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Abstract

The Gross–Krook (GK) kinetic model of the Boltzmann equation for a multicomponent mix-
ture is exactly solved in a steady state with velocity and temperature gradients (Couette (ow).
The hydrodynamic 9elds, heat and momentum (uxes, and the velocity distribution functions are
determined explicitly in terms of the shear rate and the thermal gradient. The description ap-
plies for conditions arbitrarily far from equilibrium and is not restricted to speci9c values of the
mechanical parameters of the mixture. This work completes a previous study (Physica A 289
(2001) 37) based on a formal series representation of the velocity distribution function. c© 2002
Elsevier Science B.V. All rights reserved.

PACS: 51.10.+y; 05.20.Dd; 05.60.+w; 47.50.+d
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1. Introduction

Exact solutions in kinetic theory for spatially inhomogeneous states are exceedingly
rare, see for instance, Ref. [1]. The diBculties increase considerably in the case of
multicomponent systems since not only is the number of transport coeBcients higher
than for a single gas, but also new parameters (such as the mass ratios, molar frac-
tions and size ratios) must be taken into account. This complexity leads us to con-
sider tractable situations for which a complete description can be given. In the context
of the low-density multicomponent mixtures, and to the best of our knowledge, the
only two exact solutions to the Boltzmann equation correspond to the so-called color
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conductivity problem [2] and the uniform shear (ow state [3]. These solutions apply to
far from equilibrium conditions and have only two limitations: 9rst, they are restricted
to Maxwell molecules (r−5 intermolecular force), and second, they do not provide
the explicit expression of the velocity distribution functions. These limitations can be
overcome analytically by using convenient model kinetic equations [4,5]. In general,
the predictions of these models present a quite good agreement with those found in the
Boltzmann equation, even when the strength of the gradients are not small. This fact
indicates again the reliability of the kinetic models in computing nonlinear transport
properties in a multicomponent mixture.
A much more complicated nonequilibrium problem is the steady Couette planar (ow.

It corresponds to a (uid mixture between parallel plates in relative motion and kept,
in general, at diGerent temperatures. These boundary conditions lead to combined heat
and momentum transport and the hydrodynamic balance equations become

@
@y

Pxy =
@
@y

Pyy = 0 ; (1)

@
@y

qy =−Pxy
@
@y

ux ; (2)

where P is the pressure tensor, q is the heat (ux, u is the (ow velocity, the x-axis
is parallel to the direction of motion while the y-axis is orthogonal to the plates. In
the above equations we have assumed that there is no diGusion in the mixture and
the gradients are only directed along the y-axis. The balance Eqs. (1) and (2) do not
constitute a closed set. Nevertheless, when the strength of the gradients is weak, the
(uxes are well described by the Navier–Stokes (NS) relations, i.e., [6]

Pxx = Pyy = Pzz = p; Pxy =−�NS
@ux

@y
; (3)

qx = 0; qy =−�NS
@T
@y

; (4)

where p is the hydrostatic pressure, and �NS and �NS are the NS shear viscosity and
thermal conductivity, respectively.
On the other hand, when the hydrodynamic gradients are not small, the NS con-

stitutive equations are not expected to hold and the transport must be described by
nonlinear equations. In order to characterize the deviations from the NS relations, it
is usual to introduce generalized transport coeBcients, namely, a generalized shear
viscosity �, the viscometric functions �1;2 (measuring normal stress diGerences), the
generalized thermal conductivity �, and a coeBcient � measuring cross eGects. These
nonlinear transport coeBcients are de9ned as

Pxy =−�
@ux

@y
; (5)

Pyy − Pxx = �1

(
@ux

@y

)2

; (6)

Pzz − Pyy = �2

(
@ux

@y

)2

; (7)
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qy =−�
@T
@y

; (8)

qx =−�
@T
@y

: (9)

