
Granular Matter 4, 17–24 c© Springer-Verlag 2002
DOI 10.1007/s10035-001-0097-8

Monte Carlo simulation of the homogeneous cooling state
for a granular mixture
José Maŕıa Montanero, Vicente Garzó

Abstract The Direct Simulation Monte Carlo (DSMC)
method is used to numerically solve the Enskog equation
for a granular binary mixture in the homogeneous cooling
state (HCS). The fourth velocity moments, the temper-
ature ratio, and also the velocity distribution functions
are obtained and compared with approximate analytical
results derived recently from a Sonine polynomial expan-
sion [V. Garzó and J. W. Dufty, Phys. Rev. E 60, 5706
(1999)]. The comparison shows an excellent agreement be-
tween both approaches, even for strong dissipation or dis-
parate values of the mechanical parameters of the mixture.
In contrast to previous studies, the partial temperatures of
each species are clearly different, so that the total energy
is not equally distributed between both species. Finally,
in the same way as in the one-component case, the simu-
lation as well as the theory show a high energy tail of the
distribution functions.

Keywords Kinetic and transport theory of gases, Monte
Carlo simulation, Granular mixtures

1
Introduction
A simple and realistic way of capturing the effects of dis-
sipation in rapid granular flows is through a system of
smooth hard spheres with inelastic collisions [1]. The bina-
ry collisions are specified in terms of the change in relative
velocity at contact, but with a decrease in the magnitude
of the normal component measured through a positive res-
titution coefficient. In the context of kinetic theory, the
Boltzmann and Enskog equations have been conveniently
modified to account for inelastic binary collisions. These
equations have been used to derive the corresponding fluid
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dynamic equations with explicit expressions for the trans-
port coefficients [2,3]. The standard procedure to get them
is the Chapman-Enskog expansion [4] adapted to the case
of inelastic collisions. For a given kinetic equation, the use
of the Chapman-Enskog method leads to a normal solu-
tion in which all the space and time dependence occurs
through the hydrodynamic fields.

In the case of elastic collisions, the Chapman-Enskog
solution is obtained as an expansion around the local
Maxwellian, while for inelastic collisions the reference
state is a local cooling solution with a monotonically time
decreasing temperature. For spatially homogeneous states,
the latter is referred to as the homogeneous cooling state
(HCS). Since the HCS qualifies as a normal solution, all
its time dependence is only through the temperature. Nev-
ertheless, in spite of the simplicity of the HCS, no exact
solution of the Boltzmann or Enskog equations describing
such a state is known. For a one-component system, an
approximate form for the distribution function based in a
Sonine polynomial expansion has been obtained [5], show-
ing an excellent agreement with Monte Carlo simulations
of the Enskog equation [6,7]. In general, the results in-
dicate that the deviations from Gaussian behavior in the
HCS are quite small so that, the Maxwell distribution can
be considered as a good approximation for the region of
thermal velocities. In the large velocity region, some ana-
lytical studies [5,8] have found that the decay of the dis-
tribution function is not Gaussian but exponential. This
high energy tail has been also confirmed by simulations in
the case of hard disks [9].

In the context of granular binary mixtures, the studies
are more scarce. Needless to say, the analysis of properties
of fluid mixtures is considerably more complicated than in
the case of a one-component system. Not only the num-
ber of mechanical parameters of the system is larger but,
in addition, the inelasticity of collisions among all pairs
must be characterized by three independent coefficients
of normal restitution. To the best of our knowledge, the
only theoretical study of the HCS for a granular mixture
has been recently made by Garzó and Dufty [10]. In a
similar way as the one-component fluid [5], the set of cou-
pled Enskog equations admits a scaling solution in which
the time dependence of the distribution functions oc-
curs entirely through the temperature of the mixture. An
important and surprising result is that the partial tem-
peratures of each species (measuring their mean kinetic
energies) are different, although their cooling rates are
equal. This effect is generic for multicomponent systems
and is a consequence of the inelasticity and the mechanical
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differences of the particles (e.g., masses, diameters). This
result contrasts with previous studies in granular mixtures
[11–14], where the equality of the partial temperatures was
assumed. The velocity distribution functions for each spe-
cies are approximately determined by using again a Sonine
polynomial expansion around Maxwellians, which are de-
fined in terms of the temperature for that species. Our
results are restricted to the first Sonine approximation,
and show that the non-Maxwellian corrections have small
effects on the cooling rates and on the temperature ratio
at all inelasticities. However, the corresponding reference
Maxwellians for the two species are quite different due to
temperature differences.

