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Hydrodynamics for a granular binary mixture at low density
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Hydrodynamic equations for a binary mixture of inelastic hard spheres are derived from the
Boltzmann kinetic theory. A normal solution is obtained via the Chapman—Enskog method for states
near the local homogeneous cooling state. The mass, heat, and momentum fluxes are determined to
first order in the spatial gradients of the hydrodynamic fields, and the associated transport
coefficients are identified. In the same way as for binary mixtures with elastic collisions, these
coefficients are determined from a set of coupled linear integral equations. Practical evaluation is
possible using a Sonine polynomial approximation, and is illustrated here by explicit calculation of
the relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion,
the shear viscosity, the Dufour coefficient, the thermal conductivity, and the pressure energy
coefficient. All these coefficients are given in terms of the restitution coefficients and the ratios of
mass, concentration, and particle sizes. Interesting and new effects arise from the fact that the
reference states for the two components have different partial temperatures, leading to additional
dependencies of the transport coefficients on the concentration. The results hold for arbitrary degree
of inelasticity and are not limited to specific values of the parameters of the mixture. Applications
of this theory will be discussed in subsequent papers.20©2 American Institute of Physics.
[DOI: 10.1063/1.14580Q7

I. INTRODUCTION tion. The reference homogeneous cooling state for a binary
mixture has been discussed in detail recéfitly provide the

The qualitative properties of a granular gas whose dyproper basis for analysis of transport due to spatial inhomo-
namics is dominated by pairwise collisions between theyeneities. Those results are used here to describe mass, heat,
grains can be described by a Boltzmann equation, suitablgind momentum transport. The expressions for the distribu-
modified to describe the more complex two particle colli-tion functions, fluxes, and transport coefficients are exact to
sions. In the simplest model the grains are taken to b@lavier—Stokes ordefwithin the context of the Boltzmann
smooth, hard spheres with inelastic collisions. In recenkquation.
years, the derivation of hydrodynamic equations for a one-  The hydrodynamic equations for a binary mixture at low
component granular gas from this idealized Boltzmann dedensity are derived from the coupled set of Boltzmann equa-
scription has been worked out in detail to Navier—Stokesions for the two species in the same manner as for a one-
order! with explicit expressions for the transport coefficients component system. The solutions for the distribution func-
as a function of the degree of dissipatithe restitution co- tions are expanded about a local homogeneous cooling state
efficieny. These recent results improve upon earlierthat is analogous to the local equilibrium state for a gas with
studie$™ by providing expressions that are accurate everelastic collisions. The expansion is in powers of the spatial
for strong dissipation. As a consequence, there are now pregradients of the hydrodynamic fields.g., species densities,
cise predictions from the Boltzmann equation suitable fortemperature, and flow velocityand is an extension of the
detailed comparison with Monte Carlo simulation, molecularfamiliar Chapman—Enskog procedure for elastic collisions.
dynamics simulation, and the evolving new class of con-The primary technical complication for inelastic collisions is
trolled experiments. This analysis for the one-componenan inherent time dependence of the reference state due to
system also has been extended to dense gases describedcbyisional cooling. In a one-component system this occurs
the Enskog equation.Similar studies for multicomponent through the time dependence of the temperature defined in
granular gases are more scarce. Existing work on multicomeerms of the mean square velocity for the homogeneous cool-
ponent transport appears to be based on weak dissipatigng distribution. For a two-component system the tempera-
approximation$=° Our objective is to provide a description ture is defined in terms of the algebraic average of the mean
of hydrodynamics in binary granular mixtures with a compa-square velocities for the two distributions. In the case of
rable accuracy to that for the one-component system, validlastic collisions the average temperature is the same as the
over the broadest parameter range including strong dissip&inetic temperatures for each species in the local equilibrium
state. However, a surprising result of the study in Ref. 10 is
aElectronic mail: vicenteg@unex.es that these temperatures are all different for inelastic colli-
PElectronic mail: dufty@phys.ufl.edu sions. This does not mean that there are additional hydrody-
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namic degrees of freedom since their cooling rates are th&€he Boltzmann collision operatal;; [v,|f;,f;] describing
same and consequently, the partial kinetic temperatures stithe scattering of pairs of particles is

can be expressed in terms of the average temperature. But

the relatlt_)nshlps between thes_e temperatures are functions of Jijlvalfi . f1= (Tisz deJ da0 (69,0 (605

the densities for the two species and lead to a new depen-

dence of the reference cooling states on these hydrodynamic X[ai}zfi(f,vi OF;(rvy,t)
variables. The consequences of this effect for the transport
coefficients are significant, as shown in the following. —fi(r,ve, Of(r,v,, 0], 2

Theh htydrodynamlc ngl:agophs fo; a R:nary rr_uxture arewhere(rij =(oi+0;)/2, o is a unit vector along their line of
somewhat more complicate an for the one Componenéenters@ is the Heaviside step function, amg,=v;—V,.

case: six coupled equations with eight transport coefﬁcientsrhe primes on the velocities denote the initial val{els, v5}

The irreversible(dissipative parts of the_ Mass, h_eat, and that lead to{v,,Vv,} following a binary(restituting collision:
momentum fluxes are calculated to leading order in the spa-

tial gradients of the hydrodynamic fields. For systems with  vi=v;— u;(1+ aﬂl)(&'glz) 7,

elastic collisions the specific set of gradients contributing to

each flux is restricted by fluid symmetry, time reversal in-  Va=Va+uij(1+ a;; 1) (6491, &, 3
variance (Onsager relations and the form of the entropy whereu;; =m; /(m;+m). The relevant hydrodynamic fields
production’* For inelastic collisions only fluid symmetry ap- _ "o humber (ljensjitie:ﬁ the flow velocityu, and the

plies so there is greater freedom in representing the ﬂuxe%mperature‘l’. They are defined in terms of moments of the
and identifying associated transport coefficients. This is disaistributionsf» as
I

cussed further in Sec. Il where the independent gradients are

chosen to be those for the concentration of species one, the

pressure, the temperature, and the components of the flow ni:f dvafi(va), pU=2i Jdvlmivlfi(vl)' “)

field, with eight independent scalar transport coefficients.

Using the Chapman—Enskog expansion the solutions to the m;

Boltzmann equations are obtained to leading order in these nT=p=2i f dvl?vifi(vl)’ ®)

gradients, and the transport coefficients are expressed in

terms of the solutions to a set of coupled linear integral equaWhereVy=v; —u is the peculiar velocityn=n+n; is the

tions. total number densityp=m;n;+m,n, is the total mass den-
The plan of the paper is as follows. In Sec. Il, the Sity, andp is the pressure.

coupled set of Boltzmann equations and the corresponding The collision operators conserve the particle number of

hydrodynamic equations are recalled. The Chapman—Ensk&Rch species and the total momentum but the total energy is

expansion adapted to the inelastic binary mixtures is defot conserved:

scribed in Sec. Il to construct the distribution function to

linear order in the gradients. This solution is used to calcu- f dvlJiJ-[v|fi fi1=0, (6)

late the fluxes and identify associated transport coefficients.

