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Hydrodynamics for a granular binary mixture at low density
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Hydrodynamic equations for a binary mixture of inelastic hard spheres are derived from the
Boltzmann kinetic theory. A normal solution is obtained via the Chapman–Enskog method for states
near the local homogeneous cooling state. The mass, heat, and momentum fluxes are determined to
first order in the spatial gradients of the hydrodynamic fields, and the associated transport
coefficients are identified. In the same way as for binary mixtures with elastic collisions, these
coefficients are determined from a set of coupled linear integral equations. Practical evaluation is
possible using a Sonine polynomial approximation, and is illustrated here by explicit calculation of
the relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion,
the shear viscosity, the Dufour coefficient, the thermal conductivity, and the pressure energy
coefficient. All these coefficients are given in terms of the restitution coefficients and the ratios of
mass, concentration, and particle sizes. Interesting and new effects arise from the fact that the
reference states for the two components have different partial temperatures, leading to additional
dependencies of the transport coefficients on the concentration. The results hold for arbitrary degree
of inelasticity and are not limited to specific values of the parameters of the mixture. Applications
of this theory will be discussed in subsequent papers. ©2002 American Institute of Physics.
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I. INTRODUCTION

The qualitative properties of a granular gas whose
namics is dominated by pairwise collisions between
grains can be described by a Boltzmann equation, suita
modified to describe the more complex two particle co
sions. In the simplest model the grains are taken to
smooth, hard spheres with inelastic collisions. In rec
years, the derivation of hydrodynamic equations for a o
component granular gas from this idealized Boltzmann
scription has been worked out in detail to Navier–Stok
order,1 with explicit expressions for the transport coefficien
as a function of the degree of dissipation~the restitution co-
efficient!. These recent results improve upon earl
studies2–4 by providing expressions that are accurate ev
for strong dissipation. As a consequence, there are now
cise predictions from the Boltzmann equation suitable
detailed comparison with Monte Carlo simulation, molecu
dynamics simulation, and the evolving new class of co
trolled experiments. This analysis for the one-compon
system also has been extended to dense gases describ
the Enskog equation.5 Similar studies for multicomponen
granular gases are more scarce. Existing work on multic
ponent transport appears to be based on weak dissip
approximations.6–9 Our objective is to provide a descriptio
of hydrodynamics in binary granular mixtures with a comp
rable accuracy to that for the one-component system, v
over the broadest parameter range including strong diss

a!Electronic mail: vicenteg@unex.es
b!Electronic mail: dufty@phys.ufl.edu
1471070-6631/2002/14(4)/1476/15/$19.00
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tion. The reference homogeneous cooling state for a bin
mixture has been discussed in detail recently10 to provide the
proper basis for analysis of transport due to spatial inhom
geneities. Those results are used here to describe mass,
and momentum transport. The expressions for the distr
tion functions, fluxes, and transport coefficients are exac
Navier–Stokes order~within the context of the Boltzmann
equation!.

The hydrodynamic equations for a binary mixture at lo
density are derived from the coupled set of Boltzmann eq
tions for the two species in the same manner as for a o
component system. The solutions for the distribution fun
tions are expanded about a local homogeneous cooling
that is analogous to the local equilibrium state for a gas w
elastic collisions. The expansion is in powers of the spa
gradients of the hydrodynamic fields~e.g., species densities
temperature, and flow velocity! and is an extension of the
familiar Chapman–Enskog procedure for elastic collisio
The primary technical complication for inelastic collisions
an inherent time dependence of the reference state du
collisional cooling. In a one-component system this occ
through the time dependence of the temperature define
terms of the mean square velocity for the homogeneous c
ing distribution. For a two-component system the tempe
ture is defined in terms of the algebraic average of the m
square velocities for the two distributions. In the case
elastic collisions the average temperature is the same a
kinetic temperatures for each species in the local equilibri
state. However, a surprising result of the study in Ref. 10
that these temperatures are all different for inelastic co
sions. This does not mean that there are additional hydro
6 © 2002 American Institute of Physics
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1477Phys. Fluids, Vol. 14, No. 4, April 2002 Hydrodynamics for a granular binary mixture
namic degrees of freedom since their cooling rates are
same and consequently, the partial kinetic temperatures
can be expressed in terms of the average temperature
the relationships between these temperatures are functio
the densities for the two species and lead to a new de
dence of the reference cooling states on these hydrodyn
variables. The consequences of this effect for the trans
coefficients are significant, as shown in the following.

The hydrodynamic equations for a binary mixture a
somewhat more complicated than for the one-compon
case: six coupled equations with eight transport coefficie
The irreversible~dissipative! parts of the mass, heat, an
momentum fluxes are calculated to leading order in the s
tial gradients of the hydrodynamic fields. For systems w
elastic collisions the specific set of gradients contributing
each flux is restricted by fluid symmetry, time reversal
variance~Onsager relations!, and the form of the entropy
production.11 For inelastic collisions only fluid symmetry ap
plies so there is greater freedom in representing the flu
and identifying associated transport coefficients. This is d
cussed further in Sec. III where the independent gradients
chosen to be those for the concentration of species one
pressure, the temperature, and the components of the
field, with eight independent scalar transport coefficien
Using the Chapman–Enskog expansion the solutions to
Boltzmann equations are obtained to leading order in th
gradients, and the transport coefficients are expresse
terms of the solutions to a set of coupled linear integral eq
tions.

The plan of the paper is as follows. In Sec. II, th
coupled set of Boltzmann equations and the correspon
hydrodynamic equations are recalled. The Chapman–Ens
expansion adapted to the inelastic binary mixtures is
scribed in Sec. III to construct the distribution function
linear order in the gradients. This solution is used to cal
late the fluxes and identify associated transport coefficie
A Sonine polynomial approximation is applied to solve t
linear integral equations defining selected transport coe
cients in Sec. IV. We get explicit expressions for these tra
port coefficients in terms of the restitution coefficients a
the masses, concentrations, and sizes of the constituen
the mixture. Finally, the results are summarized and d
cussed in Sec. V.

II. BOLTZMANN EQUATION AND CONSERVATION
LAWS

Consider a binary mixture of smooth hard spheres
massesm1 andm2 , and diameterss1 ands2 . The inelastic-
ity of collisions among all pairs is characterized by thr
independent constant coefficients of normal restitutiona11,
a22, and a125a21, wherea i j is the restitution coefficien
for collisions between particles of speciesi and j. In the
low-density regime, the distribution functionsf i(r ,v;t) ( i
51,2) for the two species are determined from the set
nonlinear Boltzmann equations12

~] t1v1"“ ! f i~r ,v1 ,t !5(
j

Ji j @v1u f i~ t !, f j~ t !#. ~1!
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The Boltzmann collision operatorJi j @v1u f i , f j # describing
the scattering of pairs of particles is

Ji j @v1u f i , f j #5s i j
2 E dv2E dŝQ~ŝ"g12!~ŝ"g12!

3@a i j
22f i~r ,v18 ,t ! f j~r ,v28 ,t !

2 f i~r ,v1 ,t ! f j~r ,v2 ,t !#, ~2!

wheres i j 5(s i1s j )/2, ŝ is a unit vector along their line o
centers,Q is the Heaviside step function, andg125v12v2 .
The primes on the velocities denote the initial values$v18 ,v28%
that lead to$v1 ,v2% following a binary~restituting! collision:

v185v12m j i ~11a i j
21!~ŝ"g12!ŝ,

v285v21m i j ~11a i j
21!~ŝ"g12!ŝ, ~3!

wherem i j 5mi /(mi1mj ). The relevant hydrodynamic field
are the number densitiesni , the flow velocity u, and the
temperatureT. They are defined in terms of moments of th
distributionsf i as

ni5E dv1f i~v1!, ru5(
i
E dv1miv1f i~v1!, ~4!

nT5p5(
i
E dv1

mi

3
V1

2f i~v1!, ~5!

whereV15v12u is the peculiar velocity,n5n11n2 is the
total number density,r5m1n11m2n2 is the total mass den
sity, andp is the pressure.

