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Abstract

Steady simple shear 2ow of a low-density binary mixture of inelastic smooth hard spheres is
studied in the context of the Boltzmann equation. This equation is solved by using two di6er-
ent and complementary approaches: a Sonine polynomial expansion and the Direct Simulation
Monte Carlo method. The dependence of the shear and normal stresses as well as of the steady
granular temperature on both the dissipation and the parameters of the mixture (ratios of masses,
concentration, and sizes) is analyzed. In contrast to previous studies, the theory predicts and the
simulation con;rms that the partial temperatures of each species are di6erent, even in the weak
dissipation limit. In addition, the simulation shows that the theory reproduces fairly well the
values of the shear stress and the phenomenon of normal stress di6erences. On the other hand,
here we are mainly interested in analyzing transport in the homogeneous shear 2ow so that, the
possible formation of particle clusters is ignored in our description. c© 2002 Elsevier Science
B.V. All rights reserved.

PACS: 45.70.Mg; 05.20.Dd; 51.10.+y; 47.50.+d
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1. Introduction

Many features associated with dissipation in rapid granular 2ows can be well
represented by a 2uid of hard spheres with inelastic collisions. In the simplest model
the grains are taken to be smooth so that the inelasticity is characterized by means
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of a constant coeFcient of normal restitution. The essential di6erence with respect to
normal 2uids is the absence of energy conservation, which leads to modi;cations of
the usual hydrodynamic equations. In recent years, the Boltzmann and Enskog equa-
tions have been generalized to account for inelastic binary collisions. These equations
have been solved by means of an expansion akin to the Chapman–Enskog method
up to the Navier–Stokes order and detailed expressions for the corresponding trans-
port coeFcients have been obtained [1,2]. These expressions are not restricted to the
low-dissipation limit and comparison with Monte Carlo simulations indicate that the
results are very accurate, even for strong dissipation [3]. In the context of multicompo-
nent granular gases, most of the existing work appears to be based on weak dissipation
approximations [4–7]. Given that the inelasticity is small, an usual assumption in these
studies is to consider a single temperature variable characterizing the entire mixture.
However, as one of the authors pointed out [5], the equipartition of energy is not
completely justi;ed beyond the low-dissipation limit and it is necessary to o6er the-
ories involving mixtures of granular materials in which the kinetic temperatures of
species Ti are di6erent from the mixture temperature T . As a matter of fact, recent
experiments [8] and simulations [9] on driven granular mixtures show that the two types
of grains do not attain the same granular temperature. In terms of the mean square
velocities of species, this implies a violation of the classical equipartition theorem.
Related ;ndings have been reported by Garz%o and Dufty [10,11] in the case of a binary
mixture of inelastic hard spheres undergoing homogeneous cooling (i.e., an unforced
system) and by Marconi and Puglisi [12] in the case of Maxwell molecules.

All the above works refer to near equilibrium situations. Very little is known about
far from equilibrium states. This is true for both molecular and granular 2uids due
to the intricacy of the Boltzmann and Enskog collision operators. Nevertheless, the
diFculties are even harder for granular gases since gradients in the system can be con-
trolled by dissipation in collisions and not only by the boundary and initial conditions.
Thus, for instance, a granular system with uniform boundaries at constant tempera-
ture develops spatial inhomogeneities [13]. One of the simplest far from equilibrium
physical situations corresponds to the simple shear 2ow. Macroscopically, it is charac-
terized by uniform density and temperature and a constant velocity pro;le. In the case
of molecular 2uids, this state is not stationary since the temperature increases mono-
tonically in time due to viscous heating. However, for granular 2uids a steady state
is possible when the viscous heating is exactly balanced by the inelastic cooling. As
a consequence, for a given shear rate, the temperature is a function of the restitution
coeFcient in the steady state. This steady state is precisely what we want to analyze
here.

In the case of a one-component system, the simple shear 2ow has been exten-
sively studied. Thus, Lun et al. [14] obtained the rheological properties of a dense
gas for small inelasticity, while Jenkins and Richman [15] used a maximum-entropy
approximation to solve the Enskog equation. An extension of the Jenkins and Richman
work [15] to highly inelastic spheres has been recently made [16,17]. For low-density
granular gases, Sela et al. [18] have been able to get a perturbation solution of
the Boltzmann equation to third order in the shear rate, ;nding normal stress dif-
ferences at this level of approximation. On the other hand, some progresses have been
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done by using model kinetic equations in the low-density limit [19] as well as for
dense gases [20]. In both works, comparison with Monte Carlo simulations shows an
excellent agreement even for strong dissipation. Similar studies for multicomponent sys-
tems are more scarce. Most of them are based on a Navier–Stokes description of the
hydrodynamic ;elds [4–7] and, therefore, they are restricted to small shear rates, which
for the steady shear 2ow is equivalent to the low-dissipation limit. As said before,
although these studies permit di6erent temperatures for the two species, they lead
to equal partial granular temperatures Ti in the quasielastic limit. A primary attempt
to include temperature di6erences was made by Jenkins and Mancini [21], although
applications of this theory which appear in the literature incorporate the assumption of
equipartition of energy. Since this assumption is not valid [10,22–25] for highly inelas-
tic spheres, a multi-temperature theory must be more appropriate to describe sheared
granular mixtures. This fact motivates the search for theories which consistently include
the possibility of temperature di6erences.