In general, these coeBcients are nonlinear functions of the velocity and temperature
gradients as well as of the mechanical parameters of the mixture. When the gradients
are small, the NS equations are recovered, i.e., � → �NS ; �1 → 0; �2 → 0; � → �NS ,
and � → 0.
Recently, the above generalized coeBcients have been evaluated from the Gross–

Krook (GK) kinetic model of the Boltzmann equation for Maxwell molecules [7].
Explicit expressions for the heat and momentum (uxes were obtained [8] from prop-
erties of a formal series representation of the velocity distribution functions, although
the distribution functions themselves were not explicitly constructed. The objective
here is to remove this formal element of Ref. [8] by giving explicitly the exact dis-
tribution functions and determining from them the generalized transport coeBcients.
In addition, given that the results derived in Ref. [8] were restricted to Maxwell
molecules, we will also consider a generalization of the GK model [9] for a binary
mixture where the eGective collision frequencies depend on the partial temperatures
of each species. This allows for the consideration of general repulsive intermolecular
forces.
The paper is organized as follows. In Section 2, we introduce the GK model for

an N -component mixture and the steady Couette (ow is brie(y described. Based on
the formal solution obtained previously [8], we propose a solution characterized by
constant pressure and linear velocity and parabolic temperature pro9les with respect to
a scaled variable. To con9rm that this self-consistent ansatz for the hydrodynamic 9elds
is correct, an exact solution to the GK model for this state is explicitly constructed
in Section 3. This exact (normal) solution is obtained by exploiting the symmetry
of the problem to guess the appropriate hydrodynamic 9elds. Then, we compute the
generalized transport coeBcients de9ned through Eqs. (5)–(9) from the explicit form of
the generating function of the velocity distribution functions. Only the main results are
quoted in this section since the details of the calculations are provided in Appendices
A and B. The results obtained here for the hydrodynamic 9elds and the transport
coeBcients agree with and justify those of the previous formal analysis [8]. The simple
case of a binary mixture is considered in Section 4 where the dependence of the
transport coeBcients and the distribution functions on the shear rate and the thermal
gradient is illustrated for diGerent values of the parameters of the mixture. Finally, the
results are summarized and discussed in Section 5.

2. The kinetic model and the problem

The physical system considered is an N -component mixture in the low-density regime
in steady Couette (ow. The mixture of gases is enclosed between two parallel plates at
y=±L in relative motion along the x-axis and kept, in general, at diGerent temperatures.
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The resulting (ow velocity is along the x-axis and, from symmetry, it is expected
that the hydrodynamic 9elds vary only in the y direction. Since the molar fraction
of species are constant (absence of mutual diGusion), the transport of momentum and
energy are the relevant transport phenomena occurring in the system. Our goal is to
provide an exact description of such state in terms of the imposed gradients and the
mechanical parameters of the mixture (masses, concentrations, and sizes).
An appropriate theoretical description can be oGered by means of the set of N

coupled Boltzmann equations [10] for the distribution of velocities at each position
fi(y; v) (i = 1; : : : ; N ). However, the intricacy of the Boltzmann collision operators
hinders an exact analysis of the nonlinear Couette (ow problem, even for a single
gas. This prompts the use of a kinetic model which preserves the most important
qualitative features of macroscopic transport. Speci9cally, we consider a generalization
of the well-known Gross–Krook (GK) model [7] (proposed for Maxwell molecules) to
repulsive intermolecular forces of the form Fij=�ijr−‘ r̂ (‘=5; : : : ;∞). In the geometry
of the Couette (ow, the GK model reads

vy
@
@y

fi =−�ii(fi − fii)−
∑
j �=i

�ij(fi − fij) ; (10)

where the reference distribution functions fij are given by

fij = ni

(
mi

2�kBTij

)3=2

exp
[
− mi

2kBTij
(v − uij)2

]
; (11)

with

uij =
miui + mjuj

mi + mj
; (12)

Tij = Ti + 2
mimj

(mi + mj)2

[
(Tj − Ti) +

mi

6kB
(ui − uj)2

]
: (13)