The collision operators conserve the particle number
each species and the total momentum but the total energ
not conserved:

E dv1Ji j @vu f i , f j #50, ~6!

(
i , j

E dv1miv1Ji j @v1u f i , f j #50, ~7!

(
i , j

E dv1
1
2 miv1

2Ji j @v1u f i , f j #52 3
2 nTz, ~8!

wherez is identified as the ‘‘cooling rate’’ due to inelasti
collisions among all species. From Eqs.~4! to ~8!, the mac-
roscopic balance equations for the mixture can be obtain
They are given by

Dtni1ni“"u1
“"j i

mi
50, ~9!

Dtu1r21
“P50, ~10!

DtT2
T

n (
i

“"j i

mi
1

2

3n
~“"q1P:“u!52zT. ~11!

In Eqs.~9!–~11!, Dt5] t1u•“ is the material derivative,

j i5miE dv1V1f i~v1! ~12!

is the mass flux for speciesi relative to the local flow,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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P5(
i
E dv1miV1V1f i~v1! ~13!

is the total pressure tensor, and

q5(
i
E dv1

1
2 miV1

2V1f i~v1! ~14!

is the total heat flux.
The balance equations become a closed set of hydr

namic equations for the fieldsni , u, andT once the fluxes
~11!–~14! and the cooling ratez are obtained in terms of th
hydrodynamic fields and their gradients. The resulting eq
tions constitute the hydrodynamics for the mixture. Sin
these fluxes are explicit linear functionals off i , a represen-
tation in terms of the fields results when a solution to
Boltzmann equation can be obtained as a function of
fields and their gradients. Such a solution is called a ‘‘n
mal’’ solution, and a practical means to generate it for sm
spatial gradients is provided by the Chapman–Ens
method.13

III. CHAPMAN–ENSKOG SOLUTION OF THE
BOLTZMANN EQUATIONS

The analysis of transport phenomena in fluid mixtures
considerably more complicated than in the case of a o
component system. Not only is the number of transport
efficients larger but these coefficients also are functions
more parameters such as the concentrations, mass ratios
ratios, and the three coefficients of restitution. It follow
from fluid symmetry that the pressure tensor has the s
form to first order in the gradients as for a one-compon
system. As noted in Sec. I, there is more flexibility in t
representation of the heat and mass fluxes. Even in the
of elastic collisions, several different~but equivalent! choices
of hydrodynamic fields are used so some care is require
comparing transport coefficients in the different represen
tions. The choice here is to use the concentration of spe
1, defined in terms of the densities byx15n1 /(n11n2),
together with the pressure, the temperature, and the t
components of the local flow velocity.14 The fluxes then have
the forms

j152S m1m2n

r DD“x12
r

p
Dp“p2

r

T
D8“T,

j252 j1 , ~15!

q52T2D9“x12L“p2l“T, ~16!

Pab5pdab2h~“bua1“aub2 2
3dab“"u!2kdab“"u.

~17!

The transport coefficients in these equations are
Downloaded 07 Mar 2002 to 158.49.21.193. Redistribution subject to A
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D8
Dp

D9
l
L
h
k

D 5S diffusion coefficient
thermal diffusion coefficient
pressure diffusion coefficient

Dufour coefficient
thermal conductivity

pressure energy coefficient
shear viscosity
bulk viscosity

D . ~18!

For systems with elastic collisions, the thermal conductiv
in a mixture is generally measured atj15constant, based on
Onsager’s relations between coefficients inj1 andq. This is
no longer an experimentally useful choice here. If in additi
it is required thatp5constant, then“x1 can be eliminated to
give q in terms ofj1 and“T. The coefficient of“T in this
representation is then the thermal conductivity.11 The bulk
viscosity vanishes at low density, as shown in the followin
just as in the case of elastic collisions. The objective her
to apply the Chapman–Enskog method for a solution to
Boltzmann equation to first order in the gradients, confi
the forms~15!–~17!, and determine a means to calculate t
transport coefficients as functions of the parameters of
system.

The Chapman–Enskog method assumes the existenc
a ‘‘normal’’ solution in which all space and time dependen
of the distribution function occurs through a functional d
pendence on the hydrodynamic fields

f i~r ,v,t !5 f i@v1ux1~r ,t !,p~r ,t !,T~r ,t !,u~r ,t !#. ~19!

For small spatial variations, this functional dependence
be made local in space and time through an expansio
gradients of the fields. To generate the expansion,f i is writ-
ten as a series expansion in a formal parametere measuring
the uniformity of the system,

f i5 f i
~0!1e f i

~1!1e2f i
~2!1¯ , ~20!

where each factor ofe means an implicit gradient of a hy
drodynamic field. The local reference statesf i

(0) are chosen
such that they have the same moments as in Eqs.~4! and~5!,
or equivalently, the remainder of the expansion must ob
the orthogonality conditions

E dv1@ f i~v1!2 f i
~0!~v1!#50,

~21!

(
i
E dv1miv1@ f i~v1!2 f i

~0!~v1!#50,

(
i
E dv1

mi

2
v1

2@ f i~v1!2 f i
~0!~v1!#50. ~22!

The time derivatives of the fields are also expanded as] t

5] t
(0)1e] t

(1)1¯ . The coefficients of the time derivativ
expansion are identified from the balance equations~9!–~11!
with a representation of the fluxes and the cooling rate in
macroscopic balance equations as a similar series thro
their definitions as functionals of the distributionsf i . This is
the usual Chapman–Enskog method for solving kine
equations.13 The main difference in the case of inelastic co
lisions is that the reference state has a time dependenc
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1479Phys. Fluids, Vol. 14, No. 4, April 2002 Hydrodynamics for a granular binary mixture
sociated with the cooling that is not proportional to a spa
gradient. Consequently, terms from the time derivative] t

(0)

are not zero.
To zeroth order ine, the kinetic equations~1! become

] t
~0! f i

~0!5(
j

Ji j @ f i
~0! , f j

~0!#. ~23!

The mass and energy balance equations to this order gi

] t
~0!xi50, T21] t

~0!T5p21] t
~0!p52z~0!, ~24!

where the cooling ratez (0) is determined by Eq.~8! to zeroth
order

z~0!52
2

3p (
i , j

E dv1

1

2
miv1

2Ji j @v1u f i
~0! , f j

~0!#. ~25!

This homogeneous state has been studied recently10 and is
discussed in more detail in Sec. IV. The time derivative
Eq. ~23! can be represented more usefully as

] t
~0! f i

~0!52z~0!~T]T1p]p! f i
~0!5 1

2 z~0!¹v1
"~V1f i

~0!!,
~26!

where“v1
5]/]v1 . The second equality follows from di

mensional analysis which requires that the temperature
pendence off i

(0) must be of the form

f i
~0!5xi

p

T
v0

23F i~V1 /v0!, ~27!

wherev0
2(t)52T(t)(m11m2)/(m1m2) is a thermal velocity

defined in terms of the temperatureT(t) of the mixture. The
dependence on the magnitude ofV1 follows from the re-
quirement that to zeroth order in gradientsf i must be isotro-
pic with respect to the peculiar velocity. The Boltzma
equations at this order can be written finally as

1

2
z~0!

“v1
"~V1f i

~0!!5(
j

Ji j @ f i
~0! , f j

~0!#. ~28!

Since the distribution functions are isotropic, it follows fro
Eqs.~12! and~14! that the zeroth-order mass and heat flux
vanish while, for the same reason, the momentum flux
diagonal with a coefficient that is just the sum of the par
pressures, i.e.,

j i
~0!50, q~0!50, Pab

~0!5pdab . ~29!

To first order in the gradients, the equation forf i
(1) is

~] t
~0!1Li ! f i

~1!1Mi f j
~1!52~] t

~1!1v1"“ ! f i
~0! , ~30!

where it is understood thatiÞ j and the linear operatorsLi

andMi are

Li f i
~1!52~Jii @ f i

~0! , f i
~1!#1Jii @ f i

~1! , f i
~0!#

1Ji j @ f i
~1! , f j

~0!# !, ~31!