The aim of this paper is to get the rheological properties of a binary granular mix-
ture subjected to the simple shear 2ow in the framework of the Boltzmann equation.
Two complementary routes are followed. First, the set of coupled Boltzmann equations
are solved by using a ;rst-Sonine polynomial approximation with a Gaussian measure.
Since the mixture is in a nonequilibrium steady state, one expects that the total energy
is not equally distributed between both species. Thus, a characteristic of our solution
is that the reference Gaussian distributions are de;ned in terms of the kinetic tempera-
tures Ti instead of the mixture temperature T . Consequently, we do not assume a priori
the equality of the three temperatures and the temperature ratio T1=T2 is consistently
determined from the solution to the Boltzmann equations. It is found that the partial
temperatures of each species are clearly di6erent and so, energy equipartition does not
hold. The consequences of this e6ect on the rheological properties are signi;cant, as
shown below. Once the temperature ratio is known, we get explicit expressions for the
elements of the pressure tensor. The results are general and not limited in principle
to weak inelasticity or speci;c values of the parameters of the mixture. As a second
alternative and to test the reliability of the theoretical predictions, we have used the
Direct Simulation Monte Carlo (DSMC) method [26] to numerically solve the Boltz-
mann equation in the simple shear 2ow. Although the DSMC method was originally
devised for molecular 2uids, its extension to deal with inelastic collisions is easy
[27,28]. For the elements of the pressure tensor the agreement between theory and
simulation turns out to be very good over a wide range of values of the restitution co-
eFcients, mass ratios, concentration ratios and size ratios. It must be noted that in this
paper we are interested in analyzing transport properties in the uniform shear 2ow. As
several authors have shown [29] the simple shear 2ow is unstable to long enough wave-
length perturbations so that clusters of particles are spontaneously developed throughout
the system. Here, we will restrict ourselves to the uniform case, assuming that the sys-
tem has reached such a state, and without paying attention to the possible formation
of particle clusters (microstructure).

There is some speculation on the validity of a hydrodynamic description for granular
2ows beyond the weak dissipation limit and=or weakly inhomogeneous states. The
concern is based on the fact that in the inelastic case the time scale for the temperature
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is mainly set by the cooling rate rather than by the spatial gradients. This new time
scale is much faster than the usual hydrodynamic scale so that some hydrodynamic
excitations decay much slower than the granular temperature. Thus, it could happen
that for ;nite values of the restitution coeFcient there exist no time scale separation
between the hydrodynamic and the fast kinetic contributions to the time evolution
of the system. As a consequence, there were no “aging to hydrodynamics” or, in
the kinetic theory language, “normal” solution to the Boltzmann equation. However,
investigations to date [3,30] suggest that the kinetic excitations remain isolated from
the hydrodynamic ones so that the later dominate on suFciently large time scales,
just as in the elastic case. This justi;es the inclusion of the granular temperature as
a slow or macroscopic variable. The good agreement found in this paper between our
normal solution (obtained assuming the validity of hydrodynamics) and the simulation
results supports the conclusion obtained in previous works [3,30]: a hydrodynamic
description applies even at ;nite dissipation and strong inhomogeneity (i.e., beyond the
Navier–Stokes limit).

The plan of the paper is as follows. In Section 2, the coupled Boltzmann equations
and the corresponding hydrodynamic equations are recalled. The steady shear 2ow
problem is also introduced in Section 2, while the Sonine approximation is discussed
in Section 3. Section 4 deals with the Monte Carlo simulation of the Boltzmann equa-
tion particularized for steady simple shear 2ow. The comparison between theory and
simulation is presented in Section 5 and we close the paper in Section 6 with a short
discussion.

2. The Boltzmann equation and the simple shear �ow

We consider a binary mixture of smooth hard spheres of masses m1 and m2 and
diameters �1 and �2. The inelasticity of collisions are characterized by three indepen-
dent constant coeFcients of normal restitution �11, �22, and �12 = �21, where �ij is
the restitution coeFcient for collisions between particles of species i with j. In the
low-density regime, the distribution functions fi(r; v; t) (i = 1; 2) for the two species
verify the set of nonlinear Boltzmann equations [10]

(@t + v1 · ∇)fi(r; v1; t) =
∑
j

Jij[v1|fi(t); fj(t)] : (1)

The Boltzmann collision operator Jij[v1|fi; fj] describing the scattering of pairs of
particles is

Jij[v1|fi; fj] = �2
ij

∫
dv2

∫
d�̂�(�̂ · g12) (�̂ · g12)

[�−2
ij fi(r; v

′
1; t)fj(r; v

′
2; t) − fi(r; v1; t)fj(r; v2; t)] ; (2)

where �ij=(�i+�j)=2, �̂ is a unit vector along their line of centers, � is the Heaviside
step function, and g12 = v1 − v2. The primes on the velocities denote the initial values
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{v′1; v′2} that lead to {v1; v2} following a binary collision:

v′1 = v1 − �ji(1 + �−1
ij ) (�̂ · g12)�̂; v′2 = v2 + �ij(1 + �−1

ij ) (�̂ · g12)�̂ ; (3)

where �ij = mi=(mi + mj). The relevant hydrodynamic ;elds are the number densities
ni, the 2ow velocity u, and the temperature T . They are de;ned in terms of moments
of the distributions fi as

ni =
∫

dv1fi(v1) ; �u =
∑
i

�iui =
∑
i

∫
dv1miv1fi(v1) ; (4)

nT =
∑
i

niTi =
∑
i

∫
dv1

mi
3
V 2

1fi(v1) ; (5)

where n= n1 + n2 is the total number density, �= �1 + �2 =m1n1 +m2n2 is the total
mass density, and V1 = v1 − u is the peculiar velocity. Eqs. (4) and (5) also de;ne the
2ow velocity ui and the partial temperature Ti of species i.

The collision operators conserve the number of particles of each species and the
total momentum, but the total energy is not conserved:∫

dv1Jij[v1|fi; fj] = 0 ; (6)

∑
i; j

∫
dv1miv1Jij[v1|fi; fj] = 0 ; (7)

∑
i; j

∫
dv1

1
2miV

2
1 Jij[v1|fi; fj] = − 3

2nT� ; (8)

where � is identi;ed as the “cooling rate” due to inelastic collisions among all species.
At a kinetic level, it is also convenient to discuss energy transfer in terms of the
“cooling rates” �i for the partial temperatures Ti. They are de;ned as

�i = − 2
3niTi

∑
j

∫
dv1

1
2miV

2
1 Jij[v1|fi; fj] : (9)

The total cooling rate � can be written as

�= T−1
∑
i

xiTi�i ; (10)

where xi = ni=n being the molar fraction of species i.
From Eqs. (4)–(8), the macroscopic balance equations for the mixture can be

obtained. They are given by

Dtni + ni∇ · u +
∇ · ji
mi

= 0 ; (11)

Dtu + �−1∇ · P = 0 ; (12)

DtT − T
n

∑
i

∇ · ji
mi

+
2
3n

(∇ · q + P : ∇u) = −� T : (13)
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In the above equations, Dt = @t + u · ∇ is the material derivative,

ji = mi

∫
dv1 V1fi(V1) (14)

is the mass 2ux for species i relative to the local 2ow,

P =
∑
i

Pi =
∑
i

∫
dv1miV1V1fi(V1) (15)

is the total pressure tensor, and

q =
∑
i

qi =
∑
i

∫
dv1

1
2miV

2
1 V1fi(V1) (16)

is the total heat 2ux. The partial contributions to the pressure tensor, Pi, and the heat
2ux, qi, coming from species i can be identi;ed from Eqs. (15) and (16).

