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Abstract

The e1ect of gravity on the tracer particles immersed in a dilute gas of mechanically di1erent
particles and subjected to the steady planar Couette 3ow is analyzed. The results are obtained
from the Gross–Krook (GK) kinetic model of a binary mixture and the description applies for
arbitrary values of both velocity and temperature gradients. The GK equation is solved by means
of a perturbation method in powers of the 7eld around a nonequilibrium state which retains all
the hydrodynamic orders in the shear rate a and the thermal gradient �. To 7rst order in the
gravity 7eld, we explicitly determine the hydrodynamic pro7les and the partial contributions to
the momentum and heat 3uxes associated with the tracer species. All these quantities are given in
terms of a; �, and the mass and size ratios. The shear-rate dependence of some of these quantities
is illustrated for several values of the mass ratio showing that in general, the e1ect of gravity
is more signi7cant when the particles of the gas are lighter than the tracer particles. c© 2001
Elsevier Science B.V. All rights reserved.

PACS: 47.50.+d; 05.20.Dd; 05.60.+w; 51.10.+y
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1. Introduction

An usual assumption in studying the transport properties of gases under ordinary
conditions is to ignore the presence of gravity. This is because the action of the 7eld
on a particle between two successive collisions is negligible, namely, ‘�h, where ‘ is
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the mean free path and h= v20=g is the characteristic distance associated with the gravity.
Here, v0 is the thermal velocity and g is the gravity acceleration. Thus, under usual
laboratory conditions and at room temperature, ‘=h ∼ 10−11 so that the dependence
of the irreversible 3uxes on the gradients of the hydrodynamic 7elds is the same as
in the case g=0 [1–3]. Nevertheless, an interesting problem is to analyze if and how
the transport equations are modi7ed when the conditions of the rarefaction and=or the
strength of the 7eld are such that the ratio ‘=h is not negligibly small. For instance,
in the case of Earth’s atmosphere, ‘ increases from 10−5 cm at the surface to tens of
kilometers at an altitude of 500 km, while h changes in a range of 5–10 km up to an
altitude of 100 km [4,5]. According to these orders of magnitude, the ratio ‘=h fastly
increases with the altitude so that ‘=h ∼ 1 at the base of the exosphere [4].
The study of the in3uence of gravity on nonlinear transport has been a subject

of interest for some of the present authors in the past few years. First, we evaluate
the corrections to the Navier–Stokes equations due to gravity in a dilute gas under
planar Fourier 3ow. This study was made from perturbation solutions of the Boltzmann
equation (through order g2) [6] and the Bhatnagar–Gross–Krook (BGK) kinetic model
(through order g6) [7]. We found that the heat 3ux is increased (decreased) with
respect to its Navier–Stokes value when the gas is heated from above (below). These
results present a good agreement with a 7nite di1erence numerical solution of the
BGK equation [8] and with Monte Carlo simulations of the Boltzmann equation for a
hard-sphere gas [9]. Recently, the above theoretical study has been extended to a more
complex state than the Fourier 3ow, namely, the planar Couette 3ow. The results were
obtained from the BGK model by performing a perturbation expansion in powers of
the 7eld around the pure (nonlinear) Couette 3ow, whose solution is known [10,11].
To 7rst order in the gravity 7eld we explicitly obtained the hydrodynamic pro7les
and the relevant nonlinear transport coeAcients of the problem [12]. Given that the
zeroth order approximation retains all the hydrodynamic orders in both the velocity and
temperature gradients, the corresponding transport coeAcients are nonlinear functions
of both hydrodynamic gradients.
All the above results refer to a single gas. However, to the best of our knowledge,

much less is known about the e1ect of gravity on transport in mixtures. Needless to
say, the study of transport properties of these systems is much more complicated than
that of a single gas. Not only is the number of transport coeAcients much higher but
also are functions of parameters such as the mass ratios, the molar fractions, and the
size ratios. Due to the complexity of the general problem, it is instructive to consider
7rst speci7c tractable situations where a thorough description may be o1ered. Perhaps,
one of the simplest cases is the so-called tracer limit, namely, a binary mixture with
a solute molar fraction negligibly small. This limit has the simplicity of the tagged
particle problem but introduces the mass ratio as a new parameter into the dynamics
of the problem. In this situation, one can assume that the state of the solvent (say, for
instance species 2) is not practically disturbed by the presence of the tracer particles,
while collisions among tracer species can be neglected in the kinetic equation for the
velocity distribution function f1 of the tracer particles. Thus, the distribution function
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f2 obeys a closed (nonlinear) Boltzmann equation and the distribution function f1 a
(linear) Boltzmann–Lorentz equation.
The aim of this paper is to analyze the e1ect of gravity on the tracer species