Since all the above conclusions have been obtained
from an approximate solution, an interesting problem is
to numerically solve the Enskog equation in the HCS in
order to test the reliability of such an analytical solution.
In this present paper, we use the Direct Monte Carlo Sim-
ulation (DSMC) method [15] to solve the Enskog equation
in the HCS. Although this method was originally devised
for elastic fluids, its extension to deal with granular gases
is very easy. From the simulations it is possible to compute
the velocity distribution functions over a quite wide range
of velocities. In particular, precise values of the fourth-
velocity moments and of the temperature ratio are ob-
tained. The evaluation of this latter quantity is one of the
main objectives of this paper. In addition, and as a com-
plementary result, we are also interested in computing the
high energy tails for the distributions and compare them
with the theoretical predictions.

The paper is organized as follows. The theoretical anal-
ysis is reviewed in Sec. 2. The computer simulation meth-
od employed to numerically solve the (uniform) Enskog
equation is described in Sec. 3. In Sec. 4, the results are
presented and compared with the theoretical predictions.
The comparison shows a quite good agreement indicating
that the first Sonine approximation provides an accurate
description over a quite wide range of values of the me-
chanical parameters of the mixture as well as of the res-
titution coefficients. Finally, we close the paper in Sec. 5
with some concluding remarks.

2
Theoretical predictions
We consider a binary mixture of smooth inelastic hard
spheres of masses m1 and m2 and diameters σ1 and σ2. In
the special case of spatially homogeneous isotropic states,
the velocity distribution functions fi(v1; t) (i = 1, 2) obey
the set of nonlinear Enskog kinetic equations:

∂

∂t
fi(v1, t) =

∑
j

Jij [v1|fi(t), fj(t)] , (1)

where the Enskog collision operator Jij [v1|fi, fj ] describ-
ing the scattering of pairs of particles is

Jij [v1|fi, fj ] = χijσ
2
ij

∫
dv2

∫
dσ̂ �(σ̂ · g12)(σ̂ · g12)

×[
α−2

ij fi(v′
1, t)fj(v′

2, t)
−fi(v1, t)fj(v2, t)

]
. (2)

Here, χij is the pair correlation function for particles of
type i and j when they are in contact, i.e., separated by
σij = (σi + σj) /2. Also, σ̂ is a unit vector along their line
of centers, � is the Heaviside step function, g12 = v1−v2,
and αij ≤ 1 is the coefficient of normal restitution for col-
lisions between particles of species i and j. In addition, the
primes on the velocities denote the initial values {v′

1,v
′
2}

that lead to {v1,v2} following a binary collision:

v′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ , (3)

v′
2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ , (4)

where µij = mi/ (mi +mj). Note that for the spatially ho-
mogeneous case, the only difference between the Enskog
equation (1) for dense systems and the Boltzmann equa-
tion for dilute systems is the presence of the factor χij ,
which accounts for the increase of the collision frequen-
cy for collisions between species i and j due to excluded
volume effects.

The collision operators conserve particle number of
each species and the total momentum, but the total ener-
gy is not conserved. This implies that∑
i,j

∫
dv1

1
2
miv

2
1Jij [v1|fi, fj ] = −3

2
nTζ , (5)

where ζ is identified as the “cooling rate” due to inelastic
collisions among all species. Here, n = n1 + n2,

ni =
∫
dv1fi(v1) (6)

is the number density of species i, and

T =
∑

i

xiTi =
1
n

∑
i

∫
dv1

mi

3
v21fi(v1) , (7)

is the temperature of the mixture. In addition, xi = ni/n
is the molar fraction of species i, and Eq. (7) also defines
the partial temperature Ti of species i. This quantity mea-
sures the mean kinetic energy of species i. At a kinetic lev-
el, it is also convenient to discuss energy transfer in terms
of the “cooling rates” ζi for the partial temperatures Ti.
They are defined as

ζi = − 2
3niTi

∑
j

∫
dv1

1
2
miv

2
1Jij [v1|fi, fj ] . (8)