As said in the Introduction, here we are interested in evaluating the rheological
properties of a granular binary mixture subjected to the simple shear 2ow. From a
macroscopic point of view, this state is characterized by a constant linear velocity
pro;le u= ui = a · r, where the elements of the tensor a are ak‘ = a�kx�‘y, a being the
constant shear rate. In addition, the partial densities ni and the granular temperature
T are uniform, while the mass and heat 2uxes vanish by symmetry reasons. Thus,
the (uniform) pressure tensor is the only nonzero 2ux in the problem. On the other
hand, the temporal variation of the granular temperature arises from the balance of
two opposite e6ects: viscous heating and dissipation in collisions. In the steady state
both mechanisms cancel each other and the temperature remains constant. In that case,
according to the balance energy equation (13), the shear stress Pxy and the cooling
rate � are related by

aPxy = −3
2
�p ; (17)

where p= nT is the pressure. Our aim is to analyze this steady state by means of an
(approximate) analytical method as well as by performing Monte Carlo simulations of
the Boltzmann equation.

The simple shear 2ow becomes spatially uniform when one refers the velocities of the
particles to a frame moving with the 2ow velocity u :fi(r; v1) → fi(V1). Consequently,
the corresponding Boltzmann equations (1) read

− aV1;y
@

@V1; x
f1(V1) = J11[V1|f1; f1] + J12[V1|f1; f2] ; (18)

− aV1;y
@

@V1; x
f2(V1) = J22[V1|f2; f2] + J21[V1|f2; f1] : (19)

The elements of the partial pressure tensors Pi (i=1; 2) can be obtained by multiplying
the Boltzmann equations by miV1; kV1; ‘ and integrating over V1. The result is

akmP1; ‘m + a‘mP1; km = A11
k‘ + A12

k‘ (1 ↔ 2) ; (20)

where

Aijk‘ = mi

∫
dV1V1; kV1; ‘Jij[V1|fi; fj] : (21)
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From Eq. (20), in particular, one obtains

aP1; xy = − 3
2p1�1 ; (22)

aP1;yy = A11
xy + A12

xy ; (23)

0 = A11
yy + A12

yy = A11
zz + A12

zz : (24)

Here, p1 = n1T1 = (P1; xx +P1;yy +P1; zz)=3 is the partial pressure of species 1 and upon
writing Eq. (22) we have considered the relation (8). The corresponding equations
for P2 can easily be written just by interchanging the indices 1 and 2. Thus, the
determination of the elements of the partial pressure tensors Pi is a closed problem
once the cooling rates �i and the collisional moments Aijk‘ are known. This requires the
explicit knowledge of the velocity distribution functions fi.

3. Approximate solution

Unfortunately, solving the Boltzmann Eqs. (18) and (19) is a formidable task and
it does not seem possible to get the exact forms of the distributions fi, even in the
one-component case. A possible way to overcome such a problem is to expand fi in a
complete set of polynomials with a Gaussian measure and then truncate the series. In
practice, Sonine polynomials are used. This approach is similar to the usual moment
method for solving kinetic equations in the elastic case. In the context of granular gases,
this strategy has been widely applied in the past few years in the one-component case as
well as for multicomponent systems and excellent approximations have been obtained
by retaining only the ;rst two terms. Therefore, one can expect to get a reasonable
estimate for �i and Aijk‘ by using the following approximation for fi:

fi(V1) → fi;M (V1)
[
1 +

mi
2Ti

Ci;k‘

(
V1; kV1; ‘ − 1

3
V 2

1 �k‘

)]
; (25)

where fi;M is a Maxwellian distribution at the temperature of the species i, i.e.,

fi;M (V1) = ni

(
mi

2!Ti

)3=2

exp
(
−miV

2

2Ti

)
: (26)

As we will show later, in general the three temperatures T , T1, and T2 are di6erent in
the inelastic case. For this reason we choose the parameters in the Maxwellians so that
it is normalized to ni and provides the exact second moment of fi. The Maxwellians
fi;M for the two species can be quite di6erent due to the temperature di6erences. This
aspect is essential in our two-temperature theory and has not been taken into account
in all previous studies. The coeFcient Ci can be identi;ed by requiring the moments
with respect to V1; kV1; ‘ of the trial function (25) to be the same as those for the exact
distribution fi. This leads to

Ci;k‘ =
Pi;k‘
pi

− �k‘ : (27)

With this approximation, the integrals appearing in the expressions of �i and Aijk‘ can
be evaluated and the details are given in Appendices A and B.
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In order to express the solution of the system of equations for the pressure tensor,
it is convenient to introduce dimensionless quantities. To do that, we have to take
a time unit. In general there are several characteristic times in a binary mixture, so
that the choice of the adequate time depends on the case of interest (tracer limit,
disparate-mass mixture, etc.). Since here our description applies for arbitrary mass,
concentration, and size ratios, we take, for simplicity, an e6ective collision frequency "
given by "=

√
!n�2

12v0, where v0 =
√

2T (m1 + m2)=m1m2 is a thermal velocity de;ned
in terms of the global temperature T . Therefore, we introduce the reduced cooling
rates �∗i = �i=", the reduced temperature T ∗ = "2=a2, and the reduced pressure tensors
P∗
i = Pi=xip. The (reduced) total pressure tensor is P∗ = P=p = x1P∗

1 + x2P∗
2 . Notice

that, for given values of the parameters of the mixture, T ∗ and P∗ are functions of the
restitution coeFcients �ij only.