Mi f i
~1!52Ji j @ f i

~0! , f j
~1!#. ~32!

The action of the time derivatives] t
(1) on the hydrodynamic

fields is
Downloaded 07 Mar 2002 to 158.49.21.193. Redistribution subject to A
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Dt
~1!x150, ~33!

Dt
~1!p52

5p

3
“"u, ~34!

Dt
~1!T52

2T

3
“"u, ~35!

Dt
~1!u52r21

“p, ~36!

whereDt
(1)5] t

(1)1u"“ and use has been made of the resu
j i
(0)5q(0)5z (1)50. The last equality follows from the fac

that the cooling rate is a scalar, and corrections to first or
in the gradients can arise only from the divergence of
vector field. However, as demonstrated in the followin
there is no contribution to the distribution function propo
tional to this divergence. We note that this is special to
low density Boltzmann equation and such terms do occu
higher densities. Evaluating the right-hand side of Eq.~30!
gives

2~] t
~1!1v1"“ ! f i

~0!

52S ]

]x1
f i

~0!D
p,T

V1"“x1

2F f 1
~0!V11

nT

r S ]

]V1
f i

~0!D G "“ ln p

1F f i
~0!1

1

2

]

]V1
"~V1f i

~0!!GV1"“

3 ln T1S V1a

]

]V1b
f i

~0!2
1

3
dabV1"

]

]V1
f i

~0!D“aub .

~37!

The equation forf i
(1) is now

~] t
~0!1Li ! f i

~1!1Mi f j
~1!5A i "“x11Bi "“p1Ci "“T

1Di ,ab“aub . ~38!

The coefficients of the field gradients on the right-hand s
are functions ofV1 and the hydrodynamic fields. They ar
given by

A i~V1!52S ]

]x1
f i

~0!D
p,T

V1 , ~39!

Bi~V1!52
1

p F f i
~0!V11

nT

r S ]

]V1
f i

~0!D G , ~40!

Ci~V1!5
1

T F f i
~0!1

1

2

]

]V1
"~V1f i

~0!!GV1 , ~41!

Di ,ab~V1!5V1a

]

]V1b
f i

~0!2
1

3
dabV1"

]

]V1
f i

~0! . ~42!

Note that the trace ofDi ,ab vanishes, confirming that the
distribution function does not have contribution from the d
vergence of the flow field. The solutions to Eq.~38! is of the
form

f i
~1!5Ai "“x11Bi "“p1Ci "“T1Di ,ab“aub . ~43!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The coefficientsAi , Bi , Ci , andDi ,ab are functions of the
peculiar velocityV1 and the hydrodynamic fields. The coo
ing rate depends on space through its dependence onx1 , p,
andT. The time derivative] t

(0) acting on these quantities ca
be evaluated by the replacement] t

(0)→2z (0)(T]T1p]p). In
addition, there are contributions from] t

(0) acting on the tem-
perature and pressure gradients given by

] t
~0!
“T52“~Tz~0!!

52z~0!
“T2T“z~0!

52
z~0!

2T
“T2TF S ]z~0!

]x1
D

p,T

“x11
z~0!

p
“pG , ~44!

] t
~0!
“p52“~pz~0!!

52z~0!
“p2p“z~0!

522z~0!
“p2pF S ]z~0!

]x1
D

p,T

“x12
z~0!

2T
“TG . ~45!

The integral equations forAi , Bi , Ci , andDi ,ab are identi-
fied as coefficients of the independent gradients in Eq.~43!:

@2z~0!~T]T1p]p!1Li #Ai1MiAj

5A i1S ]z~0!

]x1
D

p,T

~pBi1TCi !, ~46!

@2z~0!~T]T1p]p!1Li22z~0!#Bi1MiBj

5Bi1
Tz~0!

p
Ci , ~47!

F2z~0!~T]T1p]p!1Li2
1

2
z~0!GCi1MiCj

5Ci2
pz~0!

2T
Bi , ~48!

@2z~0!~T]T1p]p!1Li #Di ,ab1MiDj ,ab5Di ,ab . ~49!

The solutions to these linear integral equations are m
unique by the orthogonality conditions~21! and ~22!, i.e.,

E dv1S Ai

Bi

Ci

Di ,ab

D 50, (
i
E dv1miV1S Ai

Bi

Ci

Di ,ab

D 50,

~50!

(
i
E dv1

mi

2
V1

2S Ai

Bi

Ci

Di ,ab

D 50. ~51!

With the functions (Ai ,Bi ,Ci ,Di ,ab) determined in this way,
the solutions to the Boltzmann equations are determined
~43! exactly to first order in the spatial gradients.

Use of Eq.~43! in the definitions~12!–~14! gives the
expected forms~15!–~17! for the fluxes. The transport coe
ficients associated withj1 are identified as
Downloaded 07 Mar 2002 to 158.49.21.193. Redistribution subject to A
e

y

D52
r

3m2n E dv1V1"A1 , ~52!

Dp52
m1p

3r E dv1V1"B1 , ~53!

D852
m1T

3r E dv1V1"C1 . ~54!

The transport coefficients for the heat flux are

D952
1

3T2 (
i
E dv1

1

2
miV1

2V1"Ai , ~55!

L52
1

3 (
i
E dv1

1

2
miV1

2V1"Bi , ~56!

l52
1

3 (
i
E dv1

1

2
miV1

2V1"Ci . ~57!

Finally, the shear and bulk viscosities are

h52
1

10(
i
E dv1miV1aV1bDi ,ab , ~58!

k52
1

9 (
i
E dv1miV1

2Di ,aa50. ~59!

The bulk viscosity vanishes since the trace ofDi ,ab vanishes,
as follows from Eq.~49!.

To summarize the results to this point, the solutions
the Boltzmann equations to first order in the spatial gradie
are

f i5 f i
~0!1Ai "“x11Bi "“p1Ci "“T1Di ,ab“aub . ~60!

The solution to zeroth order,f i
(0) , is obtained from Eq.~49!

while the functionsAi , Bi , Ci , andDi ,ab characterizing the
solution to first order in the gradients are determined fr
the integral equations~46! to ~49!. Calculating the mass
heat, and momentum fluxes from this solution one can id
tify the transport coefficients in terms of the integrals~52!–
~59!. These fluxes, together with the macroscopic bala
equations~9!–~11!, provide the closed set of Navier–Stoke
order hydrodynamic equations for a granular binary mixtu
All of these results are still exact and valid for arbitra
values of the restitution coefficients.

IV. SONINE POLYNOMIAL APPROXIMATION

Accurate approximations to the solutions to the integ
equations forf i

(0) and (Ai ,Bi ,Ci ,Di ,ab) may be obtained
using low order truncation of expansions in a series of S
nine polynomials. The determination off i

(0) to leading order
in the Sonine expansion has been analyzed elsewhere10 and
only the main result is quoted here. The polynomials
defined with respect to a Gaussian weight factor. The par
eters of this Gaussian are chosen such that the leading
in the expansion yields the exact moments of the entire
tribution with respect to 1,v1 , andv1

2. The latter defines the
kinetic temperatures for each species
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3

2
niTi5E dv1

mi

2
V1

2f i
~0! . ~61!

For elastic collisions the temperaturesTi are the same as th
global temperatureT defined in Eq.~5!. The condition that
f i

(0) is normal implies thatTi is a function ofni and T, or
equivalently

Ti

T
[g i~x1!, ~62!

where g i depends on the hydrodynamic state through
concentration. The determination of this functional dep
dence is worked out in Ref. 10. The Sonine polynomials u
here are defined with respect to Maxwellians characteri
by the temperaturesTi rather than those characterized byT
for elastic collisions. With this choice the leading deviati
from the Maxwellians is a polynomial of degree 4,

f i
~0!5niv0

23F i~V1* !, ~63!