A Sonine polynomial approximation is applied to solve the

linear integral equations defining selected transport coeffi- .EJ fdvlmivlJij[Vl|fi f1=0, (@)

cients in Sec. IV. We get explicit expressions for these trans- '

port coefficients in terms of the restitution coefficients and L ) s

the masses, concentrations, and sizes of the constituents of .2;‘ f dvy 3 mpyd;;[valfi . fj1=—3nT¢, ®
the mixture. Finally, the results are summarized and dis- '

cussed in Sec. V. where ¢ is identified as the “cooling rate” due to inelastic

collisions among all species. From Eg$) to (8), the mac-
roscopic balance equations for the mixture can be obtained.

II. BOLTZMANN EQUATION AND CONSERVATION They are given by
LAWS V.

Consider a binary mixture of smooth hard spheres of Dt”i+niV'U+%=0, 9)
massesn; andm,, and diameters, ando,. The inelastic- '
ity of collisions among all pairs is characterized by three  D,u+p VP=0, (10
independent constant coefficients of normal restitutign, )
@y, and ai,= ay;, Whereq;; is the restitution coefficient D.T— IE ﬂ+ i(V-q+P'Vu)= T (11)
for collisions between particles of speciesaand j. In the Yon4g m 3n ' '

low-density regime, the distribution functiorfs(r,v;t) (i
=1,2) for the two species are determined from the set o*
nonlinear Boltzmann equatiotfs

n Egs.(9)—(11), D;=4d;+u-V is the material derivative,

ji=m [ Vi) 12

AtV V) fi(r,vy )= 2, Jii[vq|fi(1),f.(D)]. 1 ) . )
(Gt v V(v b EJ: ilvalfi(0.f0] @ is the mass flux for speci@gelative to the local flow,
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D diffusion coefficient

P:Z fdvlmivlvlfi(vl) (13 D’ thermal diffusion coefficien
D, pressure diffusion coefficiert

is the total pressure tensor, and ?\” _ tr?ufour coefficient BT
ermal conductivity

L pressure energy coefficien

q=2, fdvl%mivivlfi(vl) (14) 7 shear viscosity

! K bulk viscosity

. For systems with elastic collisions, the thermal conductivity
is the total heat flux. . ; . .
. in a mixture is generally measuredjat constant, based on
The balance equations become a closed set of hydrodyx ) . St o
nsager’s relations between coefficientg randq. This is

namic equations for the fields, u, and T once the fluxes . ) . .
(11)—(14) and the cooling raté are obtained in terms of the no longer an experimentally useful choice here. If in addition
it is required thap = constant, theiVx; can be eliminated to

hydrodynamic fields and their gradients. The resulting equa-. ; . - S
tions constitute the hydrodynamics for the mixture. Since?ew?eqslenmtztrir:: iosfjtlhee“r:dtZ;—.tf;l—erlfn;?ifgr?ljeungt%ftv;hlen lgtlli
these fluxes are explicit linear functionals fof a represen- ~Prese . . o .

tation in terms of the fields results when a solution to thevISCOSIty vanishes at low density, as shown in the following,
Boltzmann equation can be obtained as a function of th just as in the case of elastic collisions. The objective here is
fields and their gradients. Such a solution is called a “nor—0 apply the Chapman—Enskog m‘?‘“"d fora ;oluhon to.the
mal” solution, and a practical means to generate it for SmallBoltzmann equation to first order in the gradients, confirm

. k ! . the forms(15)—(17), and determine a means to calculate the
spatial gradients is provided by the Chapman—EnskogranSport coefficients as functions of the parameters of the

method®®
system.
The Chapman—Enskog method assumes the existence of
a “normal” solution in which all space and time dependence
IIl. CHAPMAN-ENSKOG SOLUTION OF THE of the distribution function occurs through a functional de-
BOLTZMANN EQUATIONS pendence on the hydrodynamic fields
The analysis of transport phenomena in fluid mixtures is i (r,v,t)=fi[vq|x,(r,t),p(r,t),T(r,t),u(r,t)]. (19

considerably more complicated than in the case of a on€=q smal spatial variations, this functional dependence can
component system. Not only is the number of transport COpe made local in space and time through an expansion in
efficients larger but these coefficients also are functions O&radients of the fields. To generate the expansipis writ-

more parameters such as the concentrations, mass ratios, S|gR as a series expansion in a formal parameteeasuring
ratios, and the three coefficients of restitution. It foIIows,[he uniformity of the system

from fluid symmetry that the pressure tensor has the same o L )
form to first order in the gradients as for a one-component ~ f;="f{"+ ef{V+ €f{?+---, (20
system. As noted in Sec. |, there is more flexibility in the

representation of the heat and mass fluxes. Even in the Caa?odynamic field. The local reference stafé%’ are chosen

of elastic coIhsu_Jns_, several differeftiut equwalerﬁchmcgs such that they have the same moments as in @yand(5),
of hydrodynamic fields are used so some care is required i r equivalently, the remainder of the expansion must obey
comparing transport coefficients in the different representag orthogonali,ty conditions
tions. The choice here is to use the concentration of species
1, defined in terms of the densities ly=n,/(n;+n,),

together with the pressure, the temperature, and the three

where each factor o€ means an implicit gradient of a hy-

RN

components of the local flow velociw.The fluxes then have (21
the forms 3 [ ovimul i)~ 1(0vp1=0
. m;myn P P, m,
Jl:_< p )DVxl—BDpr—$D VT, 2 fdvl?vi[fi(vl)—f§°>(vl)]:o. (22)
j2=—l1, (15  The time derivatives of the fields are also expandedas
=09+ esM+---. The coefficients of the time derivative
q=—T?D"Vx,—LVp—AVT (16) expansion are identified from the balance equati®ns(11)

with a representation of the fluxes and the cooling rate in the
macroscopic balance equations as a similar series through
Pup=P8us— n(V gU,+V Ug—358,5VU)—k5,5V-u. their definitions as functionals of the distributiof)s This is
(17 the usual Chapman—Enskog method for solving kinetic
equations? The main difference in the case of inelastic col-
The transport coefficients in these equations are lisions is that the reference state has a time dependence as-
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sociated with the cooling that is not proportional to a spatial D§1)X1=0, (33
gradient. Consequently, terms from the time derivat{f

are not zero. wn_ 2P
To zeroth order irg, the kinetic equationgl) become Dip 3 v, (34
(0)£(0) (0) £(0) (1) Al
GOF =2 J[f, 107 (23) DIT=——2-V-u, (35)
J
The mass and energy balance equations to this order give Dgl)u= —p ivp, (36
9% =0, T 19OT=p 19Op=—¢, (24  whereD{M= 4"+ u-V and use has been made of the results

j(0=q©=¢W=0. The last equality follows from the fact

that the cooling rate is a scalar, and corrections to first order

in the gradients can arise only from the divergence of the
vector field. However, as demonstrated in the following,

(O=—— J dv12 m vlJ,J[v1|f<°) f . (25  there is no contribution to the distribution function propor-

tional to this divergence. We note that this is special to the

This homogeneous state has been studied re¢8mthd is  low density Boltzmann equation and such terms do occur at

discussed in more detail in Sec. IV. The time derivative inhigher densities. Evaluating the right-hand side of &)