According to the symmetry of the problem, Pi;xz = Pi;yz = 0, so that the nonzero
elements are Pi;xx, Pi;yy, Pi;zz, and Pi;xy = Pi;yx. The three normal elements are not
independent since P∗

i; xx + P∗
i;yy + P∗

i; zz = 3$i, where the temperature ratios $i = Ti=T are
given by

$1 =
$

1 + x1($− 1)
; $2 =

1
1 + x1($− 1)

; (28)

with $=T1=T2=$1=$2. Eqs. (28) can be easily obtained from the ;rst equality of Eq. (5).
The temperature ratio $ provides information about how the kinetic energy is distributed
between both species. The fact that in general T1 
=T2 does not mean that there are
additional hydrodynamic degrees of freedom since the partial kinetic temperatures Ti
can be written in terms of the average temperature T , but the temperature ratio is
a function of dissipation and leads to new e6ects (not previously considered) on the
rheological properties, as shown below. In addition, according to Eq. (24), P∗

i;yy =
P∗
i; zz. Consequently, the partial pressure tensors have four relevant elements, say for

instance: P ≡ {P∗
1;yy; P

∗
2;yy; P

∗
1; xy ; P

∗
2; xy}. Taking into account the results derived in the

Appendices, Eqs. (23) and (24) (plus their corresponding counterparts for species 2)
can be written as

LP = Q ; (29)

where L is the 4 × 4 matrix

L =




1 0 −(G11 + G12)"=a −H12"=a

0 1 −H21"=a −(G22 + G21)"=a

−(G11 + G12) −H12 0 0

−H21 −(G22 + G21) 0 0



;(30)

and

Q =




0

0

F11 + F12

F22 + F21


 : (31)
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Here, the functions Fij, Gij, and Hij are de;ned in the Appendix B. The solution to
Eq. (29) is

P = L−1Q : (32)

Eq. (32) gives the nonzero elements of the pressure tensors P∗
i in terms of the reduced

temperature T ∗ (or the reduced shear rate a="), the temperature ratio $, the restitution
coeFcients and the parameters of the mixture. The dependence of T ∗ on the coeFcients
�ij can be obtained from the energy balance equation (17)

T ∗−1=2 = −3
2
�∗

P∗
xy

= −3
2
x1$1�∗1 + x2$2�∗2
x1P∗

1; xy + x2P∗
2; xy

: (33)

Finally, when Eqs. (32) and (33) are used in Eq. (22) (or its counterpart for the
species 2), one gets a closed equation for the temperature ratio $, that can be solved
numerically. In reduced units, this equation can be written as

$=
�∗2
�∗1

P∗
1; xy

P∗
2; xy

: (34)

In the elastic limit (�ij =1), we recover previous results derived for molecular gases
[31]. A simple and interesting case corresponds to the case of mechanically equivalent
particles (m1 =m2; �11 = �22 = �12 ≡ �; �11 = �22). In this limit, Eqs. (32)–(34) leads
to $= 1, P∗ = P∗

1 = P∗
2 , with

P∗
yy =

2
3

2 + �
3 − �

; (35)

P∗
xy = −5

3
2 + �

(1 + �)(3 − �)2

a
"
; (36)

P∗
xx = 3 − 2P∗

yy ; (37)

and

T ∗−1 ≡ a2

"2
=

3
5

(1 + �)(3 − �)2

2 + �
(1 − �2) : (38)

These expressions di6er from the results derived in Ref. [19] by using a model kinetic
equation. However, for practical purposes, the discrepancies between both approxima-
tions are quite small, even for moderate values of the restitution coeFcient. It is also
interesting to consider the limit of weak dissipation (1 − �ij�1), in which case it is
possible to get analytical results. For the sake of simplicity, let us assume that all the
particles have the same coeFcient of restitution, namely, �11=�22=�12 ≡ �. To get the
;rst-order corrections in the quasielastic limit, we introduce the perturbation parameter
( ≡ (1 − �2)1=2 and perform a series expansion around ( = 0. The leading term of the
reduced shear rate a=" (which is a measure of the steady granular temperature) is of
the form

a
"

= a0(1 − �2)1=2 + · · · : (39)
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Next, the temperature ratio and the relevant elements of the (partial) pressure tensors
can be written in the form

$= 1 + $0(1 − �2) + · · · ; (40)

P∗
i;yy = 1 + P(2)

i;yy(1 − �2) + · · · ; (41)

P∗
i; xx = 1 + P(2)

i; xx(1 − �2) + · · · ; (42)

P∗
i; xy = P(1)

i; xy(1 − �2)1=2 + · · · : (43)

In these equations, a0, $0, and P(r)
i; k‘ are dimensionless coeFcients that depend on the

ratios of mass, concentrations and sizes. For symmetry reasons, the expansion of P∗
i; xy

has only odd powers, while those of the normal stresses (and of the temperature ratio)
have only even powers. The explicit expressions of a0, $0, and P(r)

i; k‘ can be easily
obtained by considering only terms through second order in ( in the general solution
(32) and in Eqs. (33) and (34). The ;nal expressions of these quantities will be omitted
here since they are very large and not very illuminating.

In summary, by using the Sonine approximation (25), we have explicitly determined
the rheological properties of the mixture as well as the reduced shear rate and the
temperature ratio as functions of dissipation and mechanical parameters of the mixture.
These theoretical predictions will be compared with those obtained from Monte Carlo
simulations in Section 5.

4. Monte Carlo simulation

From a numerical point of view, the DSMC method [26] is the most convenient
algorithm to study nonequilibrium phenomena in the low-density regime. It was devised
to mimic the dynamics involved in the Boltzmann collision term. The extension of the
DSMC method to deal with inelastic collisions is straightforward [20,27,28], and here
we have used it to numerically solve the Boltzmann equation in the simple shear
2ow. In addition, since the simple shear 2ow is spatially homogeneous in the local
Lagrangian frame, the simulation method becomes especially easy to implement. This
is an important advantage with respect to molecular dynamics simulations. On the other
hand, the restriction to this homogeneous state prevents us from analyzing the possible
instability of simple shear 2ow or the formation of clusters or microstructures.