From the Enskog equation (1) and Eq. (8), it is easy to
get the identities:

ζi = − ∂

∂t
lnTi, ζ = − ∂

∂t
lnT . (9)

The time evolution of the temperature ratio γ =
T1(t)/T2(t) follows from the the first equality of Eq. (9):

∂

∂t
ln γ = ζ2 − ζ1 . (10)

Furthermore, according to Eqs. (7) and (9), the total cool-
ing rate ζ can be expressed in terms of the coolings ζi as

ζ = T−1
∑

i

xiTiζi . (11)
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Regardless of the initial uniform state, the solution to
the Enskog equation (1) tends to the so-called homoge-
neous cooling state (HCS), characterized by the fact that
all the time dependence of fi(v1; t) occurs only through the
temperature T (t). Consequently, fi(v1; t) has the form

fi(v1; t) = niv
−3
0 (t)�i (v1/v0(t)) , (12)

where v0(t) =
√

2T (t)(m1 +m2)/(m1m2) is a thermal ve-
locity defined in terms of the temperature of the mixture
T (t). The fact that fi depends on time only through T (t)
(normal solution) necessarily implies that the tempera-
ture ratio γ must be a constant (independent of time) in
the HCS. According to Eq. (10), this means that the cool-
ing rates must be equal, i.e., ζ1(t) = ζ2(t). In the elastic
case, where fi is a Maxwellian, the above condition leads
to T1(t) = T2(t) = T (t), and so the granular energy is
equally distributed between both species (equipartition of
energy). However, in the case of inelastic collisions, the
equality of the cooling rates leads in general to different
partial temperatures, even if one considers the Maxwell-
ian approximation to fi. This does not mean that there
are additional hydrodynamic degrees of freedom since the
partial kinetic temperatures still can be expressed in terms
of the total temperature T as

T1(t) =
γ

1 + x1(γ − 1)
T (t) , (13)

T2(t) =
1

1 + x1(γ − 1)
T (t) . (14)

In the HCS, the dimensionless Enskog equations with
Eq. (12) read

1
2
ζ∗
i

∂

∂v∗
1

· (v∗
1�i) =

∑
j

J∗
ij [v

∗
1 |�i,�j ] , (15)

where v∗
1,2 = v1,2/v0, ζ∗

i = ζi/(nσ2
12v0) and

J∗
ij [v

∗
1 |�i,�j ] ≡ v20

nniσ2
12
Jij [v1|fi, fj ]

= xjχij

(
σij

σ12

)2 ∫
dv∗

2

∫
dσ̂ �(σ̂ · g∗

12)

× (σ̂ · g∗
12)[α

−2
ij �i(v′∗

1 )�j(v′∗
2 )

−�i(v1)�j(v2)] . (16)

In the same way as in the one-component case [5], there
is no exact solution to Eqs. (15). Accurate approximate
forms for the distributions �i may be obtained using low
order truncation of expansions in a series of Sonine poly-
nomials. The leading order in the Sonine expansion is [10]

�i(v∗
1) →

(
λi

π

)3/2

e−λiv
∗2
1

[
1 +

ci
4

(
λ2

i v
∗4
1 − 5λiv

∗2
1 +

15
4

)]
. (17)

Here, λi = T/(Tiµji) and the coefficients ci must be de-
termined from the Enskog equations. These coefficients
(which are directly related to the fourth velocity moments

of fi) measure the deviation of the distribution �i from
the chosen reference Maxwellian.

In order to get the coefficients ci, first one substitutes
Eq. (17) into the Enskog equations (15), multiplies that
equation by v∗4

1 , and then integrates over the velocity.
Since the values of ci are expected to be very small, only
linear terms in ci are retained. Therefore, one gets a cou-
pled set of linear equations, which can be easily solved.
Next, these coefficients are substituted into the condition
of equality of cooling rates (ζ1 = ζ2) to obtain a nonlinear
function determining the temperature ratio γ. This pro-
vides entirely all the parameters of the distributions �i

and the temperatures Ti in terms of the restitution co-
efficients and the mechanical parameters of the mixture
[10]. The expressions of the above quantities are quoted
in Appendix A.