immersed in a gas of mechanically di1erent particles and subjected to the steady pla-
nar Couette 3ow. Since no solution of the Boltzmann equation is known for the planar
Couette 3ow (even for a single gas), here we will use again the nonlinear kinetic model
for mixtures proposed by Gross and Krook (GK) [13]. The reliability of this model
to study nonlinear transport in mixtures has been shown in the past years in di1erent
nonequilibrium problems [14–16]. The fact that the GK model is constructed in the
same spirit as the well-known BGK model [17] gives rise to the distribution f2 veri7es
the BGK equation in the tracer limit, for which, as said before, a (perturbation) solu-
tion has been recently found [12]. Once the state of the solvent component 2 is well
characterized, the goal is to determine the hydrodynamic pro7les and the coeAcients
describing the transport of momentum and energy associated with the tracer particles.
The problem is quite intricate and progress is possible here due to the previous work
made in the absence of gravity [18]. Up to the 7rst order in the 7eld, the results show
that the transport coeAcients of the tracer species di1er appreciably from those of the
gas. In general, these coeAcients are highly nonlinear functions of the mass and the
size ratios and of the shear rate and the thermal gradient.
The plan of the paper is as follows. In Section 2 we introduce the model and

describe the problem. Section 3 concerns with the perturbation solution of the GK
model, considering the two 7rst approximations. The new results refer to the 7rst
corrections of gravity to the hydrodynamic pro7les and the 3uxes. These corrections
are obtained in Section 3, the mathematical details being given in the appendices. We
complete the paper in Section 4 with some concluding remarks.

2. The kinetic model and the problem

Let us consider a binary mixture in the low-density regime described by the GK
kinetic model [13] of the Boltzmann equation

@
@t
f1 + v · ∇f1 +

F1
m1

· @
@v

f1 =− 
11(f1 − f11)− 
12(f1 − f12); 1 ↔ 2 ;

(1)

where fi is the one-particle velocity distribution function of species i (i ≡ 1; 2); Fi is
an external force, 
ij is an e1ective collision frequency, and fij is

fij = ni

(
mi

2�kBTij

)3=2
exp
(
− mi

2kBTij
(v − uij)2

)
: (2)

Here, mi is the mass of a particle of species i, kB is the Boltzmann constant, and we
have introduced the 7elds

uij =
miui + mjuj
mi + mj

; (3)
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Tij =Ti + 2
mimj

(mi + mj)2

[
(Tj − Ti) +

mi

6kB
(ui − uj)2

]
: (4)

Furthermore, the local number density, the mean velocity, and the partial temperature
of species i are de7ned, respectively as

ni =
∫

dvfi ; (5)

ui =
1
ni

∫
dvvfi ; (6)

3
2
nikBTi =

mi

2

∫
dv(v − ui)2fi : (7)

The collision terms of the GK model are obtained by requiring that their momentum
and energy moments be the same as those of the Boltzmann operator for Maxwell
molecules (i.e., an interaction potential of the form �ij = �ijr−4). This allows one to
identify 
ij as [13]


ij =Anj

[
�ij

mi + mj

mimj

]1=2
; (8)

where A=4�×0:422. Apart from the 7elds ni, ui, and Ti, one can introduce the partial
pressure tensor Pi (measuring the transport of momentum)

Pi =mi

∫
dv(v − u)(v − u)fi (9)

and the partial heat 3ux qi (measuring the transport of energy)

qi =
mi

2

∫
dv(v − u)2(v − u)fi : (10)

Here, u=(1=�)(�1u1 + �2u2) is the 3ow velocity of the mixture, �= �1 + �2, and
�i =mini is the mass density of species i. Although the GK model can be extended
to more general interactions [19], here, for the sake of concreteness, we will restrict
ourselves to the case of Maxwell molecules.
We want to analyze the in3uence of gravity on the heat and momentum transport in

a binary mixture. Since the general description of the nonlinear transport in a multi-
component gas is a complex problem, we will choose a case that shares the simplicity
of the single gas problem but yet incorporates the mass ratio as a new ingredient. This
situation corresponds to the tracer limit, namely, when the molar fraction of one of the
species is negligible. In this case, one expects that the state of the solvent component,
say 2, is not disturbed by collisions with the tracer species, so that f2 obeys a closed
equation. In addition, since n1�n2 one can neglect the collisions among tracer particles
in the kinetic equation of f1.
Under the above conditions, we assume that the gas (species 2) is driven away

from equilibrium by the action of gravity and the presence of velocity and temperature
gradients. The physical situation is that of a gas enclosed between two parallel plates
in relative motion (planar Couette 3ow) and kept at di1erent temperatures. In addition,
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the gas is also subjected to a constant gravitational 7eld perpendicular to the plates. Let
the x-axis be parallel to the direction of motion and the y-axis be normal to the plates.
We want to analyze a steady state with velocity and temperature gradients along the
y-direction coexisting with the 7elds Fi =−migŷ (i=1; 2), where g is the acceleration
due to gravity. It must be stressed that we are interested in a problem where the 7eld
does not generate convective motion so that the velocity pro7le is only due to boundary
conditions. Therefore, in the tracer limit and under the geometry of the problem, the
GK model reduces to

vy
@
@y

f1 − g
@
@vy

f1 =− 
12(f1 − f12) (11)

for the tracer component and

vy
@
@y

f2 − g
@
@vy

f2 =− 
22(f2 − f22) (12)

for the solvent component.
To simplify the analysis, it is convenient to introduce dimensionless quantities. To