F i~V1* !→S u i

p D 3/2

e2u iV1*
2F11

ci

4 S u i
2V1*

4

25u iV1*
21

15

4 D G , ~64!

whereV1* 5V1 /v0 , and u i5(m j i g i)
21. If polynomials de-

fined in terms ofT are used the leading correction is a po
nomial of degree 2 inv1* , proportional toT2Ti . The choice
of polynomials defined in terms ofTi effectively resums an
infinite set of terms in this second type of expansion. Sin
g i is a function of the concentration, a significant new co
tribution to the parameters of the integral equations for
transport coefficients occurs through the additional conc
tration dependence associated with temperature differenc
the two species. The coefficientsci in Eq. ~64! are deter-
mined by substitution of Eq.~63! into Eq. ~26! and retaining
all terms linear inci for the leading Sonine polynomial ap
proximation. The reader is referred to Ref. 10 for furth
details.

In Secs. IV A, IV B, and IV C, respectively, we wil
compute the mass flux, the pressure tensor, and the hea
in the leading Sonine polynomial approximations. Let
consider each one separately.

A. Mass flux

Here, the lowest order Sonine polynomial approxim
tions for Ai , Bi , and Ci are obtained and applied to th
calculation of the transport coefficients in the mass fluxesD,
Dp , and D8. The leading Sonine approximations~lowest
degree polynomial! of the quantitiesAi , Bi , andCi are

S Ai

Bi

Ci

D → f i ,MV1S ai ,1

bi ,1

ci ,1

D . ~65!

The coefficients$ai ,1 ,bi ,1 ,ci ,1% are related to the transpo
coefficients in this approximation through~52!–~54!,

a1,152
1

dg
a2,152

m1m2n

rn1T1
D, ~66!
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e
-
d
d

e
-
e
n-
of

r

ux
s

-

b1,152
1

dg
b2,152

r

pn1T1
Dp , ~67!

c1,152
1

dg
c2,152

r

Tn1T1
D8. ~68!

Here, g5T1 /T2 and d5n1 /n2 . The coefficients
$a1,1;b1,1;c1,1% are determined by substitution of Eq.~65!
into the integral equations~46!–~48!. The details are carried
out in Appendix A with the results

a1,152S n2
1

2
z~0!D 21F S ]

]x1
ln n1T1D

p,T

2S ]z~0!

]x1
D

p,T

~pb1,11Tc1,1!G , ~69!

b1,152
1

p S 12
m1nT

rT1
D S n2

3

2
z~0!1

z~0!2

2n D 21

, ~70!

c1,152
pz~0!

2Tn
b1,1, ~71!

where the collision frequencyn is given by

n52
m1

3n1T1
E dv1V1"~J12@v1u f 1,MV1 , f 2

~0!#,

2dgJ12@v1u f 1
~0! , f 2,MV2# !. ~72!

This integral is evaluated in Appendix B with the result

n

ne
5

~11a12!

2
Am21g11m12g2

3F12
1

16r

r1~m2g1!2c11r2~m1g2!2c2

~m2g11m1g2!2 G , ~73!

wherene is the corresponding result for the elastic case

ne5
8

3
A2ps12

2 A T

m1m2

r

Am11m2

, ~74!

andr i5mini is the mass density of speciesi. These results,
together with a2,152dga1,1, b2,152dgb1,1, and c2,1

52dgc1,1 completely determine the distribution function
to first order in the Sonine polynomial expansion.

The transport coefficients are identified from~69! to ~71!
as

D5
r

m1m2n S n2
1

2
z~0!D 21F S ]

]x1
n1T1D

p,T

1rS ]z~0!

]x1
D

p,T

~Dp1D8!G , ~75!

Dp5
n1T1

r S 12
m1nT

rT1
D S n2

3

2
z~0!1

z~0!2

2n D 21

, ~76!

D852
z~0!

2n
Dp . ~77!

Since j152 j2 and “x152“x2 , it is expected thatD
should be symmetric with respect to interchange of partic
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1 and 2 whileDp andD8 should be antisymmetric. This ca
be verified by noting thatn1T11n2T25nT. The expression
for n agrees with the known result for elastic collisions.13 For
the case of mechanically equivalent particles (m15m2 ,a11

5a225a12[a,s115s22) in the dilute concentration limit
(r2→0), the expression for the diffusion coefficientD coin-
cides with the one recently derived in the self-diffusi
problem.15

B. Pressure tensor

The leading Sonine approximation for the functionDi ,ab

is

Di ,ab→ f 1,Mdi ,1Ri ,ab~V1!, ~78!

where

Ri ,ab~V1!5mi~V1aV1b2 1
3V1

2dab!, ~79!

and

di ,15
1

10

1

niTi
2 E dv1Ri ,abDi ,ab . ~80!

The coefficientsdi ,1 are related to the shear viscosityh in
this approximation through Eq.~58! as

h52T2~n1g1
2d1,11n2g2

2d2,1!. ~81!

The integral equations for the coefficientsdi ,1 are decou-
pled from the remaining transport coefficients. The two c
efficientsdi ,1 are obtained by multiplying Eq.~49! with Ri ,ab

and integrating over the velocity to get the coupled set
equations

S t112
1
2 z~0! t12

t21 t222
1
2 z~0!D S d1,1

d2,1
D52S T1

21

T2
21D . ~82!

The frequenciest i j are given in terms of the collision opera
tor by

t i i 5
1

10

1

niTi
2 E dv1Ri ,abLi~ f i ,MRi ,ab!, ~83!

t i j 5
1

10

1

niTi
2 E dv1Ri ,abMi~ f j ,MRj ,ab!, iÞ j . ~84!

The evaluation of these collision integrals is given in Appe
dix C. The solution with the matrix elements known is e
ementary so thath can be calculated directly from Eq.~81!.

C. Heat flux

The computation of the heat flux requires going to t
second Sonine approximation. In this case, the quantitiesAi ,
Bi , andCi are taken to be

A1~V1!→ f 1,MF2
m1m2n

rn1T1
DV11a1,2S1~V1!G ,

~85!

A2~V1!→ f 2,MFm1m2n

rn2T2
DV11a2,2S2~V1!G ,
Downloaded 07 Mar 2002 to 158.49.21.193. Redistribution subject to A
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B1~V1!→ f 1,MF2
r

pn1T1
DpV11b1,2S1~V1!G ,

~86!

B2~V1!→ f 2,MF r

pn2T2
DpV11b2,2S2~V1!G ,

C1~V1!→ f 1,MF2
r

Tn1T1
D8V11c1,2S1~V1!G ,

~87!

C2~V1!→ f 2,MF r

Tn2T2
D8V11c2,2S2~V1!G ,

where

Si~V1!5~ 1
2miV1

22 5
2Ti !V1 . ~88!

In Eqs. ~85!–~88!, it is understood thatD, Dp , andD8 are
given by Eqs.~75!, ~76! and ~77!, respectively. The coeffi-
cientsai ,2 , bi ,2 , andci ,2 are defined as

S ai ,2

bi ,2

ci ,2

D 5
2

15

mi

niTi
3 E dv1Si~V1!•S Ai

Bi

Ci

D . ~89!

Consequently, the transport coefficients appearing in the
flux, D9, L, andl are given by

D952
5

2
TS n1g1

3

m1
a1,21

n2g2
3

m2
a2,2D

1
5

2

nm1m2

rT S g1

m1
2

g2

m2
DD, ~90!

L52
5

2
T3S n1g1

3

m1
b1,21

n2g2
3

m2
b2,2D

1
5

2

r

n S g1

m1
2

g2

m2
DDp , ~91!

l52
5

2
T3S n1g1

3

m1
c1,21

n2g2
3

m2
c2,2D 1

5

2
rS g1

m1
2

g2

m2
DD8.

~92!

The computation of the coefficientsD9, L, andl is also
carried out in Appendix A. By using matrix notation, th
coupled set of six equations for the unknowns

$a1,2;a2,2;b1,2;b2,2;c1,2;c2,2% ~93!

can be written as

Lss8Xs85Ys . ~94!