Based on the comparison performed in the one-com-
ponent case between theory [5] and simulation [7,9], one
expects that the distribution function is well described by
the simplest Sonine approximation (17), at least in the
region of thermal velocities (say, v∗

1 ∼ 1). This point will
be confirmed in Sec. 4 when we compare our theory with
Monte Carlo simulations. Nevertheless, for velocities high-
er than the thermal one, the above approach is not accu-
rate. For a single granular gas, van Noije and Ernst [5]
and Esipov and Pöschel [8] have found a high energy tail
of the velocity distribution function in the HCS. The cor-
responding derivation in the case of a binary mixture pro-
ceeds along similar lines. If a particle of species i is a fast
particle (v∗

1 � 1), the dominant contributions to the colli-
sion integral J∗

ij are collisions in which particles of species
j have velocities typically in the thermal range, so that
the relative velocity g∗

12 in the collision integral J∗
ij can

be replaced by v∗
1. Further, by the same arguments as in

Ref. [5], the gain term of J∗
ij can be neglected versus the

loss term. The collision integral J∗
ij then reduces to

J∗
ij [v

∗
1 |�i,�j ] ≈ −πxjχij

(
σij

σ12

)2

v∗
1�i(v∗

1) . (18)

In this case, the Enskog equations (15) simplifies to

1
2
ζ∗
i

(
3 + v∗

1 · ∂

∂v∗
1

)
�i(v∗

1) = −βiv
∗
1�i(v∗

1) , (19)

where βi is given by

βi = π
∑

j

xjχij

(
σij

σ12

)2

. (20)

For large v∗
1 , the first term on the left hand side of Eq.

(19) can be neglected with respect to the right hand side,
and the solution of Eq. (19) has the form

�i(v∗
1) ∼ Ai exp

(
−2βi

ζ∗
i

v∗
1

)
, (21)

where Ai is an undetermined integration constant. In
the case of mechanically equivalent particles, Eq. (21) re-
duces to the results derived in Refs. [5] and [8]. Clearly,
Eq. (21) shows an overpopulation with respect to the
Maxwell-Boltzmann tail.
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3
Direct Simulation Monte Carlo method
The Direct Simulation Monte Carlo (DSMC) method de-
vised by Bird [15] has proven to be the most convenient
algorithm to solve numerically the Boltzmann equation.
Recently, Montanero and Santos [16] have extended the
DSMC method to solve the Enskog equation for a system
of elastic hard spheres. The application of this algorithm
to a mixture of inelastic hard spheres is straightforward.

In the case of the freely evolving state, the procedure
can be summarized as follows. The velocity distribution
function of the species i is represented by the velocities
{vk} of Ni “simulated” particles:

fi(v, t) → ni
1
Ni

Ni∑
k=1

δ(v − vk(t)) . (22)

Note that the number of particles Ni must be chosen ac-
cording to the relationNi/Nj = ni/nj . At the initial state,
one assigns velocities to the particles drawn from a cer-
tain probability distribution. Since the system is assumed
to be spatially homogeneous, the velocities of the particles
change only due to binary collisions. Consequently, only
the collision stage needs to be considered in the DSMC
algorithm. The collisions are simulated over a time step
�t which is much smaller than the mean free time. Binary
interactions between particles of species i and j must be
considered. To simulate the collisions between particles of
species i with j a sample of 1

2Niω
(ij)
max�t pairs is chosen

at random with equiprobability. Here, ω(ij)
max is an upper

bound estimate of the probability that a particle of the
species i collides with a particle of the species j. Let us
consider a pair {k, �} belonging to this sample. Here, k
denotes a particle of species i and � a particle of species
j. For each pair {k, �} with velocities {vk,v	}, the follow-
ing steps are taken: (1) a given direction σ̂k	 is chosen
at random with equiprobability; (2) the collision between
particles k and � is accepted with a probability equal to
�(gk	 ·σ̂k	)ω

(ij)
k	 /ω

(ij)
max, where ω(ij)

k	 = 4πσ2
ijnjχij |gk	 ·σ̂k	|

and gk	 = vk −v	; (3) if the collision is accepted, postcol-
lisional velocities are assigned to both particles according
to the scattering rules:

vk → vk − µji(1 + αij)(gk	 · σ̂k	)σ̂k	 , (23)

v	 → v	 + µij(1 + αij)(gk	 · σ̂k	)σ̂k	 . (24)