The DSMC method as applied to the simple shear 2ow is as follows. The velocity
distribution function of the species i is represented by the peculiar velocities {Vk} of
Ni “simulated” particles:

fi(V; t) → ni
1
Ni

Ni∑
k=1

�(V − Vk(t)) : (44)
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Note that the number of particles Ni must be taken according to the relation N1=N2 =
n1=n2. At the initial state, one assigns velocities to the particles drawn from the
Maxwell–Boltzmann probability distribution:

fi(V; 0) = ni!−3=2V−3
0i (0) exp (−V 2=V 2

0i(0)) ; (45)

where V 2
0i(0) = 2T (0)=mi and T (0) is the initial temperature. To enforce a vanishing

initial total momentum, the velocity of every particle is subsequently subtracted by the
amount N−1

i
∑

k Vk(0). In the DSMC method, the free motion and the collisions are
uncoupled over a time step St which is small compared with the mean free time and
the inverse shear rate. In the local Lagrangian frame, particles of each species (i=1; 2)
are subjected to the action of a non-conservative inertial force Fi = −mi a · V. This
force is represented by the terms on the left-hand side of Eqs. (18) and (19). Thus,
the free motion stage consists of making Vk → Vk − a · VkSt. In the collision stage,
binary interactions between particles of species i and j must be considered. To simulate
the collisions between particles of species i with j a sample of 1

2Ni!
(ij)
maxSt pairs is

chosen at random with equiprobability. Here, !(ij)
max is an upper bound estimate of the

probability that a particle of the species i collides with a particle of the species j. Let us
consider a pair {k; ‘} belonging to this sample. Here, k denotes a particle of species i
and ‘ a particle of species j. For each pair {k; ‘} with velocities {Vk ;V‘}, the following
steps are taken: (1) a given direction �̂k‘ is chosen at random with equiprobability;
(2) the collision between particles k and ‘ is accepted with a probability equal to
�(gk‘ · �̂k‘)!(ij)

k‘ =!
(ij)
max, where !(ij)

k‘ = 4!�2
ijnj|gk‘ · �̂k‘| and gk‘ = Vk − V‘; (3) if the

collision is accepted, postcollisional velocities are assigned to both particles according
to the scattering rules:

Vk → Vk − �ji(1 + �ij)(gk‘ · �̂k‘)�̂k‘ ; (46)

V‘ → V‘ + �ij(1 + �ij)(gk‘ · �̂k‘)�̂k‘ : (47)

In the case that in one of the collisions !(ij)
k‘ ¿!(ij)

max, the estimate of !(ij)
max is updated

as !(ij)
max = !(ij)

k‘ . The procedure described above is performed for i = 1; 2 and j = 1; 2.
In the course of the simulations, one evaluates the total pressure tensor and the

partial temperatures. They are given as

P =
2∑
i=1

mini
Ni

Ni∑
k=1

VkVk ; (48)

Ti =
mi
3Ni

Ni∑
k=1

V2
k : (49)

To improve the statistics, the results are averaged over a number N of independent
realizations or replicas. In our simulations we have typically taken a total number of
particles N = N1 + N2 = 105, a number of replicas N= 10, and a time step St = 3×
10−3-11=V01(0), where -11 = (

√
2!n1�2

11)
−1 is the mean free path for collisions 1–1.

A complete presentation of the results is complex since there are many param-
eters involved: {�ij; m1=m2; n1=n2; �11=�22}. For the sake of concreteness, henceforth
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Fig. 1. Time evolution of the reduced granular temperature T∗(t) = "2(t)=a2 as obtained from Monte Carlo
simulation of the Boltzmann equation for � = 0:75, �11 = �22, n1=n2 = 1=3, m1=m2 = 4, and starting from
three di6erent initial conditions. Time is measured in units of -11=V01(0).

we will consider the case �11 = �22 = �12 ≡ �. In the steady state, the reduced
quantities T ∗, $i, and P∗ are independent of the initial state for given values of
the restitution coeFcient and the ratios of mass, concentration and sizes. To illus-
trate it, in Fig. 1 we present the time evolution of T ∗(t) for � = 0:75, �11=�22 = 1,
m1=m2 = 4, n1=n2 = 1=3 and three di6erent initial conditions. Time is measured in
units of -11=V01(0). After an initial transient period, all curves converge to the same
steady value, as predicted by the solution described in Section 3. The same qualitative
behavior has been found for the temperature ratio and the elements of the reduced
pressure tensor. Therefore, in the following we will focus on the dependence of the
steady values of the reduced quantities on the restitution coeFcient � and the param-
eters of the mixture, once we have checked that they do not depend on the initial
state.

5. Comparison between theory and Monte Carlo simulations

In this section we compare the predictions of the Sonine approximation with the
results obtained from the DSMC method. Our goal is to explore the dependence of
a∗, $ = T1=T2 and the nonzero elements of P∗ on �, the mass ratio � ≡ m1=m2, the
concentration ratio � ≡ n1=n2, and the ratio of sizes w ≡ �11=�22.

First, we will investigate the dependence of the relevant quantities on � and � for
given values of � and w. Recent molecular dynamics simulations for a dilute mono-
component system of smooth inelastic hard disks [32] have supported an “equation
of state” to a sheared granular system in which the steady (reduced) temperature T ∗

can be closely ;tted by a linear function of (1 − �2)−1. Similar results have been
obtained from kinetic models of the Boltzmann [19] and Enskog [20] equations. An
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Fig. 2. Plot of the reduced granular temperature T∗ = "2=a2 versus the parameter (1 − �2)−1 as obtained
from simulation (symbols) and the Sonine approximation (lines), for w = �11=�22 = 1, � = n1=n2 = 1 and
three di6erent values of the mass ratio �=m1=m2: �= 10 (— and ©); �= 2 (- - - and ), and �= 1 (· · ·
and �).

interesting question is whether this simple relationship can be extended to the case
of multicomponent systems. The results obtained here (both from the simulations and
from the kinetic theory analysis) for mixtures of di6erent masses, concentrations or
sizes show that T ∗ is indeed a quasi linear function of (1 − �2)−1. As an illustrative
example, we consider the case w = 1, � = 1 (equimolar mixture), and three di6erent
values of the mass ratio � = 1, 2, and 10. Fig. 2 shows T ∗ versus (1 − �2)−1 as ob-
tained from the simulations (symbols) and from the Sonine approximation (lines).
It is evident that the kinetic theory has an excellent agreement with the simula-
tion results and also that T ∗ is practically linear in (1 − �2)−1 whatever the mass
ratio considered is. The slope of the straight lines increases as the disparity of masses
increases.

