cha and McCoy (relations
(9), (12) and (13) of ref. 5 corresponding to first and second order) and we
have collected the terms that belong to Burnett order according to the
re-ordering scheme introduced before. In this way, the transport equations
obtained with the C-E method are the same as those obtained by the Hilbert
method. Besides, the transport coefficients coincide exactly with the coeffici-
ents given by egs. (38) and (39). Therefore, we may conclude that the
transport equations derived by both expansions are equivalent and they are in
agreement with the conventional results of the macroscopic theory.

Finally, introducing the corresponding expansions in the balance equations
(7)-(9), we get the Burnett steady transport equations:

Vj[n(z)uj.o) + n(l)ug.l) + n(o)ug.z)] =0, (40)
0 0), (0). (2 1), (1), (0 1), .(0), (1)
V0 OuPu® + pOuPu® + pOuOu® 1 pOuMy® 4 p OOy
+pPuPu® + PP1=0, (41)
1 2 (0)
%n(o)kB[ui.O)VjT(z) + ui.l)V].T( ) 4 ui. )ViT ]
— 2) _ p(2)n(0) _ (0 (2)
= V].]]. P,-]. Di]- p D
-1
— 1Ok TODW 4y, TODO — yOp® 7'y (47 T
1) (0) ! 0 0 0)2 0 1 0 1
"‘217)1,( )n( ) (ng)DEj) _ %D( ) )+2n(D§]_)DEj) _ %D( )D( )) .

1

(42)
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The solution of the steady field equations can be obtained provided that the
solution from the above approximations is known.

4. Remarks

We have resolved the BGK equation using the Hilbert perturbative expan-
sion. Constitutive equations for the pressure tensor and heat flux vector have
been worked out to the order corresponding to the Burnett approximation. In
the first approximation (Navier—Stokes), we have obtained expressions for the
viscosity and thermal conductivity coefficients that are similar to those given by
the C-E method. The terms that appear in the second-order (Burnett)
relations are analogous to results obtained in the C-E method when this latter
is expressed in terms of expanded hydrodynamic variables. The calculated
transport coefficients are also identical to those obtained from the C—E method
in the hard sphere case.

Despite the fact that the C—E method provides an elegant treatment for the
derivation of the transport equations for a simple fluid, we think that this
alternative treatment by Hilbert’s method may be suitable for further applica-
tions in some physical problems. Then, recently we have obtained a solution of
the BGK equation by means of a perturbative expansion analogous to the
Hilbert method in order to study the transport properties in a gas with large
shear rate®).
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