Eq. (23) can be represented more usefully as gives

where the cooling rat&(®) is determined by Eq8) to zeroth
order

_ (4D Rvayit)
A0 == {O(Tor+pap)f 0 =3 70V, (V4 (?), (7 + v V)]
(26)
where Vvl=a/¢9v1. The second equality follows from di-
mensional analysis which requires that the temperature de-

_f(o)) V1°VX1
IXq ! o

(0) nT
pendence of ;*’ must be of the form _[fg_O)Vl+ - Wfi(O)”.V Inp
p _
fO=xi=vg 3®i(V1/vg), (27) J
i IT 0 i 1Yo + fl(0)+ E ~ (VlfI(O)) Vl \v/

wherev3(t) =2T(t)(m;+m,)/(m;m,) is a thermal velocity

defined in terms of the temperaturét) of the mixture. The <InT+| v £(0) 15 V.- f )
dependence on the magnitude \6f follows from the re- : tagy 10 3%V gy T | Valls
guirement that to zeroth order in gradief{snust be isotro- (37)
pic with respect to the peculiar velocity. The Boltzmann . ny
equations at this order can be written finally as The equation forfj~ is now
1 o o o (0 + L) f Y+ MfD=A VX, +B-Vp+C-VT
OV, (V=2 3,9, f19]. 28
5 {0V, (Vaf(?) 2 G112 (28) D,V -

Since the distribution functions are isotropic, it follows from The coefficients of the field gradients on the right-hand side
Egs.(12) and(14) that the zeroth-order mass and heat fluxesare functions ofV; and the hydrodynamic fields. They are
vanish while, for the same reason, the momentum flux igiven by

diagonal with a coefficient that is just the sum of the partial
pressures, i.e., A(Vy)=— (&x f(o)) Vi, (39)
j9=0, q@=0, P{=pd.g. (29) . s
To first order in the gradients, the equation féF) is Bi(Vy)=— o f(0)\/1+ VA f(0>”1 (40)
(A0 + L) F P+ MifV= = (3 +v- V)Y, (30) 1
. " _ Ci(Vy)= f<°>+ > g (Vaf{® )}vl, (4D
where it is understood that~j and the linear operators; 2 0V,
and M; are
(0)_ _ —£O)
L=~ (31O F0T+ 3,160 PraplVa)= Vlaav mgomVegy i @2
+3,[FD 507 (31 Note that the trace oDi,aﬁ vanishes, confirming that the
= distribution function does not have contribution from the di-
M= =3[ 19 f11], (32  vergence of the flow field. The solutions to Eg8) is of the
form
The action of the time derivativeg™ on the hydrodynamic .
fields is fY= A VX + BVp+C-VTHD, (gVollg. (43
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The coefficients4;, B;, C;, andD, ,z are functions of the p

peculiar velocityV; and the hydrodynamic fields. The cool- D=- 3myn f dviVi- Ay, (52
ing rate depends on space through its dependence 0p,

andT. The time derivative’\®) acting on these quantities can msp

be evaluated by the replacemefft— — {(Ta+pa,). In Dp=- 3p dviViBs, (53
addition, there are contributions fros” acting on the tem-

perature and pressure gradients given by D/ =— ";_1:_ dv,V4Cy . (54)

AOVT=—-V(T{?) »
The transport coefficients for the heat flux are

— _ #(0) _ (0)
{PVT-TV/! ) 1 1 ,
[© 9¢© £(© D=- 3—TzE f dvi5 mViVyeA;, (55)
=—2_VT-T Vx;+—Vp|, (49 '
2T X, T p 1 1
’ = —_—— —_— . 2 . .
OV p= — ¥ (pc®) L=—3 Z f dviz mViVyeB;, (56)
= _ (0 _ (0) 1 1
£7Vpmpve A== f dvi= mVAV,G (57)
© g (o 3 2
=—2{7Vp-p ( %, ) TVXl_ 27 VT- 49 Finally, the shear and bulk viscosities are
P,
. . . . 1
The integral equations fQA.i, B, G, andDi,qﬁ are identi- n=— 1_02 J dvimVy,VigDi o, (58)
fied as coefficients of the independent gradients in(E8§). [
_ #(0) A A 1
[= &7 (Tortpap) + Li A+ Mid; K=— 52 f dv,m V4D, ,,=0. (59
PY '
=Ait Xy (PB;+TC), (46 The bulk viscosity vanishes since the trace®f, ; vanishes,
p.T as follows from Eq(49).
[—O(Tor+ pap)+gi—2§<0>]3i+/\4i3j To summarize the results to this point, the solutions to
10 the Boltzmann equations to first order in the spatial gradients
=B+ chi , (an ¢
fi= 9+ A VX, + B-Vp+C-VT+D .5V Ug.  (60)
[_gw)(-mTJr 0d,)+ Li— lg(m it MC, The solution to zeroth ordef(?), is obtained from Eq(49)
P 2 . while the functions4;, B, C;, andD; , characterizing the
pc© solution to first order in the gradients are determined from
=Ci— ——B;, (48) the integral equation$46) to (49). Calculating the mass,
2T heat, and momentum fluxes from this solution one can iden-
[— O(Tor+pay) + LD, 5+ MiD; 05=Di up (49) tify the transport coefficients in terms of the integréd®)—
p i ia i“],a i,aB -

(59). These fluxes, together with the macroscopic balance
The solutions to these linear integral equations are madequationg9)—(11), provide the closed set of Navier—Stokes
unique by the orthogonality conditiorfgl) and(22), i.e., order hydrodynamic equations for a granular binary mixture.
All of these results are still exact and valid for arbitrary

“gi “l;li values of the restitution coefficients.
f dVl Cil :0, Z fdvlmivl Cil :0,
Di,aﬁ Di,aﬁ
(50) IV. SONINE POLYNOMIAL APPROXIMATION
A Accurate approximations to the solutions to the integral
m B equations forf(® and (4;,5;,C;,D; .5) may be obtained
1\ ,2 i . . e . .
> f dV17V1 c | =0 (51)  using low order truncation of expansions in a series of So-
' ~ , nine polynomials. The determination &) to leading order
i,a

in the Sonine expansion has been analyzed elsewhene

With the functions ¢4; ,3,,C; , D, ) determined in this way, only the main result is quoted here. The polynomials are

the solutions to the Boltzmann equations are determined bgiefined with respect to a Gaussian weight factor. The param-

(43) exactly to first order in the spatial gradients. eters of this Gaussian are chosen such that the leading term
Use of Eq.(43) in the definitions(12)—(14) gives the in the expansion yields the exact moments of the entire dis-

expected formg15)—(17) for the fluxes. The transport coef- tribution with respect to 1y, andv?. The latter defines the

ficients associated with, are identified as kinetic temperatures for each species
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3 mi 2£(0) 1 P
2 nTi= dVl? Vifio. (62) byq1=— 5_'yb2’1: - m Dy, (67)
For elastic collisions the temperaturEsare the same as the 1 p
global temperaturd defined in Eq.(5). The condition that C14=~ 5. Coa= 7, 7. D" (68)
(0) : . . . . Y 171
f;™ is normal implies thafl; is a function ofn; and T, or
equivalently Here, y=T,/T, and ©&=n;/n,. The coefficients
{ay1;b11;c1 4} are determined by substitution of E(G5)
EE Yi(Xy) 62) into the integral equation@6)—(48). The details are carried
T R out in Appendix A with the results

where y; depends on the hydrodynamic state through the 1 -1
concentration. The determination of this functional depen- &11= | ¥~ 55( )