The temperature ratio and the nonzero elements of the pressure tensor are plotted
in Figs. 3 and 4 (a–d), respectively, as a function of the dissipation parameter � for
the same cases as those considered in Fig. 2. The curves corresponding to �¡ 1
can be easily inferred from them. Given the intrinsic connection between the velocity
gradient and dissipation in the simple shear 2ow problem, energy nonequipartition
is expected as the restitution coeFcient decreases (which means here nonequilibrium
steady states). Fig. 3 clearly shows that, except for mechanically equivalent particles,
the partial temperatures are di6erent, even for moderate dissipation (say � 
 0:9). The
e6ect of temperature di6erences is generic of multicomponent dissipative systems and
is consistent with results recently derived in the homogeneous cooling state [10,25] as
well as in driven systems [8,9]. The extent of the equipartition violation depends on
the concentrations and the mechanical di6erences of the particles (e.g., masses, sizes,
restitution coeFcients), and is greater when the di6erences are large. The agreement
between theory and simulation is again excellent. With respect to the pressure tensor,
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Fig. 3. Plot of the temperature ratio $= T1=T2 as a function of the restitution coeFcient � as obtained from
simulation (symbols) and the Sonine approximation (lines). We have considered w=�11=�22=1, �=n1=n2=1
and three di6erent values of the mass ratio �=m1=m2: �= 10 (— and ©); �= 2 (- - - and ), and �= 1
(· · · and �).

Fig. 4. Plot of the reduced elements of the pressure tensor: (a) −P∗
xy = −Pxy=p; (b) P∗

xx = Pxx=p; (c)
P∗
yy = Pyy=p and (d) P∗

zz = Pzz=p versus the restitution coeFcient � as obtained from simulation (symbols)
and the Sonine approximation (lines). We have considered w=�11=�22 =1, �= n1=n2 =1 and three di6erent
values of the mass ratio � = m1=m2: � = 10 (— and ©); � = 2 (- - - and ), and � = 1 (· · · and �).
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Fig. 5. Plot of the temperature ratio $ = T1=T2 as a function of the restitution coeFcient � as obtained
from simulation (symbols) and the Sonine approximation (lines). We have considered w = �11=�22 = 1,
�=m1=m2 = 4 and two di6erent values of the concentration ratio �= n1=n2: �= 1=3 (— and ©), and �= 3
(- - - and ).

Fig. 4 (a–d), we see that the theory captures well the main trends observed for the
rheological properties. At a quantitative level, the agreement is better in the case of
the shear stress P∗

xy and the normal element P∗
xx, while the discrepancies for the normal

stresses P∗
yy and P∗

zz are larger than in the case of the temperature ratio, especially as
the restitution coeFcient decreases. On the other hand, the theory only predicts normal
stress di6erences in the plane of shear 2ow (P∗

xx 
=P∗
yy =P∗

zz) while the simulation also
shows that there is anisotropy in the plane perpendicular to the 2ow velocity, P∗

zz ¿P∗
yy.

This kind of anisotropy has also been observed in molecular dynamics simulations of
shear 2ows [33]. Nevertheless, these relative normal stress di6erences in this plane are
very small and decrease as � increases.

The in2uence of the concentration ratio � on the temperature ratio and the rheologi-
cal properties is shown in Figs. 5 and 6 (a–d), respectively, for w= 1, �= 4, and two
values of �: � = 1=3 and � = 3. We observe again a strong dependence of the tem-
perature ratio $ on dissipation. For a given value of �, the temperature ratio increases
as the molar fraction of the heavy species decreases. Concerning shear stresses, we
see that they are practically independent of the concentration ratio since all the curves
collapse in a common curve. A more signi;cant in2uence is observed for the normal
stresses. In general, the agreement with the theory is good although the discrepancies
are more important in the case of � = 1=3. Finally, the in2uence of the size of the
particles on the rheological properties is illustrated in Fig. 7 (a–d). We consider an
equimolar mixture (�= 1) of particles of equal mass (� = 1) for two di6erent values
of the size ratio: w = 1, and w = 2. We see that similar conclusions to those pre-
viously found in Figs. 3–6 are obtained when one considers mixtures of particles of
di6erent sizes.
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Fig. 6. Plot of the reduced elements of the pressure tensor: (a) −P∗
xy = −Pxy=p; (b) P∗

xx = Pxx=p;
(c) P∗

yy=Pyy=p and (d) P∗
zz=Pzz=p versus the restitution coeFcient � as obtained from simulation (symbols)

and the Sonine approximation (lines). We have considered w=�11=�22 =1, �=m1=m2 =4 and two di6erent
values of the concentration ratio � = n1=n2: � = 1=3 ((—) and ©), and � = 3 (- - - and ).

6. Discussion

In this paper, we have addressed the problem of a low-density granular mixture
constituted by smooth inelastic hard spheres and subjected to a linear shear 2ow ux=ay.
We are interested in the steady state where the e6ect of viscosity is compensated for by
the dissipation in collisions. Our description applies for arbitrary values of the shear
rate a or the inelasticity of the system and no restriction on the values of masses,
concentrations and sizes are imposed in the system. The study has been made by using
two di6erent and complementary routes. On the one hand, the set of coupled Boltzmann
equations are solved by means of a Sonine polynomial approximation and, on the
other hand, Monte Carlo simulations are performed to numerically solve the Boltzmann
equations. Given that the partial temperatures Ti of each species can be di6erent, the
reference Maxwellians in the Sonine expansion are de;ned at the temperature for that
species. This is one of the new features of our expansion. On the other hand, to put this
work in a proper context, it must be noticed that we have restricted our considerations
to states in which the only gradient is the one associated with the shear rate so that
density and velocity 2uctuations are not allowed in the numerical simulation.