In the case that in one of the collisions ω(ij)
k	 > ω

(ij)
max, the

estimate of ω(ij)
max is updated as ω(ij)

max = ω
(ij)
k	 . The proce-

dure described above is performed for i = 1, 2 and j = 1, 2.
It must be stressed again that we have solved the ho-

mogeneous set of Enskog equations, as given in Eq. (19).
Because of positions of the particles do not appear in
Eq. (19), we have considered a single cell and so there
is no need to compute and store them. As a consequence,
the possible formation of spatial inhomogeneities (particle
clusters) is eliminated in our simulations. This capacity of
the DSMC method for forcing the mixture to stay in the
HCS (even for strong dissipation) allows us to identify and
measure for instance, the high velocity tails.

The physical quantities are evaluated by averaging
over the particles and also over an ensemble of N inde-
pendent realizations or replicas. The initial state was that
specified by the Maxwell-Boltzmann probability distribu-
tion:

fi(v, 0) = ni π
−3/2 v−3

0i (0)exp
(−v2/v20i(0)

)
, (25)

where v20i(0) = 2Ti(0)/mi is the thermal velocity of spe-
cies i and Ti(0) is the corresponding initial temperature.
Also, the Carnahan-Starling approximation for χij has
been used [17]:

χij =
1

1 − ν +
3
2

ξ

(1 − ν)2
σiiσjj

σij
+

1
2

ξ2

(1 − ν)3
(
σiiσjj

σij

)2

,

(26)

where ξ = (πn/6)
∑

i xiσ
2
ii, and ν = (πn/6)

∑
i xiσ

3
ii is

the volume packing fraction.
In our simulations we have typically taken a total num-

ber of particles N = N1 + N2 = 105 and a number of
replicas N = 10. Since the thermal velocity decreases
monotonically with time, we have taken a time-depen-
dent time step �t = 3 × 10−3λ11/v01(t), where λ11 =
(
√

2πn1χ11σ
2
11)

−1 is the mean free path for collisions 1–1.
A full presentation of the results is difficult since

there are many parameters involved in the problem: αij ,
µ ≡ m1/m2, δ ≡ n1/n2, w ≡ σ11/σ22, and n∗ ≡ nσ3

12.
For the sake of simplicity, henceforth we will consider the
case α11 = α22 = α12 ≡ α. After an initial transient pe-
riod, one expects that the distribution functions �i(v∗

1)
reach stationary values independent of the initial condi-
tions. This hydrodynamic regime must be identified as the
HCS. Although we are mainly focused on evaluating all the
physical relevant quantities of the problem in the steady
state, it is also interesting to analyze the time evolution
of some of these quantities. Perhaps, the most interest-
ing is the temperature ratio γ, which measures the lack
of equipartition of energy between both species. To illus-
trate the approach to the HCS, in Fig. 1 we present the
time evolution of the temperature ratio γ(t) = T1(t)/T2(t)
for n∗ = 0, δ = 2, w = 1, and µ = 10. We have consid-
ered two different cases: α = 0.5 (a) (inelastic fluid), and
α = 1 (b) (elastic fluid). After a transient regime, we ob-
serve that both curves converge to different steady values.
While in the elastic case both temperatures tend to be the
same (γ = 1), no “equilibration” occurs for inelastic col-
lisions since the partial temperatures are clearly different
(γ � 3.8). In addition, the corresponding steady values
practically coincide with those predicted by the Sonine
solution described in Sec. 3. The same qualitative behav-
ior has been found for the scaling property (12) of the
distribution function. Therefore, in the following we will
focus on the dependence of the steady values of the re-
duced quantities on the restitution coefficient α and the
parameters of the mixture.

4
Results
By using the numerical method described in the previous
section, we have computed the steady state values of the
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Fig. 1. Time evolution of γ(t) = T1(t)/T2(t) for n∗ = 0, δ = 2,
w = 1, µ = 10, and α = 0.5 (a) and α = 1 (b). The dotted
lines refer to the theoretical predictions. Time is measured in
units of t0 ≡ λ11/v01(0)

coefficients ci, the temperature ratio γ, and the distribu-
tion functions �i(v∗

1) for several values of the restitution
coefficient α, the mass ratio µ ≡ m1/m2, the concentra-
tion ratio δ ≡ n1/n2, the ratio of sizes w ≡ σ11/σ22, and
the reduced density n∗. These results will be compared
with those obtained from the first Sonine approximation
described in Sec. 2 and Appendix A.