J
(Wln anl)
dence is worked out in Ref. 10. The Sonine polynomials used !

p,T

here are defined with respect to Maxwellians characterized '
by the temperature$; rather than those characterized by | ox (pbyyt+Teyy) |, (69
for elastic collisions. With this choice the leading deviation tipT
from the Maxwellians is a polynomial of degree 4, b 1( - mlnT) ( . §§(0)+ §<0>2) -1 -

{7 =no *®i(V1), (63) et Tl 20 T 2v ]

0)
6,\% .o ¢ . pd
@i(vf)e(;) e fiViTl 1+ 2 AV C11= = 57, Prs (7D

} where the collision frequency is given by
: (64)

_spvr2g
50,V 2+

4 my

V== f dv; V- (Igdva| frm Ve, T,
where Vi =V, /vg, and 6,=(u;v;) *. If polynomials de- 3n, T,
flned_ in terms ofT a_re*used the I_eadmg correction is a_poly- _ 57312[V1|f(0> FamVal). 72
nomial of degree 2 im7 , proportional tol — T;. The choice o _ _ _ _
of polynomials defined in terms dF; effectively resums an This integral is evaluated in Appendix B with the result

infinite set of terms in this second type of expansion. Since (14 ay0)
v, is a function of the concentration, a significant new con- PR VHMo1Y1+ 12Y2
tribution to the parameters of the integral equations for the e

transport coefficients occurs through the additional concen- [ 1 py(Myy)2ci+ pa(myy,)?c, 73
, 73

tration dependence assomaye'd Wlth temperature difference of - @ (Myy1+ Myy,)?
the two species. The coefficients in Eq. (64) are deter- _ _ _
mined by substitution of Eq63) into Eq.(26) and retaining wherev, is the corresponding result for the elastic case

all terms linear inc; for the leading Sonine polynomial ap- 8 T p
proximation. The reader is referred to Ref. 10 for further . =_ 2702, ———— (74)
details. ¢ 3 MMz \/m; +m,

In Secs. IVA, IVB, and IVC, respectively, we will 54, —mn. is the mass density of speciesThese results,
compute the mass flux, the pressure tensor, and the heat ﬂ%‘gether with a,,=— 8yay 1, bpq=—08ybr4, and coy

in the leading Sonine polynomial approximations. Let Us—_ s5,c | completely determine the distribution functions

consider each one separately. to first order in the Sonine polynomial expansion.
The transport coefficients are identified fr@f®) to (71)
A. Mass flux as
Here, the lowest order Sonine polynomial approxima- o 1 -1/ 4
tions for A;, B;, andC, are obtained and applied to the D= (V——g<°>> (—anl)
calculation of the transport coefficients in the mass flukes, mymzn 2 9%y p,T
D,, andD’. The leading Sonine approximatioritowest 97
degree polynomialof the quantities4;, B;, andC; are p( ) (Dp+D")|, (75)
I
4 %1 (0)2\ -1
B | =fiuVy| bix]. (65) nyT, mnT 3 0) s N
’ ' —_— J— — + [R—
Ci Ci1 Dy p 1 pTy 72 ¢ 2v ' (76)
The coefficients{a; 1,b; ;,c; 1} are related to the transport 7
coefficients in this approximation througs2)—(54), D'=-5_Dy. (77
- i __ Mmen D 66 Since j;=—j, and Vx;=—VXx,, it is expected thatD
ay 1 S a1 ; (66) o ) .
Y pniTy should be symmetric with respect to interchange of particles
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1 and 2 whileD, andD" should be antisymmetric. This can

p
be verified by noting than,T;+n,T,=nT. The expression Bi(Vi) = fam| = oo 5-DpVat bl,Zsl(Vl)}
for v agrees with the known result for elastic collisidigor t 86)
the case of mechanically equivalent particles, € m,,aq;
= wy= a15=,011= 0y IN the dilute concentration limit By(Vq)—f P D.V.+b (V )},
(p,—0), the expression for the diffusion coefficiddtcoin- 20 2Mipn,T, Pt 2252V
cides with the one recently derived in the self-diffusion
problem?®
CiVo)—=Tfom = 7057 -|- T—=—D'Vi+c155(Vy) |,

B. Pressure tensor 87)

The leading Sonine approximation for the functibp, g
is Ca(Vy )—>f2|v| T == D'Vi+c55(Vy) |,

Di wp— Fimdi 1Ri o5(V1), 78

i,af 1,MYi 10N, B( 1) ( ) where

where

Riap(V1) =Mi(ViVig— V36,0, (79 S(V)=(mVi=T)V;. (88)
and In Egs. (85—(88), it is understood thab, D,, andD"' are

1 given by Egs.(75), (76) and (77), respectively. The coeffi-
diylzﬁﬁf AV1R; 4 Di g (80)  cientsa, ,, b;,, andc; , are defined as
it
The coefficientsd; ; are related to the shear viscosityin a2 2 m A
this approximation through E@58) as bi,|= En_'ll?’J dv;S(V,)- (89
i2 t G

n=—T2(N1¥id1 1+ N30, ). (81)

The |ntegra| equa“ons for the Coeff|c|emtsl are decou- Consequently the transport coefficients appearing in the heat
pled from the remaining transport coefficients. The two co-flux, D”, L, and\ are given by
efficientsd; , are obtained by multiplying Eq49) with R; 4

and integrating over the velocity to get the coupled set of . 5 nlyf nzyg
equations D'=-35 Bt T A2
ri— 300 1o d T:-1 SNMM; [y 72
He (d“):_( 11>. (82 +5——=2| - 2D, (90)
T21 T~ 3019 1 Y21 T2 P v
The frequencies;; are given in terms of the collision opera- 5, niys n,ys
tor by L=-3T Wbl,z b22
1 1 5
ni= 15z | R LR o) (63 +_B(£_£
'10nT; BT LM ah 2nim; m, Dy, (91)
Ti-:—izf dViR; s Mi(fi MR wp), 1#]. (89 5 _[nyys n,ys 5 (v vy
P 10nT; r P ep N=—oT 127t 2022 5P = Zp,
2 1 m, 2"\m;y m,
The evaluation of these collision integrals is given in Appen- (92
dix C. The solution with the matrix elements known is el-
ementary so thay can be calculated directly from E¢B1). The computation of the coefficien®”, L, andA is also
carried out in Appendix A. By using matrix notation, the
C. Heat flux coupled set of six equations for the unknowns

The computation of the heat flux requires going to the o
second Sonine approximation. In this case, the quantities {a1,2182,21D121D221C1,21C2 2} (93