Here,Xs8 is the column matrix defined by the set~93! and
Lss8 is the matrix
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L51
n112

3
2 z~0! n12 2pS ]z~0!

]x1
D

p,T

0 2TS ]z~0!

]x1
D

p,T

0

n21 n222
3
2 z~0! 0 pS ]z~0!

]x1
D

p,T

0 TS ]z~0!

]x1
D

p,T

0 0 n112
5
2 z~0! n12 2Tz~0!/p 0

0 0 n21 n222
5
2 z~0! 0 2Tz~0!/p

0 0 pz~0!/2T 0 n112z~0! n12

0 0 0 pz~0!/2T n21 n222z~0!

2 . ~95!
ffi-

res-

in
lar
of
the

cor-
ing
the

dy-
ing
tum

qs.
-
tic
os-
nd

ce
am-
en-
la-
in
the

n of
ty.
y-

the
Here, we have introduced the collision frequencies

n i i 5
2

15

mi

niTi
3 E dv1Si "Li~ f i ,MSi !, ~96!

n i j 5
2

15

mi

niTi
3 E dv1Si "Mi~ f j ,MSj !, iÞ j . ~97!

The column matrixY is

Y5S Y1

Y2

Y3

Y4

Y5

Y6

D , ~98!

where

Y152
z~0!m1m2nD

rn1T1
2 2

1

2

T2

n1T1
3

]

]x1
~n1g1

2c1!

1
2

15

m1
2m2nD

rn1
2T1

4 F E dv1S1"L1~ f 1,MV1!

2dgE dv1S1"M1~ f 2,MV2!G , ~99!

Y352
z~0!rDp

pn1T1
2 2

1

2

c1

pT1
1

2

15

m1rDp

pn1
2T1

4 F E dv1S1

•L1~ f 1,MV1!2dgE dv1S1"M1~ f 2,MV2!G , ~100!

Y552
z~0!rD8

Tn1T1
2 2

21c1

2TT1

1
2

15

m1rD8

Tn1
2T1

4 F E dv1S1"L1~ f 1,MV1!

2dgE dv1S1"M1~ f 2,MV2!G , ~101!

where

ci5
8

15F mi
2

4niTi
2 E dv1V1

4f i
~0!2

15

4 G . ~102!
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The corresponding expressions of the elementsY2 , Y4 , and
Y6 can be deduced from Eqs.~99!, ~100!, and~101!, respec-
tively, by interchanging 1↔2 and setting D→D, Dp

→2Dp , andD8→2D8. The evaluation of the collision in-
tegrals~96! and ~97! is given in Appendix D.

The solution to Eq.~94! is

Xs5~L21!ss8Ys8 . ~103!

This relation provides an explicit expression for the coe
cientsai ,2 , bi ,2 , and ci ,2 in terms of the restitution coeffi-
cients and the parameters of the mixture. From these exp
sions one can easily get the transport coefficientsD8, L, and
l from Eqs.~90!, ~91!, and~92!, respectively.

V. DISCUSSION

The primary objective of this work has been to obta
the hydrodynamic description of a binary mixture of granu
gases from an underlying kinetic theory. The derivation
the hydrodynamic equations consists of two steps. First,
macroscopic balance equations~9!–~11! for number densi-
ties, total momentum, and energy are obtained from the
responding kinetic equation. Next, the fluxes and cool
rate in these equations are determined from a solution of
coupled Boltzmann equations given in terms of the hydro
namic fields and their spatial gradients. The correspond
constitutive equations for the mass, heat, and momen
fluxes are given to Navier–Stokes order by Eqs.~15!–~17!,
and the associated transport coefficients are given by E
~52!–~54!, ~55!–~57!, and~58!–~59!, respectively. These re
sults are exact within the context of the Boltzmann kine
equation. A practical evaluation of these coefficients is p
sible by means of a Sonine polynomial approximation a
the derivation and approximate results arenot limited to
weak inelasticity. An exploration of the full parameter spa
~mass ratio, diameters, concentrations, inelasticity par
eters! is straightforward but beyond the scope of this pres
tation. We intend to create a library of programs for calcu
tion of distribution functions and transport coefficients
one- and two-component granular systems, available to
public on our web site.

The Chapman–Enskog method provides an expansio
the distribution function for weak spatial inhomogenei
This means that the relative spatial variation of all hydrod
namic fields must be small over distances of order of
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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mean free path. This encompasses a wide range of intere
phenomena, but excludes strongly driven systems suc
those under steady shear. For such states it is not profitab
go beyond the order considered here in the Chapm
Enskog expansion, but rather to use other methods not b
on small gradients. Previous applications of the Chapm
Enskog method have typically introduced additional assum
tions for convenience that are not internally consistent w
constructing a solution to the Boltzmann equation. In mos
these cases the reference state was chosen to be a Max
ian, presumed to give accurate results at weak dissipa
This is not the case, as has been demonstrated in the
component case.1 In addition, the effects of cooling in the
lowest order time derivative of the temperature and press
were neglected, again under the assumption of weak diss
tion. Here, the reference state has been taken to be an
solution to the uniform Boltzmann equation and con
quently, there is no limitation on the parameters of the s
tem ~mass ratio, size ratio, concentrations, restitution coe
cients!. An interesting and important result of this exa
analysis is that the temperatures of each species mus
different. Furthermore, the time derivatives are calculated
each order in the gradient expansion without restriction
the restitution coefficients. This assures that a consisten
lution to the Boltzmann equation is constructed at each o
in the gradients, without any restrictions on the system
rameters. This consistency is reflected in the verification
solubility conditions for the integral equations determini
the transport coefficients. These are the primary new feat
of this work.

The evaluation of the transport coefficients for practi
results introduces a new approximation, truncation of an
pansion for the solutions to the integral equations in poly
mials. The leading order truncation is known to be accur
to approximately 5% in the case of elastic collisions. Exc
tions are extreme mass ratios~e.g., electron–proton systems!.
Its validity for inelastic systems has been recently chec
by Monte Carlo simulation for shear viscosity. The accura
is found to be similar to that for elastic collisions.

Recently, a seemingly similar analysis for granular
nary mixtures has been given in Ref. 16, also based on a
temperature description. However, this work is phenome
logical with no attempt to solve the kinetic equation. Inste
it is assumed that the distribution function is a local Ma
wellian. This is reasonable for estimating the dense gas
lisional transfer contributions to the fluxes, but it predic
that all transport coefficients calculated here at low den
should vanish. Clearly, the phenomenology is flawed.

In a subsequent paper, we will evaluate the express
for the different transport coefficients for a variety of ma
and diameter ratios. Here, as an illustration and to give so
insight into the influence of dissipation on transport, we co
sider the pressure diffusion coefficientDp and the diffusion
coefficientD. For the sake of concreteness, consider the c
a115a225a12[a. Figure 1 shows the reduced pressure d
fusion coefficientDp(a)/D(1) as a function of the restitu
tion coefficient fors115s22, n1 /n250.25, and for two val-
ues of the mass ratio~m1 /m250.5 and 4!. Here, Dp(1)
5(n1T/ner)(12m1n/r) is the pressure diffusion coefficien
Downloaded 07 Mar 2002 to 158.49.21.193. Redistribution subject to A
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for elastic collisions. We see that the deviation from the fun
tional form for elastic collisions is quite important even f
moderate dissipation~say a.0.9!. This tendency become
more significant as the mass of the defect particles is la
than that of the excess particles. Also shown for compari
in Fig. 1 is the result form1 /m254 with T15T251, which
would be obtained if the differences in the partial tempe
tures were neglected. Clearly, inclusion of this effect make
significant difference over the whole range of dissipati
shown~the actual value isg5T1 /T2.1.36 for a50.8!. At
the level of the mass flux, the main transport coefficient
the diffusion coefficientD. In Fig. 2 we plot the dependenc
of the ratio D(a)/D(1) on a for s115s22, n1 /n250.25,
and for several values of the mass ratio~m1 /m250.5, 1, and
4!. As before,D(1)5(rT/m1m2ne) is the diffusion coeffi-
cient for elastic collisions. The shape of these curves is v
similar to those presented for the coefficientDp , although
the influence of dissipation onD is a bit stronger than the
one observed in the case ofDp . According to the behavior of
D andDp one can conclude that the main effect of inelast
ity in collisions is to enhance the mass transport with resp
to the elastic collisions case.