We have focused on the analysis of the dependence of the steady (reduced) tem-
perature T ∗ and the (reduced) pressure tensor P∗ on the coeFcients of restitution �ij
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Fig. 7. Plot of the reduced elements of the pressure tensor: (a) −P∗
xy = −Pxy=p, (b) P∗

xx = Pxx=p,
(c) P∗

yy=Pyy=p and (d) P∗
zz=Pzz=p versus the restitution coeFcient � as obtained from simulation (symbols)

and the Sonine approximation (lines). We have considered �=m1=m2 = 1, �= n1=n2 = 1, and two di6erent
values of the size ratio w = �11=�22: w = 2 ((—) and ©), and w = 1 ((- - -) and �).

and the parameters of the mixture, namely the mass ratio �, the concentration ratio
� and the size ratio w. The results clearly indicate that the deviation of the above
quantities from their functional forms for elastic collisions is quite important, even for
moderate dissipation. In particular, the temperature ratio, which measures the distri-
bution of kinetic energy between both species, is di6erent from unity and presents a
complex dependence on the parameters of the problem. This result contrasts with pre-
vious results derived for granular mixtures [4–7] where the equality of the partial
temperatures in the small inelasticity limit was consistently assumed. However, as the
restitution coeFcient decreases, the system goes away from equilibrium and conse-
quently, the energy equipartition does not hold. In the same way as in the homoge-
neous cooling state problem [10,28], the deviations from the energy equipartition can
be weak or strong depending on the mechanical di6erences between the species and
the degree of dissipation. On the other hand, the simulation as well as the theoretical
results also show that the steady total temperature T ∗ can be ;tted by a linear function
of (1 − �2)−1 with independence of the values of the parameters of the mixture. This
extends previous results derived in the context of simple granular gases by using molec-
ular dynamics [32] or Monte Carlo simulations [19,20]. With respect to the rheological
properties, comparison between theory and simulation shows a good quantitative
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agreement, especially for the shear stress P∗
xy, which is the most relevant element

of the pressure tensor in a shearing problem. Although the kinetic theory also predicts
normal stresses, the discrepancies between theory and simulation are larger than those
found for the temperature ratio or the shear stress.

It is illustrative to make some comparison between the predictions made from our
two-temperature theory with those obtained if the di6erences in the partial temperatures
were neglected (T1=T2=T ). For instance, let us consider the mixture �11=�22, n1=n2,
and m1=10m2 with �=0:75. In this case, for the xy and yy elements of the pressure ten-
sor, the simulation results are −P∗

xy=0:498 and P∗
yy=0:723. Our two-temperature theory

predicts −P∗
xy=0:498 and P∗

yy=0:743 while the single-temperature theory (assumption
made in previous works) gives −P∗

xy = 0:456 and P∗
yy = 0:815. Clearly, inclusion of

the two-temperature e6ects improves the theoretical estimations and makes a signi;-
cant (quantitative) di6erence with respect to the predictions of the single-temperature
theory.

As a ;nal comment, let us mention that the study made here can in principle be
extended in both aspects, kinetic theory and simulations, to the revised Enskog equation
in order to assess the in2uence of ;nite density on the rheological properties of the
mixture. Work along this line is in progress.
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Appendix A. Evaluation of the cooling rates

In this appendix the (reduced) cooling rates �∗i are evaluated by using the ;rst Sonine
approximation (25). The cooling rate is given by

�∗i = −2
3
!−1=21i

∑
j

∫
dV∗

1 V
∗2
1 J ∗ij [V

∗
1 |f∗

i ; f
∗
j ] ; (A.1)

where 1i = 1=($i�ji), V∗
1 = V1=v0, J ∗ij = (v20=nin�

2
12)Jij, and f∗

i = (v30=ni)fi. Henceforth,
it will be understood that dimensionless quantities will be used and the asterisks will
be deleted to simplify the notation. A useful identity for an arbitrary function h(V1)
is given by∫

dV1h(V1)Jij[V1|fi; fj] = xj

(
�ij
�12

)2 ∫
dV1

∫
dV2 fi(V1)fj(V2)

×
∫

d�̂�(�̂ · g12)(�̂ · g12)[h(V′′
1 ) − h(V1)] ; (A.2)

with

V′′
1 = V1 − �ji(1 + �ij)(�̂ · g12)�̂ : (A.3)
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This result applies for both i= j and i 
= j. Use of this identity in Eq. (A.1) allows the
angular integrals to be performed. The result is

�i = (1 − �2
ii)

1
12

√
!1ixi

(
�ii
�12

)2 ∫
dV1

∫
dV2 g3

12fi(V1)fi(V2)

+ (1 − �2
ij)

1
3

√
!1i�2

jixj

∫
dV1

∫
dV2 g3

12fi(V1)fj(V2)

+ (1 + �ij)
2
3

√
!1i�jixj

∫
dV1

∫
dV2 g12(g12 ·Gij)fi(V1)fj(V2) ; (A.4)

where Gij = �ijV1 + �jiV2. Now we consider the Sonine approximation (25) for the
distributions fi:

fi(V1) →
(
1i
!