B;, and(; are taken to be
can be written as

A (V) f HELLLALY RV Vv
1(V)—=TFim nT, 1 215(Va) |, Aog X =Y. (94
(89
m;m,n i i [
AV — E DV1+a2,282(V1)} Here, X,/ is the column matrix defined by the s&3) and
pn, T, A, is the matrix
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0’)5(0)) (9§(0)
— 2 #(0) —p|l —— Tl =
v~ 3¢ 2P p( 0 T 0
2 S S
074‘(0)> ( a§(0)>
v (0 0 ( 0 T
21 ¢ p x|y x|y
A= 0 0 vy~ 3¢ V12 —T¢%p 0 &9
0 0 V21 vor— 5¢% 0 —-T¢%p
0 0 pg 02T 0 vy~ {0 V1o
0 0 0 pg0r2T Vo1 vo— {0
|
Here, we have introduced the collision frequencies The corresponding expressions of the eleméitsY,, and
2 m Y can be deduced from EgQ9), (100), and(101), respec-
i ; : X :
—— dv,S-Li(f; ), (96) tively, by interchanging &2 and . setting D—>D_,. Dp_
' 15 niTi3 f 154 (uS ——D,, andD'——D'. The evaluation of the collision in-
tegrals(96) and(97) is given in Appendix D.
V=1 : T3 f dviS-Mi(fiuS), i#]. (97) The solution to Eq(94) is
=(A Yy Yo (103
The column matrixy is This relation provides an explicit expression for the coeffi-
Y, cientsa; ,, bj,, andc;, in terms of the restitution coeffi-
Y, cients and the parameters of the mixture. From these expres-
v sions one can easily get the transport coeffici@ntsL, and
Y= Y3 , (99 \ from Eqgs.(90), (91), and(92), respectively.
4
Ys
v V. DISCUSSION
6
where The primary objective of this work has been to obtain
the hydrodynamic description of a binary mixture of granular
(OmmnD 1 T2 4 gases from an underlying kinetic theory. The derivation of
Yi=— pn,T? 2 n, T3 axy the hydrodynamic equations consists of two steps. First, the
macroscopic balance equatio(®—(11) for number densi-
2 mfman ties, total momentum, and energy are obtained from the cor-
+1_5 an dv1S-La(famVa) responding kinetic equation. Next, the fluxes and cooling
rate in these equations are determined from a solution of the
_ . coupled Boltzmann equations given in terms of the hydrody-
57J dviS, Ml(fz'MVZ)}’ ©9 | amic fields and their spatial gradients. The corresponding
©) constitutive equations for the mass, heat, and momentum
__¢7Dy 1 e 2 mlPD fluxes are given to Navier—Stokes order by EG%)—(17),
3 pani 2pTy 15 pn and the associated transport coefficients are given by Egs.
(52—(54), (55)—(57), and(58)—(59), respectively. These re-
Ly(fimVe)— 5),f dvlsl'Ml(fZMVZ)} (100  sults are exact within the context of the Boltzmann kinetic
’ ’ equation. A practical evaluation of these coefficients is pos-
9D’ 2+c sible by means of a Sonine polynomial approximation and
5:——2——1 the derivation and approximate results aret limited to
Ty 2TT weak inelasticity. An exploration of the full parameter space
2 m;pD (mass ratio, diameters, concentrations, inelasticity param-
15 Tn2T4 J dv,S-L1(fimVy) eters is straightforward but beyond the scope of this presen-
1 tation. We intend to create a library of programs for calcula-
] tion of distribution functions and transport coefficients in
- 57f dviSi-My(famVa) |, (10D one- and two-component granular systems, available to the
’ public on our web site.
where The Chapman—Enskog method provides an expansion of
8 mz 15] the distribution function for weak spatial inhomogeneity.
ci= { f dv, V40— 2| (1020  This means that the relative spatial variation of all hydrody-
15| 4n;T? 4 | namic fields must be small over distances of order of the
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mean free path. This encompasses a wide range of interesting 4.0 , . .
phenomena, but excludes strongly driven systems such as =02
. . 35 n,/n,=0.25 i

those under steady shear. For such states it is not profitable to - - =c
go beyond the order considered here in the Chapman- 30 g e ]
Enskog expansion, but rather to use other methods not based 3

. . . . =25t 4
on small gradients. Previous applications of the Chapman—- <

Enskog method have typically introduced additional assump- 20F
tions for convenience that are not internally consistent with

constructing a solution to the Boltzmann equation. In most of L3 i
these cases the reference state was chosen to be a Maxwell- 1.0 s . PR ——

; ; fecinAti 0.5 0.6 0.7 0.8 0.9 1.0
ian, presumed to give accurate results at weak dissipation. «

This is not the case, as has been demonstrated in the one- o .
component casklIn addition, the effects of cooling in the FIG. 1. Plot of the reduced pressure diffusion coefficiegfa)/D (1) as a

. S function of the restitution coefficientb=a,,=a,=ay, for op=0
lowest order time derivative of the temperature and pressure e T v

=g1,, @ concentration ratim, /n,=0.25, and two different values of the
were neglected, again under the assumption of weak dissiparass ratiom, /m,=0.5 andm, /m,=4. The dashed line refers to the case
tion. Here, the reference state has been taken to be an exagt/m,=4 by assuming the equality of the partial temperatuyesT, /T,
solution to the uniform Boltzmann equation and conse-=1:

quently, there is no limitation on the parameters of the sys-

tem (mass ratio, size ratio, concentrations, restitution coeffi-

cients. An interesting and important result of this exact for elastic collisions. We see that the deviation from the func-

analysis is that the temperatures of each species must Rgnal form for elastic collisions is quite important even for

different. Furthermore, the time derivatives are calculated afoderate dissipatiosay a=0.9). This tendency becomes

each order in the gradient expansion without restriction ofore significant as the mass of the defect particles is larger

the restitution coefficients. This assures that a consistent senhan that of the excess particles. Also shown for comparison

lution to the Boltzmann equation is constructed at each ordgg, Fig. 1 is the result fom;/m,=4 with T;=T,=1, which

in the gradients, without any restrictions on the system pawould be obtained if the differences in the partial tempera-

rameters. This consistency is reflected in the verification ofyres were neglected. Clearly, inclusion of this effect makes a

solubility conditions for the integral equations determiningsijgnificant difference over the whole range of dissipation

the transport coefficients. These are the primary new featureshown (the actual value isy=T,/T,~1.36 for «=0.8). At

of this work. the level of the mass flux, the main transport coefficient is
The evaluation of the transport coefficients for practicalihe diffusion coefficienD. In Fig. 2 we plot the dependence

results introduces a new approximation, truncation of an exof the ratio D(«)/D(1) on « for 011= 0, N1/N,=0.25,

pansion for the solutions to the integral equations in polynognd for several values of the mass ratio, /m,=0.5, 1, and

mials. The leading order truncation is known to be accurate). As before,D(1)=(pT/mym,v,) is the diffusion coeffi-

to approximately 5% in the case of elastic collisions. Excepient for elastic collisions. The shape of these curves is very

tions are extreme mass rati@sg., electron—proton systejns - similar to those presented for the coefficiédy, although

Its validity for inelastic systems has been recently checkeghe influence of dissipation ob is a bit stronger than the

by Monte Carlo simulation for shear viscosity. The accuracygne observed in the case Df, . According to the behavior of

is found to be similar to that for elastic collisions. D ande one can conclude that the main effect of inelastic-

Recently, a seemingly similar analysis for granular bi-jty in collisions is to enhance the mass transport with respect
nary mixtures has been given in Ref. 16, also based on a twg, the elastic collisions case.

temperature description. However, this work is phenomeno-
logical with no attempt to solve the kinetic equation. Instead,

it is assumed that the distribution function is a local Max-

wellian. This is reasonable for estimating the dense gas col-
lisional transfer contributions to the fluxes, but it predicts

that all transport coefficients calculated here at low density
should vanish. Clearly, the phenomenology is flawed.