The in(uence of the interaction law enters through the eGective collision frequencies
�ij characterizing collisions between particles of species i with particles of species j:

�ij = A(")nj

(
�ij

mi + mj

mimj

)(1−")=2 (2kBTi

mi
+

2kBTj

mj

)"=2

; (14)

"=(‘−5)=(‘−1) and A(") is a (tabulated) constant for a given interparticle potential
[11]. This dependence of the eGective collision frequencies on the temperature of each
species is the key diGerence between our generalized GK-type model and the familiar
GK model for Maxwell molecules. The quantities uij ; Tij, and �ij are determined by
imposing that the total momentum and energy are conserved and that the 9rst 9ve
collisional moments as computed with the right-hand side of Eq. (10) be the same as
those computed with the exact Boltzmann collision integrals. In the above equations, we
have introduced the local number density ni, mean velocity ui, and partial temperature
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Ti of species i de9ned as

{ni; niui ; 3nikBTi}=
∫

dv{1; v; mi(v − ui)2}fi : (15)

From these partial quantities, one can de9ne the total number density n =
∑

i ni, the
(ow velocity

u =
∑

i miniui∑
i mini

; (16)

and the temperature T of the mixture (which is the relevant one at a hydrodynamic
level)

nkBT =
N∑

i=1

[
nikBTi +

1
3

mini(ui − u)2
]

: (17)

Apart from the densities of conserved quantities, one can de9ne the pressure tensor
(related to the transport of momentum)

P =
N∑

i=1

Pi =
N∑

i=1

∫
dvmiVVfi ; (18)

and the heat (ux (related to the transport of energy)

q =
N∑

i=1

qi =
N∑

i=1

∫
dvmiV 2Vfi : (19)

Here, V = v − u is the peculiar velocity.
Although simple in structure, the set of Eqs. (10) are highly nonlinear due to the

coupling between fij and the hydrodynamic 9elds and, in general, it is necessary
to employ numerical methods. However, here the simplicity of steady Couette (ow
suggests that it may be possible to guess the form of ni; ui, and Ti. With these known,
the GK model (10) becomes a linear problem whose solution is easy. This was the
procedure followed in Ref. [8]. Here, we will also follow the same route although
we will verify the consistency of the guess from an exact solution of the GK model
instead of an asymptotic expansion. As in Ref. [8], we look for a normal solution,
i.e., one for which the dependence of fi(y; v) on y occurs only through ni; u, and T .
Therefore, it seems physically reasonably that the steady Couette (ow for the mixture
is characterized by (a) constant molar fractions xi = ni=n, (b) the absence of mutual
diGusion, i.e., ui = u, and (c) constant temperature ratios $i ≡ Ti=T . In addition, we
assume that the partial pressure pi = nikBTi is uniform and the velocity ui;x = ux and
the partial temperature Ti have the forms:

1
�i(y)

@
@y

ui;x = ai = const: ; (20)

[
1

�i(y)
@
@y

]2
Ti =−2mi

kB
&i(ai) = const: ; (21)
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where

�i =
N∑

j=1

�ij = �ii +
∑
j �=i

�ij (22)

is the total collision frequency for a particle of species i. The conditions ui = u and
$i = const: imply, respectively, that

�iai = �jaj ; (23)

mi&i�2i
$i

=
mj&j�2j

$j
; (24)

where use has been made of the fact that the ratios �i=�j are constant. According to
Eqs. (23) and (24), only one of the shear rates ai and only one of the parameters
&i (i=1; : : : ; N ) is independent. The temperature ratios $i depend on the shear rate and
the parameters of the mixture. Obviously, $i =1 if (i) the mixture is at equilibrium or
(ii) the particles are mechanically equivalent (mi = m and �ij = �).
In the next section the above hydrodynamic pro9les are con9rmed by an exact solu-

tion to the GK kinetic equation. In addition, this solution provides explicit expressions
for the generalized transport coeBcients �; �1;2; �, and � as functions of the strength
of the gradients and the parameters of the mixture.