FIG. 1. Plot of the reduced pressure diffusion coefficientDp(a)/Dp(1) as a
function of the restitution coefficienta[a115a225a12 for s115s22

5s12 , a concentration ration1 /n250.25, and two different values of the
mass ratio:m1 /m250.5 andm1 /m254. The dashed line refers to the cas
m1 /m254 by assuming the equality of the partial temperaturesg5T1 /T2

51.

FIG. 2. Plot of the reduced diffusion coefficientD(a)/D(1) as a function of
the restitution coefficienta[a115a225a12 for s115s225s12 , a concen-
tration ratio n1 /n250.25, and three different values of the mass rat
m1 /m250.5, m1 /m251, andm1 /m254.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The application of the Chapman–Enskog procedure h
closely follows recent derivations of hydrodynamics a
transport coefficients for one-component granular gase1,5

An important difference in the mixture is the need for tw
different temperatures in the reference local homogene
cooling states, leading to qualitative differences in the c
centration dependence of the transport coefficients relativ
the elastic limit. This reference state is discussed in m
detail in Ref. 10. Effectively, the absence of energy cons
vation for granular gases leads to a failure of detailed bala
between the velocity distributions in the homogeneous st
One consequence is non-Maxwellian distributions obser
already for one-component systems. For multicompon
systems a second consequence is different covariances o
distributions for different species, although the cooling ra
are all equal. The latter property implies that the differe
partial temperatures can be expressed in terms of the gl
temperature~as is required for a hydrodynamic descriptio!
although the functional relationships defining such par
temperatures introduce a new dependence on the conce
tions. This leads to additional spatial gradients at first or
in the Chapman–Enskog expansion and consequently a
tional contributions to the transport coefficients. The effec
these terms can be significant, as illustrated in Fig. 1. Pr
ous work on granular mixtures6–9 is restricted by weak dis
sipation approximations. In addition, these studies do
include contributions from the partial temperature diffe
ences, which are significant even for weak dissipation.

One interesting question is whether the mixture hyd
dynamics is more or less stable than that of the o
component case, and if such phenomena as phase sepa
or segregation can occur. Another direction of study is
extension of the present simple hydrodynamic state to hig
densities based on the revised Enskog kinetic equation,
lowing recent results for the one-component fluid.5 In this
case the new complexity is due to the dependence of
collision operator on concentration through the pair corre
tion functions for the different species. Finally, we hope th
the present results stimulate the performance of comp
simulations~molecular dynamics and/or by using the dire
simulation Monte Carlo method17! to study hydrodynamics
in granular binary mixtures.
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APPENDIX A: LEADING SONINE APPROXIMATIONS

In this appendix the coefficients$ai , j ;bi , j ;ci , j% in the
leading Sonine approximations are evaluated. First, let
consider the coefficients$a1,1;b1,1;c1,1% determining the
mass flux. Substitution of Eq.~65! into the integral equations
~46!–~48! gives
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2z~0!~T]T1p]p!a1,1f 1,MV11a1@L1f 1,MV1

2dgM1f 2,MV1#

5A11S ]z~0!

]x1
D

p,T

f 1,M~pb1,11Tc1,1!V1 , ~A1!

@2z~0!~T]T1p]p!22z~0!#b1,1f 1,MV11b1,1@L1f 1,MV1

2dgM1f 2,MV1#

5B11
Tz~0!

p
f 1,Mc1,1V1 , ~A2!

@2z~0!~T]T1p]p!2 1
2 z~0!#c1,1f 1,MV11c1,1@L1f 1,MV1

2dgM1f 2,MV1#5C12
pz~0!

2T
f 1,Mb1,1V1 . ~A3!

Next, multiplication bym1V1 and integrating over the veloc
ity leads to

@2z~0!~T]T1p]p!1n#n1T1a1,1

5
1

3 E dV1m1V1"A11S ]z~0!

]x1
D

p,T

n1T1~pb1,11Tc1,1!,

~A4!

@2z~0!~T]T1p]p!22z~0!1n#n1T1b1,1

5
1

3 E dV1m1V1"B11
Tz~0!

p
n1T1c1,1, ~A5!

F2z~0!~T]T1p]p!2
1

2
z~0!1nGn1T1c1,1

5
1

3 E dV1m1V1"C12
pz~0!

2T
n1T1b1,1. ~A6!

Heren is a collision frequency defined by

n5
1

3n1T1
E dV1m1V1"@L1f 1,MV12dgM1f 2,MV2#

52
1

3n1T1
E dV1m1V1"~J12@v1u f 1,MV1 , f 2

~0!#

2dgJ12@v1u f 1
~0! , f 2,MV2# !. ~A7!

The self-collision terms ofLi arising fromJ11 do not occur
in Eq. ~A7! since these conserve momentum for species
The velocity integrals appearing in Eqs.~A4!–~A6! can be
performed using Eqs.~39!–~41!,

1

3 E dV1m1V1"A152S ]

]x1
n1T1D

p,T

, ~A8!

1

3 E dV1m1V1"B152
n1T1

p S 12
m1nT

rT1
D , ~A9!

1

3 E dV1m1V1"C150. ~A10!
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From dimensional analysis n1T1a1,1;T1/2, n1T1b1,1

;T1/2/p, andn1T1c1,1;T21/2 so the temperature derivative
can be performed in Eqs.~A4!–~A6! and the result is

S n2
1

2
z~0!Da1,152S ]

]x1
ln n1T1D

p,T

1S ]z~0!

]x1
D

p,T

3~pb1,11Tc1,1!, ~A11!

S n2
3

2
z~0!Db1,152

1

p S 12
m1nT

rT1
D1

Tz~0!

p
c1,1, ~A12!

c1,152
pz~0!

2Tn
b1,1. ~A13!

The solutions are given by Eqs.~69!–~71!.
The analysis for the coefficients$a1,2;b1,2;c1,2% ~Dufour

coefficient, pressure energy coefficient, and thermal cond
tivity ! is similar to that given previously for the mass flu
The result is

@2z~0!~T]T1p]p!1n11#T
3a1,21T3n12a2,2

5
2

15

m1T3

n1T1
3 E dv1S1"A121T3S ]z~0!

]x1
D

p,T

~pb1,21Tc1,2!,

~A14!

@2z~0!~T]T1p]p!22z~0!1n11#T
3b1,21T3n12b2,2

5
2

15

m1T3

n1T1
3 E dv1S1"B121

T4z~0!

p
c1,2, ~A15!

F2z~0!~T]T1p]p!2
1

2
z~0!1n11GT3c1,21T3n12c2,2

5
2

15

m1T3

n1T1
3 E dv1S1"C122

1

2
pT2z~0!c1,2. ~A16!

Here, the collision frequenciesn i i andn i j are defined by Eqs
~96! and ~97!, respectively, and

A125A12
m1m2n

rn1g1
z~0!~T]T1p]p!

D

T
V1f 1,M

1
m1m2n

rn1T1
D@L1~ f 1,MV1!2dgM1~ f 2,MV1!#

2S ]z~0!

]x1
D

p,T

r

n1T1
~Dp1D8! f 1,MV1 , ~A17!

B125B12
r

n1g1
z~0!~T]T1p]p!

Dp

pT
V1f 1,M1

r

pn1T1
Dp

3@L1~ f 1,MV1!2dgM1~ f 2,MV1!#

2z~0!
r

pn1T1
~D822Dp! f 1,MV1 , ~A18!
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C125C12
r

n1g1
z~0!~T]T1p]p!