do that, we choose an arbitrary point y0 belonging to the bulk domain as the origin
and take the quantities at that point. Thus, we de7ne n∗i ≡ ni=n0; T ∗

i ≡ Ti=T0; T ∗
ij ≡

Tij=T0; p∗
i =(nikBTi)=n0kBT0 ≡ pi=p0, u∗i ≡ ui=v0, u∗ij ≡ uij=v0, v∗ ≡ v=v0, f∗

i ≡
n−1
0 v30fi, f

∗
ij ≡ n−1

0 v30fij, 

∗
ij ≡ 
ij=
0, and g∗ ≡ g=v0
0. Here, v0 = (kBT0=m2)1=2 is the

thermal velocity of the solvent particles and 
0 = n0(
22=n2). Further, we de7ne the
dimensionless 3uxes P∗

i =Pi=p0 and q∗i = qi=p0v0.
In the above reduced units, Eq. (12) becomes(

1 + v∗y
@
@s

− g∗
p∗
2

T ∗
2

@
@v∗y

)
f∗
2 =f∗

22 ; (13)

where the scaled variable s is

s=
1
v0

∫ y

y0
dy′ 
22(y) : (14)

Recently, Eq. (13) has been solved by means of a perturbation expansion in powers
of gravity around the steady Couette 3ow [12]. Up to the 7rst order in the 7eld, the
solution is characterized by the pro7les

p∗
2 (s)= 1 + �2s�g∗ + O(g∗2) ; (15)

u∗2; x(s)= u∗2; x(0) + as+ !2s2�g∗ + O(g∗2) ; (16)

T ∗
2 (s)= 1 + �s− "20s2 + ("21s2 + "22s3)�g∗ + O(g∗2) ; (17)

where a (reduced shear rate) and � (reduced thermal gradient) measure the departure
of the system from equilibrium. The quantities �2; !2; "20; "21, and "22 are highly non-
linear functions of a and �. Once the hydrodynamic 7elds are known, the momentum
and heat 3uxes can be obtained. Their explicit expressions are given in Ref. [12].
The task now is to solve the kinetic equation for the tracer species, Eq. (11), once

the state of the solvent component is well known. This will be done in the next section.
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3. Hydrodynamic pro�les and transport properties of the tracer particles

In reduced units, the kinetic equation of f∗
1 is given by(

1 +
v∗y
#

@
@s

− g∗
T ∗
2

#p∗
2

@
@v∗y

)
f∗
1 =f∗

12 ; (18)

where

#=w2
(
1 + %
2

)1=2
; (19)

f∗
12 = x1(2�)−3=2 Qp12

QT
−5=2
12 exp

(
− V 2

2 QT 12

)
: (20)

Here, w ≡ (�12=�22)1=4 and % ≡ m2=m1 are the force constant ratio and the mass
ratio, respectively. Further, here, x1 = n1=n2 is the (constant) molar fraction, Qp12 = %p∗

12,
p∗
12 = n∗2T

∗
12, and QT 12 = %T ∗

12. It is worthwhile to remark that although we are consid-
ering Maxwell molecules, an e1ective diameter 'ij can be assigned to the interaction
between particles of species i and j. Dimensional analysis allows one to interpret w as
the size ratio '12='22.
In the same way as in Eq. (12), the presence of gravity complicates the problem

signi7cantly, and consequently we look for again a perturbative solution in powers of
gravity. The main feature of the expansion is that the reference state retains the full
nonlinear dependence on the shear rate and the thermal gradient. In addition, given
that the value of the gravity acceleration is small enough, for practical purposes it is
suAcient to perform a perturbation analysis. Thus, we write

f∗
1 =f(0)

1 + f(1)
1 (+ · · · ; (21)

where (= �g∗. The use of ( instead of g∗ as a perturbation parameter is due to the
fact that the product �g∗ appears in a natural way in the problem and the 7nal expres-
sions are more compact. We recall that the di1erent approximations f(k)

1 are nonlinear
functions of the shear rate and the thermal gradient. The reference distribution function
f(0)
1 represents the steady Couette 3ow of the tracer species corresponding to the actual

values of pressure, 3ow velocity, and both velocity and temperature gradients at the
point of interest y=y0. In a similar way, the 7elds p∗

12, u
∗
12; x, and T ∗

12 as well as the
dissipative 3uxes must be expanded as

p∗
12 =p(0)

12 + p(1)
12 (+ · · · ; (22)

u∗12; x = u(0)12; x + u(1)12; x(+ · · · ; (23)

T ∗
12 =T (0)

12 + T (1)
12 (+ · · · ; (24)

P∗
1 =P(0)

1 + P(1)
1 (+ · · · ; (25)

q∗1 = q
(0)
1 + q(1)1 (+ · · · : (26)
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Note that the di1erent approximations p(k)
12 , u(k)12; x, and T (k)

12 de7ne the correspond-

ing reference function f(k)
12 . By de7nition, p(k)

12 (0)= u(k)12; x(0)=T (k)
12 (0)= @u(k)12; x=@s|s=0 =

@T (k)
12; x=@s|s=0 =0 for k¿ 1. By substituting expansions (21)–(26) into Eq. (18), one

gets a hierarchy of equations for the di1erent distributions f(k)
1 . Now, we are going to

examine the two 7rst approximations.