The basic quantity measuring the deviation of the dis-
tribution functions from the corresponding Maxwellians
are the cumulants ci. In Fig. 2, we show the dependence
of c1 and c2 on α for n∗ = 0, δ = 1, w = 1, and µ = 2. The
simulation data has been obtained in homogeneous con-
ditions. We also present the corresponding result for the
one-component system (mechanically equivalent particles,
i.e., w = 1 and µ = 1). The agreement between the sim-
ulation data and the theoretical predictions are excellent.
The small values of these coefficients support the assump-
tion of a low-order truncation in polynomial expansion
and indicates that the distribution functions �i(v1/v0(t))
for thermal velocities are well represented by the Sonine
approximation (17). To confirm this, we have measured
the deviation of �i from the corresponding Maxwellian.
More precisely, we have evaluated the function �i(v∗

1) de-
fined by the relation

�i(v∗
1) =

(
λi

π

)3/2

e−λiv
∗2
1

[
1 +

1
2
ci�i(v∗

1)
]
. (27)

The function �1(v∗
1) is plotted in Fig. 3 for α = 0.5, n∗ =

0, δ = 1/2, w = 1, and µ = 4. The dashed line is the first
Sonine approximation

�1(v∗
1) → 1

2λ
2
i v

∗4
1 − 5

2λiv
∗2
1 + 15

8 . (28)

As could be expected, the simulation curve agrees very
well with the corresponding Sonine polynomial, confirm-
ing the accuracy of the solution (17) in the region of ther-
mal velocities.

One of the main new results of this description is that
the partial temperatures are different (γ �= 1). This con-
clusion contrasts with all the previous results derived for
granular mixtures [11–14], where it was implicitly assumed
the equipartition of granular energy between both species

Fig. 2. Plot of the coefficients ci versus the restitution coef-
ficient α for n∗ = 0, δ = 1, w = 1 and µ = 2. The solid line
and the circles refer to c1 while the dashed line and the squar-
es correspond to c2. The dotted line and the triangles refer to
the common value in the single component case. The lines are
the theoretical predictions and the symbols correspond to the
simulation results

Fig. 3. Plot of the simulation values of the function �1(v∗
1)

defined by Eq. (27) for α = 0.5, n∗ = 0, δ = 1/2, w = 1 and
µ = 4. The dashed line is the Sonine polynomial (28)

(i.e., γ = 1). In Figs. 4, 5, and 6 we plot the tempera-
ture ratio γ versus the restitution coefficient α for differ-
ent choices of the mechanical parameters characterizing
the mixture. The theory as well as the simulation results
clearly indicate that γ is different from unity, even for
weak inelasticity. Figure 4 shows the dependence of γ on
α for n∗ = 0, δ = 2, w = 1, and for several values of the
mass ratio. The agreement between theory and simulation
is very good, implying the accuracy of the expression of
γ obtained in the first Sonine approximation. For large
differences in the mass ratio, the temperature differences
are significant. As can be observed in Fig. 5, the influence
of the concentration ratio δ on the temperature ratio γ
is not as strong as in that observed with the mass ratio,
although is still quite important. The dependence of the
relative temperature ratio γ(α, n∗)/γ(α, 0) on the density
n∗ is plotted in Fig. 6 for δ = 1/2, w = 2, µ = 2 and
two different vales of α: α = 0.6 and 0.8. We see that,
for a given value of the density, the relative temperature
ratio decreases as the degree of inelasticity increases. It is
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Fig. 4. Plot of the temperature ratio γ versus the restitution
coefficient α for n∗ = 0, δ = 2, w = 1 and three different
values of the mass ratio: µ = 1/10 (dotted line and triangles),
µ = 2 (dashed line and squares) and µ = 10 (solid line and cir-
cles). The lines are the theoretical predictions and the symbols
correspond to the simulation results

Fig. 5. Plot of the temperature ratio versus the restitution co-
efficient α for n∗ = 0, w = 1, µ = 4 and three different values
of the concentration ratio: δ = 1/4 (dotted line and triangles),
δ = 1 (dashed line and squares) and δ = 4 (solid line and cir-
cles). The lines are the theoretical predictions and the symbols
correspond to the simulation results

evident again the excellent agreement between the Sonine
predictions and the simulation data.