D8

T2 V1f 1,M1
r

Tn1T1
D8

3@L1~ f 1,MV1!2dgM1~ f 2,MV1!#

2
1

2
z~0!

r

Tn1T1
~D82Dp! f 1,MV1 , ~A19!

where g i5Ti /T. The corresponding integral equations f
a2,2, b2,2, andc2,2 can be obtained from Eqs.~A14! to ~A16!
by just making the change 1↔2. Dimensional analysis re
quires that a1,2;T23/2, b1,2;T23/2/p, and c1,2;T25/2.
When one takes into account this dependence and the fo
of A i j , Bi j , andCi j , one finally arrives to Eq.~94!.

APPENDIX B: EVALUATION OF n

The collision frequencyn is defined by the collision in-
tegrals in Eq.~A7!. To simplify the integrals, a useful iden
tity for an arbitrary functionh(v1) is given by

E dv1h~v1!Ji j @v1u f i , f j #

5s i j
2 E dv1E dv2f i~r ,v1 ,t ! f j~r ,v2 ,t !

3E dŝQ~ŝ"g12!~ŝ"g12!@h~v19!2h~v1!#, ~B1!

with

v195v12m j i ~11a i j !~ŝ"g12!ŝ. ~B2!

This result applies for bothi 5 j and iÞ j . Use of this in Eq.
~A7! gives

n52
m1

3n1T1
E dV1V1"~J12@ f 1,MV1 , f 2

~0!#

2dgJ12@ f 1
~0! , f 2,MV2# !

5
1

6
ps12

2 m21~11a12!
m1

n1T1
E dV1E dV2

3g12@ f 1,M~V1! f 2
~0!~V2!~V1"g12!

2dg f 1
~0!~V1! f 2,M~V2!~V2"g12!#, ~B3!

whereg5T1 /T2 andd5n1 /n2 . Substitution of the distribu-
tion functions from Eqs.~63! and ~64! gives

n5
n2

3p2~11m!
~11a12!s12

2 u1
5/2u2

3/2v0

3E dV1* E dV2* e2u1V1*
2
e2u2V2*

2
g12*

3H F11
c2

4 S u2
2V2*

425u2V2*
21

15

4 D G~V1* "g12* !

2dgF11
c1

4 S u1
2V1*

425u1V1*
21

15

4 D G~V2* "g12* !J
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5
~11a12!s12

2

3p2g1g2
~u1u2!3/2v0@n2g2X~c2 ,u1 ,u2!

1n1g1X~c1 ,u2 ,u1!#. ~B4!

Here, m5m1 /m2 , V i* 5V i /v0 , g12* 5g12/v0 , u i

5(m j i g i)
21, and v05A2T(m11m2)/m1m2. In addition,

the quantitiesX(c2 ,u1 ,u2) and I (u1 ,u2) are given by

X~c2 ,u1 ,u2!5F11
c2

4 S u2
2 d2

du2
2 15u2

d

du2
1

15

4 D G
3I ~u1 ,u2!, ~B5!

I ~u1 ,u2!5E dV1* E dV2* e2u1V1*
2
e2u2V2*

2
g12* ~V1* "g12* !.

~B6!

The integralI (u1 ,u2) can be performed by the change
variables

x5V1* 2V2* , y5u1V1* 1u2V2* , ~B7!

with the Jacobian (u11u2)23. The integral becomes

I ~u1 ,u2!54p5/2
~u11u2!1/2

u2
2u1

3 . ~B8!

Use of this result in~B5! and ~B3! gives the desired result

n5
4

3
Aps12

2 v0

11a12

g1g2
~u1u2~u11u2!!23/2

3F ~n2g2u21n1g1u1!~u11u2!2

2
1

16
~c1n1g1u1u2

21c2n2g2u2u1
2!G . ~B9!

This leads directly to the result given by Eq.~74!.
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APPENDIX C: EVALUATION OF t i i AND t i j

The collision frequenciest i i and t i j appearing in the
evaluation of the shear viscosity are defined by Eqs.~83! and
~84!. All of these have the form

E dv1V1V1Ji j @v1u f i , f j #

5s i j
2 E dv1E dv2f i~v1! f j~v2!E dŝQ~ŝ"g12!~ŝ"g12!

3@V19V192V1V1#, ~C1!

where the identity~B1! has been used. This result applies f
both i 5 j and iÞ j . Using the scattering rule~B2!, the last
term on the right-hand side can be explicitly computed a

V19V192V1V152m j i ~11a i j !~ŝ"g12!@Gi j s1sGi j

1m j i ~g12s1sg12!2m j i ~11a i j !

3~ŝ"g12!ss#. ~C2!

Here, Gi j 5m i j V11m j i V2 . Substitution of ~C2! into Eq.
~C1! allows the angular integral to be performed with t
result

E dŝQ~ŝ"g12!~ŝ"g12!@V19V192V1V1#

52
mi

2
pm j i ~11a i j !Fg12~Gi j g121g12Gi j !

1
m j i

2
~32a i j !g12g12g122

m j i

6
~11a i j !g

31G . ~C3!

Notice that the last term in~C3! vanishes when it is con
tracted with the traceless tensorRi . Now, the different col-
lision integrals can be easily calculated by the same met
as described in Appendix B. After a lengthy calculation, o
gets
A125E dv1R1,abJ12@ f 1
~0! , f 2,MR2,ab#

52
4

3
m1m2n1n2Apm21~11a12!s12

2 v0
5~u1u2!21/2

3F 6u2
22~m12u22m21u1!~u11u2!21/21

3

2
m21u2

22~u11u2!1/2~32a12!25u2
21~u11u2!21/2

1
c1

16

2u1~10212m1229m21!1u2~526m12!2
3

2
m21~32a12!~u11u2!

~u11u2!5/2
G , ~C4!
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B125E dv1R1,abJ12@ f 1,MR1,ab , f 2
~0!#

52
4

3
m1

2n1n2Apm21~11a12!s12
2 v0

5~u1u2!21/2

3F6u1
22~m12u22m21u1!~u11u2!21/21

3

2
m21u1

22~u11u2!1/2~32a12!

15u1
21~u11u2!21/21

c2

16

2u2~12m2119m12210!2u1~526m21!2 3
2m21~32a12!~u11u2!

~u11u2!5/2 G , ~C5!

A111B115E dv1R1,ab$J11@ f 1
~0! , f 1,MR1,ab#1J11@ f 1,MR1,ab , f 1

~0!#%

5232m1
2n1

2Ap~11a11!s1
2~T1 /m1!5/2F12

1

4
~12a11!

2G S 12
c1

64D . ~C6!
d

d

In the case of mechanically equivalent particles~m15m2

5m, s i j 5s, a i j 5a, ci5c!, Eqs. ~C4!–~C6! reduce to
those previously calculated in the single gas case in the
termination of the shear viscosity.1

This completely determinest11 and t12. The corre-
sponding expressions fort22 and t21 can be inferred from
Eqs.~C4!, ~C5!, and~C6! by interchanging 1↔2.

APPENDIX D: EVALUATION OF Yi , n i i , AND n i j

The collision frequenciesn i i , n i j andYi ( i 51,...,6) that
determine the coefficientsai ,2 , bi ,2 , andci ,2 for the heat flux
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are defined by the collision integrals~96!–~101!. All of these
have the form

E dv1Si~V1!Ji j @v1u f i , f j #

5s i j
2 E dv1E dv2f i~v1! f j~v2!

3E dŝQ~ŝ"g12!~ŝ"g12!@Si~V i9!2Si~V1!#. ~D1!

Using the scattering rule~B2!, the last term on the right-han
side can be explicitly computed as
n be
Si~V19!2Si~V1!5
mi

2
~11a i j !m j i ~ŝ"g12!H F ~12a i j

2 !m j i
2 ~ŝ"g12!

22Gi j
2 2m j i

2 g12
2 22m j i ~g12"Gi j !12~11a i j !m j i ~ŝ"g12!