3.1. Zeroth-order approximation

This approximation is concerned with a situation where gravity is zero. This reference
state was analyzed by one of the present authors [18] and now we o1er a brief summary
of the main results. The zeroth-order distribution f(0)

1 obeys the equation(
1 +

Vy

#
@
@s

)
f(0)
1 =f(0)

12 ; (27)

where V= v∗ − u(0)12 , f
(0)
12 = x1)�12, with ) ≡ %[(1− 2M)+ + 2M ], and

�12 = (2�)−3=2 QT
(0)−5=2
12 exp

(
− V 2

2 QT
(0)
12

)
: (28)

Here, QT
(0)
12 = %T (0)

12 , M = %=(1+%)2, and +=T (0)
1 =T (0)

2 . The ratio + between the temper-
atures of the tracer particles and the solvent component is the crucial quantity at this
stage of description. Eq. (27) admits a solution [18] characterized by the absence of
di1usion u(0)1 = u(0)12 = u(0)2 , a constant partial pressure p(0)

12 , and the pro7les:

u(0)12; x(s)= u∗12; x(0) + ã#s ; (29)

QT
(0)
12 (s)= )+ �̃#s− "10#2s2 : (30)

Eqs. (29) and (30) imply that

ã=
a
#
=

a

w2[(1 + %)=2]1=2
; (31)

�̃=
)
#
�=

%

[(1 + %)=2]1=2
+ + 2M (1− +)

w2 � ; (32)

"10 =
)
#2
"20 =

2%
1 + %

+ + 2M (1− +)
w4 "20 : (33)

The self-consistency of the solution yields the implicit equation for "10:

2F2("10) +

(
3− ã2

"10
F1("10)

)
=

3
"10

M (1− +)
+ + 2M (1− +)

; (34)

where we have introduced the functions

Fs(x)=
[
d
dx

x
]s

F0(x) (35)
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and

F0(x)=
2
x

∫ ∞

0
dt te−t2=2 K0(2x−1=4t1=2) ; (36)

K0 being the zeroth-order modi7ed Bessel function.
From the above pro7les, the momentum and heat 3uxes of f(0)

1 can be obtained.
The nonzero elements of the pressure tensor and the heat 3ux are given by [18]

P(0)
1; xx = x1

)
%
[1 + 4"10(F1 + F2)] ; (37)

P(0)
1;yy = x1

)
%
[1− 2"10(F1 + 2F2)] ; (38)

P(0)
1; zz = x1

)
%
(1− 2"10F1) ; (39)

P(0)
1; xy =− x1

)
%#

F0
@
@s

u(0)12; x ; (40)

q(0)1;y =− 1
2
x1

)
%#

[
ã2

"10
F0 +

3%M (1− +)
"10)

]
@
@s

QT
(0)
12 ; (41)

q(0)1; x = x1
)
%#2

[5F2 + 2F3 + 2ã2(F2 + 5F3 + 8F4 + 4F5)]
@
@s

QT
(0)
12 : (42)

Although the thermal gradient is only directed along the y-axis, Eq. (42) shows that
the shear 3ow induces a nonzero x component of the heat 3ux. This e1ect is absent
in the Navier–Stokes regime.

3.2. First-order approximation

As said in Section 1, the main goal of this paper is to assess the e1ects of gravity on
the momentum and heat transport in a binary mixture. This can be done by computing
the hydrodynamic 7elds and the 3uxes to 7rst order in (. By substituting expansions
(21)–(24) into Eq. (18), one gets(

1 +
Vy
#

@
@s

)
f(1)
1 =f(1)

12 +
T (0)
2

#�
@
@Vy

f(0)
1 ; (43)

where T (0)
2 = 1 + �s− "20s2 and

f(1)
12 = x1

[
Qp(1)
12 + )

Vxu
(1)
12; x

QT
(0)
12

+ )

(
V 2

2 QT
(0)
12

− 5
2

)
QT
(1)
12

QT
(0)
12

]
�12 : (44)

Here, Qp(1)
12 = %p(1)

12 and QT
(1)
12 = %T (1)

12 . Eq. (43) can be rewritten in the form

f(1)
1 =

(
1 +

Vy
#

@
@s

)−1
(
f(1)
12 +

T (0)
2

#�
@
@Vy

f(0)
1

)

=
∞∑
k=0

(
−1
#
@
@s

)k
V k
y

(
f(1)
12 +

T (0)
2

#�
@
@Vy

f(0)
1

)
: (45)
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It is evident that this is only a formal solution since f(1)
12 is a functional of f(1)

1
through its dependence on the 7elds p(1)

12 ; u
(1)
12; x, and T (1)

12 . For this reason, we need to
determine the spatial dependence of the above 7elds to get the explicit expression of
the distribution function. Guided by the results derived for the solvent component in
the 7rst order of gravity, Eqs. (15)–(17), we propose a similar solution for the tracer
component. Speci7cally, inspection of Eq. (45) suggests that the hydrodynamic 7elds
Qp(1)
12 ; u