As a final point, it is interesting to analyze the possible
high energy tail of the distributions �i from the simulation
results. This could confirm the theoretical predictions giv-
en by Eq. (21). Needless to say, this result is much harder
to confirm in the simulations since it involves a very small
fraction of particles. Equation (21) implies that

lim
v∗
1→∞

Gi(v∗
1) = Ai = const , (29)

where

Gi(v∗
1) ≡ exp

(
2βiv

∗
1

ζ∗
i

)
�i(v∗

1) . (30)

The function G1(v∗
1) is plotted (in logarithmic scale) in

Fig. 7 for α = 0.3 and 0.5, n∗ = 0, δ = 1/2, w = 1 and
µ = 4. The agreement with the prediction (29) is excellent
in both cases. The region of large velocities is overpopu-
lated with respect to the Maxwell-Boltzmann distribution.

Fig. 6. Plot of the relative temperature ratio γ(α, n∗)/γ(α, 0)
as a function of the reduced density n∗ for δ = 1/2, w = 2,
µ = 2 and two different values of the restitution coefficient:
α = 0.6 (solid line and circles) and α = 0.8 (dashed line and
squares). The lines are the theoretical predictions and the sym-
bols correspond to the simulation results

Fig. 7. Plot of the simulation values of the function G1(v∗
1)

defined by Eq. (30) for α = 0.3 and 0.5, n∗ = 0, δ = 1/2,
w = 1 and µ = 4. The dashed line are the Maxwell-Boltzmann
predictions

Thus, for instance, at v∗
1 = 2.2, �/�MB � 37 for α = 0.5,

�MB being the corresponding Maxwell-Boltzmann distri-
bution.

5
Concluding remarks
In this paper we have performed Monte Carlo simulations
of the Enskog equation for a granular binary mixture in
the homogeneous cooling state (HCS). One of the prima-
ry objectives of this work has been to check the accura-
cy of a recent analytical solution obtained by Garzó and
Dufty [10] by using a first Sonine approximation. To put
this work in a proper context, it must be noticed that we
have simulated directly the spatially uniform equation (1)
so that the appearance of the so-called cluster instability
[18] is precluded in our simulations.

The simulation results have confirmed the velocity
scaling and form assumed for the distribution functions
in the HCS [c.f. Eq. (12)]. A consequence of this scal-
ing form is that all temperatures are proportional to each
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other with the same cooling rate. This does not mean that
the temperatures themselves are the same, and indeed the
theory and the simulation data show they are different.
In general, the simulation results are in very good agree-
ment with the Sonine solution, showing the reliability and
accuracy of the analytical predictions even for strong dis-
sipation or disparate values of the ratios of mass, concen-
tration, and sizes.

The fact that the fourth velocity moments ci, de-
fined through Eq. (17), are small and qualitatively sim-
ilar to that of the one-component case [5], suggests that
the distribution functions for each species are close to a
Maxwellian at the temperature for that species. Never-
theless, both Maxwellians are very different due to the
temperature differences. The simulation results indicate
that the temperature ratio γ presents a complex depen-
dence on the parameters of the problem. This complexi-
ty is well captured by the Sonine approximation, as it is
shown in Figs. 4, 5, and 6. As said before, this conclusion
differs from previous results derived in granular mixtures
for which γ = 1. According to the results obtained here,
the deviations from the energy equipartition (T1/T2 �= 1)
can be weak or strong depending on the mechanical differ-
ences between the species and the degree of inelasticity in
collisions. In addition, the simulations have also confirmed
the overpopulation predicted for large velocities by means
of a simple theoretical analysis.

Finally, let us mention that the study made here can
stimulate the performance of Monte Carlo simulations of
granular mixtures in order to provide information about
the stability of the HCS. This is important since it is
known that the HCS for a one-component system is unsta
ble to long-wavelength perturbations. These simulations
must be complemented by theoretical analyses based
on hydrodynamics equations obtained via the Chapman-
Enskog method for states close to the HCS [19]. This al-
lows us to know whether the mixture is more or less stable
and whether new active mechanisms (e.g. segregation) ap-
pear in the system. Work along these lines are in progress.