In a subsequent paper, we will evaluate the expressions
for the different transport coefficients for a variety of mass
and diameter ratios. Here, as an illustration and to give some
insight into the influence of dissipation on transport, we con-
sider the pressure diffusion coefficieDdt, and the diffusion
coefficientD. For the sake of concreteness, consider the case DA e e 03 o5 =
aq1= ayp= a,=a. Figure 1 shows the reduced pressure dif- ' ) a7 ‘ ‘
fusion coefficientD ,(a)/D(1) as a function of the restitu- o . ,
tion coefficient foray,= a4y, Ny /N,=0.25, and for two val- FIG. 2. _Plo_t of the rgduceidlffu_smn Soefflmdh(a)_/D(lz as a function of

the restitution coefficientv= a11,= a,,= a4, for o1;= 0,,= 01,5, a concen-

ues of the mass ratian_11/m2=0.5 and 4 Here, Dp(_l_) tration ratio n,/n,=0.25, and three different values of the mass ratio:
=(n,T/vep)(1—myn/p) is the pressure diffusion coefficient m,/m,=0.5,m;/m,=1, andm, /m,=4.

D(o)/D(1)
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The application of the Qhapman—Enskog procegiure here ;O (Tg+ pdp)arfimVitaiLif1mVy
closely follows recent derivations of hydrodynamics and
transport coefficients for one-component granular gases. — oyMafomVil

An important difference in the mixture is the need for two 570
diﬁe_rent temperatures in the _refgrenc_e local ho_mogeneous =A;+ W) fam(pby+Tey ) Vy, (A1)
cooling states, leading to qualitative differences in the con- 1/pT

centration dependence of the transport coefficients relative

_ #(0) _2#(0)
the elastic limit. This reference state is discussed in mor O(Tor+pdp) =207 101 afamVa byl L1F1 MV

detail in Ref. 10. Effectively, the absence of energy conser-  — 5y A1,f,,,V;]
vation for granular gases leads to a failure of detailed balance ((’))
between the velocity distributions in the homogeneous state. T

: A =B;+ ——
One consequence is non-Maxwellian distributions observed B p fimeLaVs, (A2)

already for one-component systems. For multicomponent
systems a second consequence is different covariances of the {©(Tdr+pd,) — 5421y af1mVi+cid LifimVy
distributions for different species, although the cooling rates ©
are all equal. The latter property implies that the different — SyMyfopV]=Ci— if b, -V (A3)
partial temperatures can be expressed in terms of the global yMilamVa L7 TiMELATL
temperaturgas is required for a hydrodynamic descripdion
although the functional relationships defining such partia
temperatures introduce a new dependence on the concent!y- leads to
tions. This leads to additional spatial gradients at first ordecg_g(m(-l—é,ﬂL pdp) +vIniT1a;
in the Chapman—Enskog expansion and consequently addi- ’
tional contributions to the transport coefficients. The effect of 1 ol
f dVlmlvl-A1+( )

INext, multiplication bym;V; and integrating over the veloc-

these terms can be significant, as illustrated in Fig. 1. Previ- ~— 3
ous work on granular mixturés’ is restricted by weak dis-
sipation approximations. In addition, these studies do not (A4)
include contributions from the partial temperature differ- 0 0
ences, which are significant even for weak dissipation. [ ¢ (Tor+pdp) =20+ vIngTibyy

One interesting question is whether the mixture hydro- 1 TO
dynamics is more or less stable than that of the one- =3 | dVamiVyBy+ TanlCl,lr (A5)
component case, and if such phenomena as phase separation

NiT1(pby+Tey ),
p, T

or segregation can occur. Another direction of study is th 1

extension of the present simple hydrodynamic state to high%r— {O(Tar+ Pdp) — §§<O)+ viNgTiCyy

densities based on the revised Enskog kinetic equation, fol-

lowing recent results for the one-component flRiith this 1 pl®

case the new complexity is due to the dependence of the :§f dVim;Vy-Cy— Wnl—rlblil' (AB)

collision operator on concentration through the pair correla- . o _
tion functions for the different species. Finally, we hope thatHere v is a collision frequency defined by
the present results stimulate the performance of computer

simulations(molecular dynamics and/or by using the direct  ,— ! f dvimyVy-[LafymVi—6yMyfauVa]
simulation Monte Carlo methdd to study hydrodynamics 3Ty ’ ’
in granular binary mixtures. 1

- 3n1T1 J dVllel'(JlZ[V1|f1,MV11f(20)]
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1 d
§f dV1m1V1-A1= - (Wanl) y (A8)
APPENDIX A: LEADING SONINE APPROXIMATIONS ' p.T
In this appendix the coefficient&; ;;b; j;c;;} in the Ef AV MV -B. = — niTy - mlnT) (A9)
leading Sonine approximations are evaluated. First, let us 3 i p pT. )’
consider the coefficient§a; 1;b;1;¢; 1} determining the
mass flux. Substitution of E@65) into the integral equations 1 f .
(46)(48) gives 3 | dVimVy-C=0. (A10)
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From dimensional analysisn;T;a;,~TY%,  n;Tiby, p D’ P

~T"%p, andn; T ¢y 1~ T~ Y2 s0 the temperature derivatives C12=C1— =~ {O(Tor+pay) T2 Vifiut 7 5.0’

can be performed in Eq§A4)—(A6) and the result is 8 e
X[Ly(f1mV1) = oyMu(famVi)]

(0)
(v 1§<°)a = (—a nn,T,| + % ) 1 p
5 11— 1'1 _ _ 7(0) r_
2 X1 o.T 0Xq T 2 § Tanl (D Dp)fl’le, (Alg)
X(pbyyt+Teyy), (A1) where v;=T,;/T. The corresponding integral equations for

a,, by ,, andc, , can be obtained from Eq6A14) to (A16)
3 1 mnT| T by just making the change<22. Dimensional analysis re-
v—={9b =—=|1- +——c (Al12) i -3/2 -312 -5/2
2 11 p pT, p LU quires thata; ,~T 5 by ,~T *9p, and cy~T <
When one takes into account this dependence and the forms

ps(© of Ajj, Bjj, andC;j;, one finally arrives to Eq(94).
Ci1= =~ 57, s (A13)
The solutions are given by Eq&9)—(71). APPENDIX B: EVALUATION OF »

The analysis for the coefficien{si; ;b »;¢q 5} (Dufour
coefficient, pressure energy coefficient, and thermal condu
tivity) is similar to that given previously for the mass flux