(1)
12; x, and QT

(1)
12 are polynomials in the variable s̃ ≡ #s of degree 1, 2, and 3,

respectively, whose coeAcients are nonlinear functions of the reduced gradients a and
� and the parameters of the mixture w and %. Therefore, we assume that

Qp(1)
12 = �1s̃ ; (46)

u(1)12; x = !1s̃
2 ; (47)

QT
(1)
12 = "11s̃

2 + "12s̃
3 : (48)

The unknown coeAcients �1; !1; "11, and "12 must be obtained by requiring the
self-consistency of solution (45) characterized by pro7les (46)–(48), namely,∫

dv{1;V}(f(1)
1 − f(1)

12 )= {0; 0} ; (49)

∫
dvV 2f(1)

1 = 3 Qp(1)
1 =

3
1− 2M

x1[ Qp
(1)
12 − 2M Qp(1)

2 ] ; (50)

with Qp(1)
2 = %p(1)

2 . The accomplishment of these relations leads to a system of four
linear equations (see Appendix A) for the set {�1; !1; "11; "12}. The solution of this
system provides explicit expressions of these coeAcients in terms of a and � as well
as of w and %. These expressions [c.f. Eqs. (A.11)–(A.16)] show a complex nonlinear
dependence on the parameters of the problem. In particular, for vanishing shear rates,
the above coeAcients behave as

�1 � − 1
�#
(1 + 18�%#"(0)12 ) ; (51)

!1 � ã
(

1
2�%#

− 18"(0)12

)
; (52)

"11 � 1
2#2

(
1− 828

5
�%#"(0)12

)
; (53)

"12 � "(0)12 ≡ 1
�#

% − 1
5 + 18% + 5%2 : (54)

In the case of mechanically equivalent particles (w=1 and %=1), �1 = �2; !1 = !2;
"11 = "21, and "22 = "12, so that one recovers the results previously derived in the single
gas [12]. However, when the mass ratio is di1erent from one, the coeAcients charac-
terizing the hydrodynamic pro7les of the gas and the tracer particles clearly di1er. To
illustrate this di1erence, in Fig. 1 we show the shear-rate dependence of the (reduced)
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Fig. 1. Shear-rate dependence of the reduced coeAcient �1(a)=�1(0) for w=1, �=1, and three di1erent
values of the mass ratio %=m2=m1: %=0:1, 1, and 10.

Fig. 2. Shear-rate dependence of the magnitude of the coeAcient 1(a) for w=1; �=1, and two di1erent
values of the mass ratio %=m2=m1: %=0:1 and 10.

coeAcient �1(a)=�1(0) for !=1 and three di1erent values of the mass ratio %=0:1; 1;
and 10. In general, the magnitude of �1 decreases as the shear rate increases whatever
the mass ratio considered is. We see that the in3uence of the mass ratio on the behavior
of �1 is quite signi7cant, especially when the tracer particles are heavier than the
gas particles (Brownian limit). A particularly interesting coeAcient is !1. It can be
seen as a measure of the di1usion of the tracer particles induced by the coupling
between the shear 3ow and gravity (tracer-particle sedimentation). In reduced units,
the tracer-particle current density measured in the reference frame in which the gas is
locally at rest is

u∗1; x(s)− u∗2; x(s)= (!1#2 − !2)s2�g∗ ≡ 1(a)s2�g∗ ; (55)

where the “transport” coeAcient 1= !1#2 − !2 can be identi7ed as the “mobility”
coeAcient of the in7nitely diluted suspension. When %=1 and=or a=0, 1=0 and no
di1usion appears in the system. In Fig. 2, we plot the magnitude of 1(a) for !=1 and



E.E. Tahiri et al. / Physica A 297 (2001) 97–114 107

%=0:1 and 10. In general, for nonzero shear rates, this coeAcient is clearly di1erent
from zero for disparate masses. While |1| increases with the shear rate when %¿ 1,
the coeAcient 1 reaches a maximum in the case of %¡ 1.
Once the hydrodynamic pro7les have been obtained, the next step is to get the tracer

contribution to the momentum and heat transport across the system when only terms
through 7rst order in gravity are taken into account. Since the reduced gradients a
and � are de7ned at the (arbitrary) point s=0, we compute the 3uxes at that point,
without loss of generality. In the same way as in our previous work on the single gas
case [12], the idea is to express the momentum and heat 3uxes at any point in the
bulk region in terms of the values of the hydrodynamic quantities and their gradients
at that very point. It is convenient to de7ne a (dimensionless) partial generalized shear
viscosity 51 and a (dimensionless) partial generalized thermal conductivity �1 through
the relations

51(a; �; ()=− P(0)
1; xy + P(1)

1; xy(

x1a

∣∣∣∣∣
s=0

; (56)

�1(a; �; ()=− q(0)1;y + q(1)1;y(

x1�

∣∣∣∣∣
s=0

: (57)

In addition, due to the anisotropy of the problem, a new generalized transport coeAcient
�1 is de7ned through the x component of the heat 3ux:

�1(a; �; ()=− q(0)1; x + q(1)1; x(

x1�

∣∣∣∣∣
s=0

: (58)