3~ŝ"Gi j !2
5Ti

mi
Gŝ2@~12a i j !m j i ~ŝ"g12!12~ŝ"Gi j !#Gi j 2m j i @~12a i j !m j i ~ŝ"g12!12~ŝ"Gi j !#g12J .

~D2!

Substitution of~D2! into ~D1! allows the angular integral to be performed with the result

E dŝQ~ŝ"g12!~ŝ"g12!@Si~V19!2Si~V1!#

52
mi

2
p~11a i j !m j i H F1

2
g12Gi j

2 1
1

6
m j i

2 ~2a i j
2 23a i j 14!g12

3 2
1

2
m j i ~a i j 23!g12~g12"Gi j !2

5Ti

2mi
g12Gg12

1Fg12~g12"Gi j !2
1

3
m j i ~2a i j 21!g12

3 GGi j J . ~D3!

Now the different collision integrals can be evaluated.

1. Evaluation of Yi

The coefficientsY1,3,5 are obtained from Eqs.~99! to ~101!. The collision integrals appearing in these expressions ca
evaluated directly by using identical mathematical steps as before. After some algebra, the result is
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C125E dv1S1"J12[ f 1
~0! , f 2,MV2]

52
1

2
m1n1n2Apm21(11a12)s12

2 v0
5(u11u2)21/2(u1u2)23/2

3H 5(2b122u1)1m21(u11u2)[5(12a12)12(7a12211)b12u2
21] 218b12

2 u2
2122m21

2 (2a12
2 23a1214)

3u2
21(u11u2)215(u11u2)2

c1

16
(u11u2)22u2$4u1

2[ 25136m12
2 15m21(a1223)1m21

2 (2528a1213a12
2 )

22m12(101m21(7a12229))]1u2
2[5154m12

2 115m21(a1221)16m21
2 (423a1212a12

2 )26m12(51m21(7a12211))]

2u1u2[ 2144m12
2 12m12(401m21(49a12295))1m21(45235a222m21(35225a12112a12

2 ))] %J , ~D4!

D5E dv1S1"J12@ f 1,MV1 , f 2
~0!#

52
1

2
m1n1n2Apm21~11a12!s12

2 v0
5~u11u2!212~u1u2!23/2

3H 5~2b121u2!1m21~u11u2!@5~12a12!22~7a12211!b12u1
21#118b12

2 u1
2112m21

2 ~2a21
2 23a1214!u1

21~u11u2!2

25u2u1
21~u11u2!1

c2

16
~u11u2!22u1$3u1

2m21~11a12!@4m21~11a12!25#1u2
2@215154m12

2 220m21~31a12!

12m21
2 ~40119a1216a12

2 !12m12~2201m21~6117a12!!#1u1u2@2m12~2517m21~11a12!!1m21~25~917a12!

1m21~38162a12124a12
2 !!#%J , ~D5!

C111D115E dv1S1"$J11@ f 1
~0! , f 1,MV2#1J11@ f 1,MV1 , f 1

~0!#%

5210Apm1s11
2 n1

2~T1 /m1!5/2~11a11!F12a111
1

320
c1~21a11253!G . ~D6!

In the above-given expressions we have introduced the quantity

b125m12u22m21u1 . ~D7!

This completely determines the coefficientsY1,3,5. The corresponding expressions forY2,4,6 can be inferred from Eqs.~D5! to
~D7! by interchanging 1↔2.

2. Evaluation of n i i and n i j

The collision frequenciesn i i andn i j are defined by Eqs.~96! and~97!. These collision integrals are evaluated in the sa
manner as those forYi . The result is

E dv1S1"J12@ f 1
~0! , f 2,MS2#5E dv1S1"J12F f 1

~0! , f 2,M

m2

2
V2

2V22
5

2
T2V2G5F122

5

2
T2C12, ~D8!

F125E dv1S1"J12F f 1
~0! , f 2,M

m2

2
V2

2V2G
5

1

8
m1n1n2Apm21~11a12!s12

2 v0
7~u11u2!23/2~u1u2!23/2

3H 2m21
2 u2

22~u11u2!2~2a12
2 23a1214!~8u115u2!2m21~u11u2!@2b12u2

22~8u115u2!~7a12211!

22u1u2
21~29a12237!125~12a12!#118b12

2 u2
22~8u115u2!22b12u2

21~66u1125u2!15u1u2
21~6u1111u2!
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25~u11u2!u2
21~6u115u2!1

c1

16
~u11u2!22$16u1

2@5172m12
2 1m12~2661m21~13727a12!!22m21~341a12!

1m21
2 ~682a1213a12

2 !#15u2
3@5154m12

2 215m21~12a12!16m21
2 ~423a1212a12

2 !26m12~51m21~7a12211!!#

12u1
2u2@21701504m12

2 1m21~55a12217!12m21
2 ~151262a12139a12

2 !28m12~917m21~5a12213!!#

2u1u2
2@202936m12

2 1m21~2512217a12!1m21
2 ~24461332a122168a12

2 !

12m12~2341m21~329a122607!!#%J , ~D9!

E dv1S1"J12@ f 1,MS1 , f 2
~0!#5E dv1S1"J12F f 1,M

m1

2
V1

2V12
5

2
T1V1 , f 2

~0!G5H122
5

2
T1D12, ~D10!

H125E dv1S1"J12F f 1,M

m1

2
V1

2V1 , f 2
~0!G

52
1

8
m1n1n2Apm21~11a12!s12

2 v0
7~u11u2!23/2~u1u2!23/2

3H 2m21
2 u1

22~u11u2!2~2a12
2 23a1214!~5u118u2!2m21~u11u2!@2b12u1

22~5u118u2!~7a12211!

12u2u1
21~29a12237!225~12a12!#118b12

2 u1
22~5u118u2!12b12u1

21~66u1125u2!15u2u1
21~11u116u2!

25~u11u2!u1
22u2~6u115u2!1

c2

16
~u11u2!22$15u1

3m21~11a12!~4m21~11a12!25!12u2
3@451540m12

2

116m21~a12236!14m21
2 ~13415a1216a12

2 !24m12~1481m21~7a122263!!#1u1
2u2@2302m21~2671217a12!

114m21
2 ~17129a12112a12

2 !110m12~7m21~11a1225!!#1u1u2
2@23151270m12

2 22m21~55a12157!

1m21
2 ~4401326a121156a12

2 !12m12~221m21~7a121277!!#%J , ~D11!

E dv1S1"$J11@ f 1
~0! , f 1,MS1#1J11@ f 1,MS1 , f 1

~0!#%

528Apn1
2s12

2 m1T1~T1 /m1!5/2~11a11!F11
33

16
~12a11!1

1

1024
c1~1923a11!G . ~D12!

In these expressions,C12 andD12 are given by Eqs.~D4! and ~D5!, respectively.
In the case of mechanically equivalent particles, expression~D12! coincides with the one previously obtained in th

context of determining the thermal conductivity in a one-component granular gas.1 From Eqs.~D9! to ~D12!, one easily gets
the expressions forn22 andn21 by interchanging 1↔2.
or

a

tic
tly

u-

d

of

o

f

y

lar

rd

in

e,’’

te
1J. J. Brey, J. W. Dufty, C.-S. Kim, and A. Santos, ‘‘Hydrodynamics f
granular flow at low density,’’ Phys. Rev. E58, 4638~1998!.

2J. T. Jenkins and M. W. Richman, ‘‘Kinetic theory for plane flows of
dense gas of identical, rough, inelastic, circular disks,’’ Phys. Fluids28,
3485 ~1985!.

3C. K. W. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, ‘‘Kine
theories for granular flow: Inelastic particles in Couette flow and sligh
inelastic particles in a general flow field,’’ J. Fluid Mech.140, 223~1984!.

4A. Goldshtein and M. Shapiro, ‘‘Mechanics of collisional motion of gran
lar materials. 1. General hydrodynamic equations,’’ J. Fluid Mech.282, 75
~1995!.
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