_ The collision frequency is defined by the collision in-
ctegrals in Eq(A7). To simplify the integrals, a useful iden-
" tity for an arbitrary functiorh(v;) is given by

The result is
[—O(Tar+pap) + v11] T3a o+ T3wi0a, J dvah(va)J[valfi ]
2 mT3 o 9L )
T — f dv,S;-A L+ T X (pbyot+Tey ), :aijf dvlf dv,fi(r, vy, t)f(r,vp,t)
p, T
(A14) o . ,
X | do®(6-910) (0912 [h(v) —h(vy)], (BY)
[—O(Tor+ pdy)— 2094 111130y o+ T3w10, 5 with
_ 2 ran3 T4§<0) "n__ 1 ~ ~ BZ
_1_5_an§ dv;S;-B,+ e C12, (A15) Vi=Vy— wji(1+ aij) (07012 0. (B2)
This result applies for both=j andi#j. Use of this in Eq.
1 (A7) gives
[—g(o)(T&ﬁ— Pdp) — E§<0)+ 11| T30 o+ T301C5 5 0
—__ ! . 0)
2 m,T? 1, v 3n1-|—1de1V1 (Jid fimVie,f57]
:EWJ dVls_L'Clz_sz {Ocy,. (A16) ©
11 —oydidfy’ famVal)
Here, the collision frequencies; and;; are defined by Egs. _ } 2 my f J’
(96) and (97), respectively, and g "okl t @) n,T, vy | dv,
mym,n D Xglz[fl,M(Vl)f(ZO)(VZ)(Vl'ng)
A=A — O(Tor+pdp) = V. f
2= AT gy & TIPS VA YOV (V) (Vo). ®3)
m;mzn _ wherey=T,/T, andé=n,/n,. Substitution of the distribu-
* n,T, DLLi(fimVe) = 9y Mul(TomV)] tion functions from Eqs(63) and (64) gives
o p _ 2 152,312
—( | T (Pet DV, (A1) 77 321 g (L 22700 v
p,T
b xf dV’l‘f dV’z*efal"’fze*92"’2k2g’1‘2
p p
B1,=B;— —— {O(Tdr+pd,) —=Vifiy+ ——=D
12= B nlylf (Tdr+pdp) S AELEE e S o e Ui 15 "
XLEx(fLVe) = 37 Mi(foVy)] Pl Ve eVt ) (Vi)
0_"F ' oyt 2 vt v*2+1—5 V3 -gt,)
- panl(D —2Dp)f1mV1, (A18) Y 2 | f1V1 V1 T (V3012
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(1+ alz)ffiz APPENDIX C: EVALUATION OF 7;; AND 7;
= 3.2, ., (0102) )Y [Ny y2X(C2, 61, 65) . . o
Y172 The collision frequencies;; and 7; appearing in the
+N1y1X(C1,62,01)]. (B4)  evaluation of the shear viscosity are defined by E88) and

(84). All of these have the form
Here, wu=m;/m,, V{=Vilvg, 0i,=012/vg, 6

=(ujiv) "t and vo=+2T(my+my)/mim,. In addition,
the quantitiesX(c,,6;,6,) andl(6;,6,) are given by J dv;VViJii[valfi ]
d? d 15 =a?fdv fdv fi(v )f(v)fd&@(&- (6
X(Cy, 0y, 0) = 142 0%_2+502_+_ ij 1 2fi(va) fj(va 012)(0+012)
4 des do, o
X[ViVi—ViVy], (C1)
X1(604,05), (B5)
where the identityB1) has been used. This result applies for
. PRV I bothi=j andi#j. Using the scattering ruléB2), the last
1(01,00)= f dvi f dvie "Vi'e V3 ghvigh). term on the right-hand side can be explicitly computed as
(B6)

The integrall (6,6,) can be performed by the change of VIVi—ViVi= = i1+ ai)(0:91)[ Gy o+ oGy

variables + @i (G120 + 0910) — i (1+ aj)
X (090 oT]. (C2
x=Vi—=V3, y=6,Vi+0,V;, (B7)
Here, Gjj= u;;V1+ u;iV,. Substitution of (C2) into Eq.
(C1) allows the angular integral to be performed with the
result

with the Jacobian §;+ 6,) 3. The integral becomes

(01+ 0,)"2

1(6y,6,) =472 2 (B8)

| 4009 @anvivi-vivi]
Use of this result iB5) and (B3) gives the desired result
- %Wﬂji(l"' aij)| 912 Gij G127t 912.Gij)
\/_‘712Uo Y17s (‘91‘92( 01+ 6,)) %2
+_(3 @) 912912010~ (1+ ai))gl|. (C3
X| (Ngy20,+ N1 y101) (61 + 65)°

Notice that the last term itC3) vanishes when it is con-
tracted with the traceless tend@r. Now, the different col-

_ = 2 2
16011710162+ CaN2y20201) | B9 Jision integrals can be easily calculated by the same method
as described in Appendix B. After a lengthy calculation, one
This leads directly to the result given by Eq@4). gets

AlZZJ' dVlRl,a,B‘]lz[f(l())’fZ,MRZr“B]

4

=- §m1m2nln2\/;1“21(1+ a12) oo 010,) 12

, _ 3 _ _ ,
X | 665 2(p1202— p1601)( 01+ 02) 2+ EMZlez 2(01+ 02)VA3— 1) =56, 1 (01+ 0,) M2

3
c, 201(10—12u15— uoq) + 02(5— 6119 — §M21(3_ a1p)( 01+ 05)
" 16 (0,+ 0, !

(C4
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Blzzf dViR1 4pd1d FimR1ep Y]

4
= —§m§nln2\/;,u21( 1+ alz)Uizvg( 0,0,) 2

X

_ ~ 3 _
601 %(1202— 12101)(01+ 05) 2+ §M2191 2(6,+ 0)Y4(3— ayy

Cp 202(12up+9p1o—10) = 61(5—6p1) — Su2a(3— 1) ( 01+ 6,)

-1 —1/2
+50, (6,4 6,) VP 1 A , (C5)
Agrt anf dVlRl,aB{Jlﬂf(lo) FimRiegl F 1l fim R1,aﬁaf(10)]}
2.2 2 5/2 1 2 G
=—32m2n?\m(1+ ay) oX(T1/my)%3 1 7(1—aw?||1-o]. (C6)

In the case of mechanically equivalent particies;,=m,  are defined by the collision integral@6)—(101). All of these
=m, ojj=0, aj=a, ¢;=c), Egs. (C4H—(C6) reduce to have the form
those previously calculated in the single gas case in the de
termination of the shear viscosity. dvlS(Vl)Jij[vl|fi £
This completely determines;; and 7,,. The corre-

sponding expressions faf,, and 7,; can be inferred from 5
Egs.(C4), (C5), and(C6) by interchanging 2. =0ij | dvy | dvafi(vy)fj(va)
APPENDIX D: EVALUATION OF Y;, v;, AND ; X f do0(6-019)(0-01)[S(V)-S(Vy]. (D)

The collision frequencies;; , »;; andY; (i=1,...,6) that  Using the scattering rulé82), the last term on the right-hand
determine the coefficients ,, b; ,, andc; , for the heat flux  side can be explicitly computed as

m; A - -
S(V)—S(V)= ?(1+ aij)Mji(U"glz)H(l_ aizj)ﬂjzi(ﬂ"glz)z_Gizj _,U«jzigiz_ 21ii(912Gij) +2(1+ ajj) wji(6+012)

5Ti| . ~ . ~ R
X(0-Gjj) — F} 0—[(1—ajj) pji( 0012 + 2(0-Gjj) IGij — il (L= @jj) i (6912 + 2(6-G;) 912 -

(D2)
Substitution of(D2) into (D1) allows the angular integral to be performed with the result
| do0 g el -sva]
m, 1,1, , 1 5T,
== 5 71+ aiuji)| 591260 T g wji (2 — 3 + 491~ 5 wjil@ij — 3) 91 012 Gij) — 2m; 912|%h2
1 3
+ 912(912‘Gij)_§Mji(2aij—1)glz Gij(- (D3)

Now the different collision integrals can be evaluated.