Eqs. (56)–(58) de7ne the transport coeAcients measuring the contribution of the tracer
component to the momentum and heat 3uxes of the mixture. The explicit expressions
of P(1)

1; xy; q
(1)
1;y, and q(1)1; x are displayed in Appendix B. For zero shear rates, �1 = 0 and

51 and �1 behave, respectively, as

51 � 1
#
+

8
#3

[
1− 9

10
�#2"(0)12 (279% − 500)

]
( ; (59)

�1 � 5
2#

+
9#"(0)12 (7074�

2%2 + 70�#2 − 25#2) + 145�%
5�#3

( : (60)

Given that our results are restricted to the 7rst order in the 7eld, we do not have
the complete dependence of the generalized transport coeAcients on the gravity 7eld.
In an attempt to show the main trends expected in the presence of nonzero gravity,
we plot the partial shear viscosity 51 as a function of the shear rate a for w=1, �=1
(points heated from “above”) and %=0:1 and 10. We consider g∗ =0 and 0.002. The
coeAcient 51 is the most important transport coeAcient of the Couette 3ow problem.
Fig. 3 shows how the presence of the 7eld does not change the trends observed for 51 in
the absence of gravitation. In addition, the e1ect of the 7eld on the momentum transport
is more signi7cant when the tracer species are heavier than the solvent component. On
the other hand, the partial shear viscosities with and without gravitational 7eld tend
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Fig. 3. Shear-rate dependence of the partial shear viscosity 51 for w=1, �=1, and two di1erent values of
the mass ratio %=m2=m1: %=0:1 and 10. Two values of gravity have been considered: g∗ =0:002 (solid
lines) and g∗ =0 (dashed lines).

to overlap as a increases whatever the mass ratio considered is. In fact, the e1ect of
gravity on 51 is practically negligible in the limit of large shear rates.

4. Concluding remarks

The primary objective of this paper has been to analyze the in3uence of gravitation
on the hydrodynamic 7elds and the partial transport coeAcients of the tracer particles
immersed in a dilute gas under Couette 3ow. The starting point to describe the state
of the mixture is the GK kinetic model for Maxwell molecules. In the tracer limit,
the GK equation for the velocity distribution function of the gas f2 reduces to a
closed BGK equation, for which a solution through 7rst order in the 7eld g has been
recently obtained [12]. The corresponding GK equation for the velocity distribution
function f1 of tracer particles is also solved by means of a perturbation expansion
in powers of g. The reference state of this expansion is an exact solution of the GK
equation for arbitrary values of the shear rate and the thermal gradient [18]. Although
our calculations have been restricted to the 7rst-order correction, for practical purposes
this approximation should be suAcient. Given that our reference state contains all the
hydrodynamic orders in both the (reduced) shear rate a and the (reduced) thermal
gradient �, the corresponding transport coeAcients associated with the tracer species
are highly nonlinear functions of a and �. In addition, no restriction on the mass ratio
and the force constant ratio is considered in our solution.
In the same way as for the solvent component [12], our results show that the partial

pressure p(1)
1 , tracer 3ow velocity u(1)1; x, and the partial temperature T (1)

1 become lin-
ear, quadratic, and cubic functions, respectively, with respect to a conveniently scaled
space variable. Since u2; x �= u1; x, a tracer di1usion process appears in the mixture. The
corresponding mass current is due to the coupling between the gravity and the shear
3ow. In fact, it disapears when a=0 and=or g=0. This process can be of practical
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interest in sedimentation problems, for example. The corresponding transport coeAcient
1 characterizing the di1usion has a highly nonlinear dependence on the parameters of
the problem, especially on a and the mass ratio %. Once the hydrodynamic pro7les are
known, we have determined the partial contributions to the momentum and heat 3uxes
coming from the tracer species. Their explicit 7rst-order corrections are displayed in
Appendix B. As an illustration, we have analyzed with more detail the partial shear
viscosity 51 and the results show that the e1ect of gravity is more signi7cant as the
tracer particles are heavier than the solvent particles. Nevertheless, the in3uence of g
on 51 tends to decrease as the shear rate becomes large.

Although the results reported in this paper have been obtained from the GK model,
we expect that the main trends observed here will be present in the context of the Boltz-
mann equation. Since an exact solution of this equation in the Couette 3ow problem is
unapproachable, an alternative to solve numerically is the use of the direct simulation
Monte Carlo method [20]. Work along this line is in progress. On the other hand, we
are fully aware that the tracer limit is certainly a limitation that one would like to get
rid of. In this sense, we expect that considering again the GK model we will be able
to analyze the more general problem when the molar fractions of both components are
arbitrary. A recent solution [21] of the GK model for a multicomponent mixture under
Couette 3ow could be the starting point to study the e1ect of gravity in the general
case.
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Appendix A. Consistency of the solution

This appendix is concerned with the ful7llment of the consistency conditions (49)
and (50). To do that, it is convenient to rewrite the formal solution (45) as

f(1)
1 =

∞∑
k=0

(
− @
@s̃

)k [
f(1)
12 + x1

QT
(0)
12

�#
@

@Vy
�(0)

1

]
; (A.1)

where �(0)
1 is the formal solution in the absence of gravitation [18]:

�(0)
1 =

∞∑
‘=0

(
− @
@s̃

)‘
V ‘
y�12: (A.2)
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From a formal point of view, the velocity moments of f(1)
1 can be directly obtained

from the velocity moments of f(1)
2 when one exploits the equivalence between the

kinetic equation (43) and its corresponding counterpart of f(1)
2 . Consequently, the mo-

ments of f(1)
1 can be determined from comparison with those of f(1)

2 by making the
changes: s → s̃; a → ã; "20 → "10; �2 → �1; !2 → )!1; "21 → )"11, and "22 → )"12.
Taking into account this equivalence and the results quoted in Appendices A and B of
Ref. [12], we can explicitly write the 7rst few moments of the distribution f(1)

1 .
The condition for the density, 7rst relation of Eq. (49), is trivially satis7ed. The

condition for the x component of the 3ow velocity implies that

2F1 ()!1 + ã�1)− 2ã(F2 − F1))
"12
"10

+
ã
�#

[
1− "10

(
4F4 +

28
3
F3 + 7F2 +

5
3
F1

)]
=0 : (A.3)

Here, we have used the asymptotic expansion of the function Fr("10) de7ned by
Eqs. (35) and (36) [10,11]:

Fr ≡ Fr("10)=
∞∑
k=0

(k + 1)r(2k + 1)!(2k + 1)!!(−"10)k : (A.4)

The condition for the y component of the 3ow velocity leads to the equation

�1F0 − )
"12
"10

(F1 − F0) +
1
�#

[1− "10(2F3 + 3F2 + F1)]= 0 : (A.5)

Let us consider now the consistency condition for the pressure, Eq. (50). Taking
into account the results of Ref. [12] and after some algebra, this condition can be cast
into the form

3
2M

1− 2M

( �1
2M

− %�2
#

)
s̃=Cs̃+ D ; (A.6)

where

C = 3�1 − 2�1"10(4F3 + 8F2 + 3F1) + 2)"12(4F4 + 8F3 + 3F2) + 8ã)!1F2

+ 2ã2
[
�1(2F2 − F1)− )

"12
"10

(2F3 − 3F2 + F1)
]
− 2

"10
�#

8 ; (A.7)

D= 2 )
(�1�

#
+ "11

)
(3F2 + 2F3) + 4)2

"12�
#

(8F7 + 44F6 + 86F5 + 77F4

+ 32F3 + 5F2) + 8ã)2
!1�
#

(4F5 + 8F4 + 5F3 + F2)

−2)
ã2

"10

(�1�
#

+ "11
)
(F2 − F1) + 2ã2

)2�
#

"12
"210

(F3 − 3F2 + 2F1) +
)
#2
8 :

(A.8)
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In these expressions, we have introduced the shear-rate dependent quantity

8(ã) = 2 +
5
3
F1 +

4
3
F2 − "10

3
(24F6 + 124F5 + 222F4 + 185F3 + 75F2 + 12F1)

+
2
3
ã2(8F4 + 18F3 + 13F2 + 3F1)− 2

3
ã2"10(48F8 + 352F7 + 1024F6

+1500F5 + 1157F4 + 443F3 + 66F2) : (A.9)

Since relation (A.6) must be veri7ed at any point, the pressure condition requires that
2M

1− 2M

( �1
2M

− %�2
#

)
=

1
3
C; D=0 : (A.10)

The solution of the system of algebraic equations (A.4), (A.5), and (A.10) provides
the explicit expressions of the coeAcients �1; !1; "11, and "12 of the hydrodynamic
pro7les. The solution for "12 can be written as

"12 =− "10
)�#

R
S
; (A.11)

where the coeAcients R and S are given by

R=−3%M�2�F0F1 + (2M − 1)
{

ã2

3 "10[2F0F2(5F1 + 21F2 + 28F3 + 12F4)

−3F1(F1 + 2F2)(F1 + 3F2 + 2F3)]− (2F0F2 − F2
1 − 2F1F2)ã

2 − F0F1"108
}

−F1["10(F1 + 3F2 + 2F3)− 1]["10(3F1 + 8F2 + 4F3)(2M − 1)− 3M ] ;

(A.12)

S = (2M − 1)ã2
{
F0[F1(F2 − 2F3) + 4F2

2 ]− F2
1 (F1 + 2F2)

}
+(2M − 1)"10F1 {F0(4F4 + 12F3 + 11F2 + 3F1)− F1(3F1 + 8F2 + 4F3)}

− 3MF1(F0 − F1) : (A.13)

The remaining coeAcients are

�1 =
1

�#F0

[
"10(F1 + 3F2 + 2F3) + �)#(F1 − F0)

"12
"10

− 1
]
; (A.14)

!1 =− ã
[
�1
)

− "10
6�)#

5F1 + 21F2 + 28F3 + 12F4

F1
− "12

"10

F2 − F1

F1
+

1
2�F1#)

]
;

(A.15)

"11 =−�1�
#

− 1

#[ã2(F1 − F2) + "10(3F2 + 2F3)]{
4ã�"10)!1(F2 + 5F3 + 8F4 + 4F5) + �)

"12
"10

[ã2(2F1 − 3F2 + F3)

+2"210(8F7 + 44F6 + 86F5 + 77F4 + 32F3 + 5F2)] +
"10
2#

8
}

: (A.16)
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Eqs. (A.11)–(A.16) show the highly nonlinear dependence of the hydrodynamic
pro7les on the shear rate and the mass ratio. On the other hand, the dependence on the
reduced thermal gradient is quite simple since �1; !1, and "12 are inversely proportional
to � while "11 does not depend on �. In the case of mechanically equivalent particles
(w=1 and %=1), all the above expressions reduce to those previously obtained in the
single gas case [12].