)3=2

e−1iV
2
1

[
1 + 1iCi;k‘

(
V1; kV1; ‘ − 1

3
V 2

1 �k‘

)]
: (A.5)

Neglecting nonlinear terms in the tensor Ci;k‘, the expression (A.4) can be written as

�i = (1 − �2
ii)

1
12
!−5=21−1=2

i xi

(
�ii
�12

)2 ∫
dV1

∫
dV2 g3

12 e−(V 2
1 +V 2

2 )

+ (1 − �2
ij)

1
3
!−5=2(1i1j)3=2�2

jixj1i

∫
dV1

∫
dV2 g3

12 e−(1iV 2
1 +1jV 2

2 ) + (1 + �ij)

×2
3
!−5=2(1i1j)3=2�jixj1i

∫
dV1

∫
dV2 g12(g12 ·Gij) e−(1iV 2

1 +1jV 2
2 ) : (A.6)

Here, use has been made of the fact the scalar �∗i cannot be coupled to the traceless
tensor Ci;k‘ so that the only nonzero contribution to the cooling rate comes from the
Maxwellian term (;rst term of the right-hand side of (A.5)) of the distribution function.
The ;rst integral of Eq. (A.6) is straightforward and can be done with a change of
variables to relative and center of mass variables. The next two integrals are somewhat
more complicated and they can be performed by the change of variables

x = V1 − V2; y = 1iV1 + 1jV2 ; (A.7)

with the Jacobian (1i + 1j)−3. The integrals can be now easily performed and the ;nal
result for �1 is

�1 =
2
3

√
2
(
�11

�12

)2

x11
−1=2
1 (1 − �2

11)

+
4
3
x2�21

(
11 + 12

1112

)1=2

(1 + �12)
[
2 − �21(1 + �12)

11 + 12

12

]
: (A.8)

The result for �2 is obtained from Eq. (A.8) by interchanging 1 and 2.
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Appendix B. Evaluation of the collisional moments

In reduced units, the collisional moments Aijk‘ are given by

Aijk‘ =
miv20
T

!−1=2
∫

dV1V1; kV1; ‘Jij[V1|fi; fj]

=
miv20
T

xj!−1=2
(
�ij
�12

)2 ∫
dV1

∫
dV2fi(V1)fj(V2)

∫
d�̂�(�̂ · g12)

×(�̂ · g12)
(
V ′′

1; kV
′′
1; ‘ − V1; kV1; ‘

)
; (B.1)

where the identity (A.2) has been used. Substitution of (A.3) into Eq. (B.1) allows
the angular integral to be performed with the result

Aijk‘ =−
√
!

2
miv20
T

�jixj

(
�ij
�12

)2

(1 + �ij)
∫

dV1

∫
dV2fi(V1)fj(V2)

×
[
g12(Gij;kg12; ‘ + Gij;‘g12; k) +

�ji
2

(3 − �ij)g12g12; kg12; ‘

− �ji
6

(1 + �ij)g3
12�k‘

]
; (B.2)

where g12; k = V1; k − V2; k and Gij;k = �ijV1; k + �jiV2; k . To perform the integral we use
the Sonine approximation of fi and the change of variables (A.7). When one neglects
again nonlinear terms in the tensor Ci, the collisional moment Aijk‘ becomes

Aijk‘ =−1
2
!−5=2miv

2
0

T
�jixj

(
�ij
�12

)2

(1 + �ij)
(1i1j)3=2

(1i + 1j)3

∫
dx

∫
dy e−(bijx2+dijy2)

×[1 + 1i(1i + 1j)−2Ci : (y + 1jx)(y + 1jx)

+ 1j(1i + 1j)−2Cj : (y − 1ix)(y − 1ix)]

×
[
(1i + 1j)−1x(xky‘ + x‘yk) + -ijxxkx‘ − �ji

6
(1 + �ij)x3�k‘

]
; (B.3)

where

bij = 1i1j(1i + 1j)−1 ; (B.4)

dij = (1i + 1j)−1 ; (B.5)

-ij = 2
�ij1j − �ji1i
1i + 1j

+
�ji
2

(3 − �ij) : (B.6)



J.M. Montanero, V. Garz�o / Physica A 310 (2002) 17–38 37

The corresponding integrals can be now easily performed and, after some algebra, the
;nal result is

Aijk‘ =
2
3
miv20
T

�jixj

(
�ij
�12

)2

(1 + �ij)
(
1i + 1j
1i1j

)3=2

×
{

[ 1
5-ij + 1

2�ji(1 + �ij)]�k‘ − 2
1i1j

(1i + 1j)2

[(
1 + 3

5-ij
1i + 1j
1i

)
$−1
i Pi;k‘

−
(

1 − 3
5-ij

1i + 1j
1j

)
$−1
j Pj;k‘

]}
: (B.7)

From this general expression one can get the collisional moments A11
k‘ , A

12
k‘ , A

22
k‘ , and

A21
k‘ . In particular,

A11
k‘ = F11�k‘ + G11P1; k‘ ; (B.8)

A12
k‘ = F12�k‘ + G12P1; k‘ + H12P2; k‘ ; (B.9)

where

F11 =
4
15

√
2�−1

21 x1

(
�11

�12

)2

1−3=2
1 (1 + �11)(2 + �11) ; (B.10)

G11 = −2
5

√
2x1

(
�11

�12

)2

1−1=2
1 (1 + �11)(3 − �11) ; (B.11)

F12 =
4
3
x2(1 + �12)

(
11 + 12

1112

)3=2

[ 1
5-12 + 1

2�21(1 + �12)] ; (B.12)

G12 = −8
3
x2�21(1 + �12)

(
11

12(11 + 12)

)1=2 (
1 +

3
5
-12

11 + 12

11

)
; (B.13)

H12 =
8
3
x2�12(1 + �12)

(
12

11(11 + 12)

)1=2 (
1 − 3

5
-12

11 + 12

12

)
: (B.14)

The corresponding expressions for F22, G22, F21, G21, and H21 can be easily inferred
from Eqs. (B.10)–(B.14) by just making the changes 1 ↔ 2. From Eqs. (B.8)–(B.14)
and (A.8), it is easy to prove the identity

− $1�1 = F11 + F12 + (G11 + G12)$1 + H12$2 ; (B.15)

which is in fact required by the partial energy conservation equation (22) to support
the solution found for the simple shear 2ow problem. In the case of mechanically
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equivalent particles, the expression of the collisional moments Aijk‘ are

A11
k‘ + A12

k‘ =
4
15

(1 + �)
[
(2 + �)�k‘ − 3

2
(3 − �)Pk‘

]
: (B.16)

When � = 1, Eq. (B.16) reduces to the results derived from the Boltzmann equation
in the ;rst Sonine approximation.
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