1. Evaluation of Y;

The coefficientsy 3 s are obtained from Eq$99) to (101). The collision integrals appearing in these expressions can be
evaluated directly by using identical mathematical steps as before. After some algebra, the result is
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Cro= J' dv;Sp-d1 £V, Fom V2]

1
= _Emlnlnz\/;MZl(l_l' a1) 050301+ 0) H2(6,60,) 32

X1 5(2B15— 01) + por( 01+ 0)[5(1— ayp) +2(Tayy— 11)B1,0, 11— 1883,60, " — 212, (2a5,— 3ay,+ 4)

_ Cq _
X 05 (614 0,)2+5(81+ ) = 1o (01F 05) "20,{ 465 — 5+ 36T, Spuon(ip—3) + u3y(25— Baryp+ 3ady)
= 2m12(10+ pp1(7ago— 29)) ]+ 0%[5 + 54,U~iz+ 15upy(ap— 1)+ 6#%1(4_ 3at+ 2“%2) —6u15(5+ ppy(7ao—11))]
— 010,] — 144uT )+ 2 1 {40+ 91(49r15— 95))+ poy(45— 35, — 2 59(35— 25a1,+ 1202)))1} (D4)

D:f dv1S-J1d Fr Ve, 1]

1
=~5MMn; Vrpon(1+ agp) 020561+ 6,) 4 6,6,) 32

X1 5(2B12+ 03) + por( 01+ 02)[5(1— a1p) — 2(Tagy— 11) Br07 11+ 1883,01 T+ 2u51(2a5,— 3ay,+4) 0 10, + 0,)2

_ Co _
—56,0, Y0,+ 6,)+ 1_6( 0,+6,) 291{3‘9%#21(1"‘ a1)[Apo(1+ agp)—5]+ 95[ —15+ 54#%2_ 20u21(3+ agp)
+2u31(40+ 191+ 6a%y) + 2y — 20+ ppy(61+ T vy0)) 1+ 010 2o — 5+ T pon(1+ a1p)) + pros( —5(9+ 7ayy)

+ wpq(38+ 621+ 24a§2))]}} , (D5)

C1+Dyy= J dv; S;+{ 3,4 F1” FimVal+JulfimVa A%

1
= —10Vam o2 (T, /m) %41+ agy)| 1— agy+ 350C (21— 53) . (D6)
In the above-given expressions we have introduced the quantity
B12= p1202— p210s - (D7)

This completely determines the coefficieMg; 5. The corresponding expressions %, s can be inferred from EqgD5) to
(D7) by interchanging & 2.

2. Evaluation of »; and v

The collision frequencies;; andv;; are defined by Eqg96) and(97). These collision integrals are evaluated in the same
manner as those for;. The result is

dv;S;-J, [ f = | dv;S;-dq4 O, f EVZV—ETV =F —ETC (D8)
ViS: i 17 fomS,] V18112112,M2 2Ve2T 5 12V2 127 5 1212,

m
F1o= f dv;S;+J 12[ f(10) ,fz,MTZ ngz}
1

= §m1”1”2\/;,“21(1+ a1) a5 01+ 02) 3 016,) %2

X

215105 2(01+ 02)X(2aTy— 3o+ 4)(801+50,) — por( 01+ 05)[ 281205 2(801+50,) (T ag— 11)
— 26,60, (291,— 37)+25(1— a1) |+ 1883,0, 2(861+56,) — 281,05 *(666, + 256,) + 50,6, (66, +116,)
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c
—5(61+6,) 60, (66, +56,) + 1—;( 01+ 02) {16635+ T2uiot pip — 66+ w1137~ Ta1y)) = 2upi(34+ az))

+ 151(68— 1o+ 3ad) 1+ 503 5+ 54udy— 15ua1(1— ar1p) + 65y (4— Barp+ 205, — 615+ por(Tar,—11))]
+ 2670, — 170+ 504uf,+ pp1(5501— 17) +2u51(151— 62015+ 3905,) — 819+ 7 pp1(5ev1,~ 13)) ]
— 01603 20— 936u2,+ wpr(251— 21 7ary,) + pdy( — 446+ 33201~ 168a2))

+ 212234+ p21(329%15— 607))]}], (D9)

my 5 0) 5
f1,M7V1V1_§T1V1af2 =Hqo— §T1D12, (D10)

J’ dVlsl‘Jlifl,MS_L:f(zo)]:f dv;S;+Jd19

my
lezf dvlsldlz[fl,MTViVlrf(ZO)}

1
=" 3 MmNy muoy(1+ a1) i 01+ 0) 3K 0,0,) 32

X1 215107 2(01+ 02)%(205,— 3o+ 4) (50, +860,) — wor( 01+ 02)[ 281507 (501+86,) (T~ 11)

+20,07 1(29a1,— 37) — 25(1— a1p) |+ 18B3,01 2(560,+ 86,) + 281,01 (666, + 2560,) + 50,0, (116, + 6 6,)
C
=501+ 0) 05 20(60,+50,) + 75 (01+ 0)~{1503u1(1+ 1) (4poa( 1+ a1p) — 5) + 203 45+540u3,

+ 16uoy( @1~ 36) + 4usy(134+ 5a g+ 6ad,) — 4wy 148+ woy(Tar— 263)) ]+ 6205 — 30— oy 267+ 217a,)
+ 14u s, (17+ 290+ 120%) + 10u1 A 7 prpi( 1+ cgp— 5)) ]+ 61 65] — 315+ 270u3,— 2 pup1( 5515+ 57)

+ u5y(440+ 3260 15+ 15607,) + 21 — 2+ oy Tagp+ 277))]}] , (D11
f dviSi{Iul £ F1m ST+ Iul F1mSy 171}
2 2 5/2 33 1
= _8\/;n10'12m1T1(T1/m1) (1+ all) 1+ _(1_ 0111)+ —Cl(19—3a1]_)

16 1024

In these expression§;, and D, are given by Eqs(D4) and (D5), respectively.

In the case of mechanically equivalent particles, expres€i?) coincides with the one previously obtained in the
context of determining the thermal conductivity in a one-component granuldrrasn Eqs.(D9) to (D12), one easily gets
the expressions for,, and v,; by interchanging & 2.
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