Appendix B. Pressure tensor and heat )ux

In this appendix we get the generalized transport coeAcients 51 (Eq. (56)), �1
(Eq. (57)), and �1 (Eq. (58)). The explicit expressions of these coeAcients can be
obtained from the 3uxes P(1)

1; xy; q
(1)
1;y, and q(1)1; x, respectively. These 3uxes can be com-

puted by following identical mathematical steps as those made in Appendix A. The
results are

P(1)
1; xy|s=0 = %−1

∫
dvVxVyf

(1)
1

= x1
)
%#

!1)�+ ã(�1�+ #"11)
"10

(F1 − F0)− x1ã
)�
%#

"12
"210

(F2 − 3F1 + 2F0)

+ x1
ã)
%#2

[
2"10(8F7 + 44F6 + 90F5 + 85F4 + 37F3 + 6F2)

−4
3
(2F3 + 3F2 + F1)

]
; (B.1)

q(1)1;y|s=0 =
1
2%

∫
dvV 2Vyf

(1)
1

=−x1
�1
2%

(5 + 18ã2)− 18
x1)
%

"12(7 + 100ã2)

− x1
)!1ã
%

[
2 +

)2�2

2#2"210
(F2 − 3F1 + 2F0)

]

+ x1
)2�

4%#2"10
(�1�+ 2#"11)[2F3 + F2 − 3F1 + 2ã2(4F4 − 3F2 − F1)]

− x1
)3�2

4%#2
"12
"210

[2F4 − 3F3 − 5F2 + 6F1

+ 2ã2(4F5 − 8F4 − 3F3 + 5F2 + 2F1)]

− x1
3 + 2F1

%#�
+ x1

"10
%#�

(2F3 + 5F2 + 3F1 + 17)
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− x1
ã2

%#�

(
F3 +

3
2
F2 +

1
2
F1 − 270

)

− x1
)2�
%#3

(
F6 + 6F5 +

47
4
F4 +

25
3
F3 +

23
12

F2

)

− x1ã
2 )

2�
%#3

(
4F8 + 26F7 + 67F6 +

175
2

F5 + 61F4 +
43
2
F3 + 3F2

)
;

(B.2)

q(1)1; x|s=0

=
1
2%

∫
dvV 2Vxf

(1)
1

= x1
ã�1
%"10

{
)2�2

#2

[
ã2(F2 + 4F3 + 3F4 − 4F5 − 4F6) +

1
2
(5F2 − 3F3 − 2F4)

]

+ "10[ã
2(8F5 + 16F4 + 10F3 + 2F2) + 2F3 + 5F2]

}

+ x1
)!1
2%"210

{
)2�2

#2
[3ã2(F3 − 3F2 + 2F1) + "10(5F2 − 3F3 − 2F4)]

+ "10[6ã
2(F1 − F2) + 2"10(2F3 + 5F2)]

}

+ x1
ã)2�
%#

"11
"10

[2ã2(F2 + 4F3 + 3F4 − 4F5 − 4F6) + 5F2 − 3F3 − 2F4]

+ x1
ã)
2%

"12
"210

{
)2�2

#2
[2ã2(2F2 + 7F3 + 2F4 − 11F5 − 4F6 + 4F7)

+10F2 − 11F3 − F4 + 2F5]

+ "10[2ã
2(6F4 + 8F3 + 2F2 − 8F5 − 8F6) + 10F2 − 6F3 − 4F4]

}

+ x1
ã

2#%�
(2F2 + 3F1 + 2F0)

− x1
ã"10
6#%�

(24F6 + 148F5 + 246F4 + 155F3 + 33F2)

+ x1
ã3

#%�
(4F4 + 8F3 + 5F2 + F1)

− x1
ã3"10
3#%�

(48F8 + 352F7 + 1024F6 + 1500F5 + 1157F4 + 443F3 + 66F2)

− x1
)2�
%#3

[
ã
12

(33F2 + 122F3 + 91F4 − 98F5 − 124F6 − 24F7)
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+
ã3

6
(66F2 + 377F3 + 714F4 + 343F5 − 476F6 − 672F7 − 304F8 − 48F9)

]

+ x1
)3�2

3%#4
[ã(16F6 + 100F5 + 164F4 + 101F3 + 21F2)

+ ã3(64F8 + 464F7 + 1336F6 + 1940F5 + 1486F4 + 566F3 + 84F2)] :

(B.3)

From Eqs. (40)–(42) and (B.1)–(B.3) one can identify the explicit expressions of the
transport coeAcients.
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