A
Some explicit expressions in the first Sonine
approximation
In this Appendix, we will quote the expressions of the co-
efficients c1 and c2 and the temperature ratio γ obtained
by using the first Sonine polynomial approximation (17).
Henceforth, it will be understood that dimensionless quan-
tities will be used and the asterisks will be deleted to sim-
plify the notation. The coefficients c1 and c2 can be written
as

c1 =
AG− ED
BG−DF , (31)

c2 =
BE −AF
BG−DF , (32)

where

A = − 15
2λ2

1
ζ
(0)
1 − �(0)

1 , (33)

B =
15
2λ2

1

(
ζ
(1)
11 +

1
2
ζ
(0)
1

)
+ �(1)

11 , (34)

D =
15
2λ2

1
ζ
(1)
12 + �(1)

12 , (35)

E = − 15
2λ2

2
ζ
(0)
2 − �(0)

2 , (36)

F =
15
2λ2

2
ζ
(1)
21 + �(1)

21 , (37)

G =
15
2λ2

2

(
ζ
(1)
22 +

1
2
ζ
(0)
2

)
+ �(1)

22 . (38)

In the above equations, we have introduced the quantities
[10]

ζ
(0)
1 =

2
3

√
2π

(
σ11

σ12

)2

x1χ11λ
−1/2
1 (1 − α2

11)

+
4
3
√
πx2χ12µ21

(
1 + η
η

)1/2

(1 + α12)λ
−1/2
2

× [2 − µ21(1 + α12)(1 + η)] , (39)

ζ
(1)
11 =

1
8

√
π

2

(
σ11

σ12

)2

x1χ11λ
−1/2
1 (1 − α2

11)

+
1
12

√
πx2χ12µ21

(1 + η)−3/2

η1/2 (1 + α12)λ
−1/2
2

× [2(3 + 4η) − 3µ21(1 + α12)(1 + η)] , (40)

ζ
(1)
12 = − 1

12
√
πx2χ12µ21

(
1 + η
η

)−3/2

(1 + α12)λ
−1/2
2

× [2 + 3µ21(1 + α12)(1 + η)] , (41)

�(0)
1 = −

√
2πλ−5/2

1

{
x1χ11

(
σ11

σ12

)2 9 + 2α2
11

2
(
1 − α2

11
)

−
√

2x2χ12 (1 + η)−1/2
µ21 (1 + α12)

[ − 2 (6 + 5η)

+µ21 (1 + α12) (1 + η) (14 + 5η) − 8µ2
21 (1 + α12)

2

× (1 + η)2 + 2µ3
21 (1 + α12)

3 (1 + η)3
]}

, (42)

�(1)
11 = −

√
2πλ−5/2

1

{
x1χ11

(
σ11

σ12

)2 [
1 + α11

+
3
64

(
69 + 10α2

11
) (

1 − α2
11

) ]
−

√
2

16
x2χ12

× (1 + η)−5/2
µ21 (1 + α12)

[ − 2(90 + 231η+184η2

+ 40η3) + 3µ21 (1 + α12) (1 + η) (70 + 117η

+ 44η2) − 24µ2
21 (1 + α12)

2 (1 + η)2 (5 + 4η)

+ 30µ3
21 (1 + α12)

3 (1 + η)3
]}

, (43)

�(1)
12 =

√
π

8
x2χ12λ

−5/2
1 η2 (1 + η)−5/2

µ21 (1 + α12)

×[
2 (2 + 5η) + 3µ21 (1 + α12) (1 + η) (2 + 5η)

− 24µ2
21 (1 + α12)

2 (1 + η)2 + 30µ3
21 (1 + α12)

3

× (1 + η)3
]
. (44)
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In these equations, η = λ1/λ2 = µ12/(µ21γ). The corre-
sponding expressions for ζ(0)2 , ζ(1)22 , ζ(1)21 , �(0)

2 , �(1)
22 , and

�(1)
21 can be easily obtained from Eqs. (39)–(44), respec-

tively, by interchanging 1 and 2 and setting η → η−1.
Once the coefficients ci are given in terms of γ and the

parameters of the mixture, the temperature ratio γ can
be explicitly obtained by numerically solving the condi-
tion for equal cooling rates:

ζ
(0)
1 + ζ(1)11 c1 + ζ(1)12 c2 = ζ(0)2 + ζ(1)22 c2 + ζ(1)21 c1 . (45)
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