3. Exact solution and transport coe�cients

In order to solve the GK equations (10) it is convenient to reduce all the hydrody-
namic 9elds with respect to a common collision frequency independent of the species
considered. Since our description applies for arbitrary values of the mechanical param-
eters of the mixture, we choose for simplicity the collision frequency

� =
1

N (N − 1)

N∑
i=1

∑
j �=i

n
nj

�ij ; (25)

and introduce a space scaled variable s de9ned by ds = �(y) dy. Thus, the parameter

a =
@ux

@s
= const: (26)

is the dimensionless shear rate and is the relevant nonequilibrium parameter of the
problem. Obviously, ai = (�=�i)a and

@2

@s2
T =−2mi

kB

�2i &i

�2$i
= const: (27)

In terms of the variable s, the GK model becomes(
1 + vy

�
�i

@
@s

)
fi =

N∑
j=1

�ij

�i
fij : (28)
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The general solution to Eq. (28) is

fi(s; v) = fi;B(s; v) +
N∑

j=1

�ij

�

∫ ∞

0
dt e−�it=� e−tvy@sfij(s; v) : (29)

The 9rst term of the right-hand side of (29), fi;B, is a solution to the homogeneous
kinetic equation obtained from (28) by setting fij → 0. The detailed form of this
contribution is determined by the chosen boundary conditions. The physical bound-
ary conditions are speci9ed in terms of the half distributions for velocities directed
away from the walls at y = ±L, given explicitly or implicitly through the distribu-
tions for velocities directed at the walls. One possibility in the Couette (ow prob-
lem is to use diGuse boundary conditions in which the distributions for velocities
away from the walls are given by Maxwellians parametrized by the temperatures T±
and velocities U± of the walls at y = ±L. The distribution fi;B is responsible for
the “boundary layers” eGects near the wall while, the second term in the right-hand
side of (29) corresponds to a normal solution where all its dependence on s appears
only through the hydrodynamic 9elds. Here, we want to get rid of boundary eGects
and consider idealized boundary conditions to eliminate boundary layers. In the same
way as in the simple gas problem [12], these idealized conditions correspond to the
limit T± → 0, i.e., very cold walls. In this case it is easy to show that fi;B → 0.
Thus, henceforth, we will only consider the second term in the right-hand side of
Eq. (29).
It still remains to prove that the distribution (29) with this idealized boundary con-

dition admits an exact solution for the steady Couette (ow characterized by a constant
partial pressure and by the pro9les (20) and (21) (or (26) and (27)). The consistency
conditions are∫

dv{1;V; V 2}fi =
{

ni; 0; 3
pi

mi

}
: (30)

These conditions are veri9ed in Appendix A con9rming that the distribution function
(29) is an exact solution of the GK model in the steady Couette (ow. The veri9cation
of the consistency of the solution provides the functional dependence of &i on the
parameters of the problem. The details of the analysis are given in Appendix A, leading
to the following implicit equation:

1 =
4

3
√

�

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t[1 + (1 + a2i t

2)u2](1 + 2&ijw2)−1 ;

(31)

where w = ut. In addition, &ij = $ij&i, with

$ij =
Tij

Ti
= 1 + 2

mimj

(mi + mj)2

(
$j

$i
− 1

)
: (32)
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The solution to the set of N coupled equations (31) must be subjected to the constraints
(24) and

N∑
i=1

xi$i = 1 : (33)

Therefore, we have N -independent equations (31) for a set of N unknowns, say
for instance {&1; $1; : : : ; $N−1}. The solution of these implicit equations provides the
dependence of the curvature parameters &i and the temperature ratios $i on the shear
rate and the mechanical parameters of the mixture.
The explicit expressions of the pressure tensor and the heat (ux are also given

in Appendix A. From them one can identify the generalized transport coeBcients
�(a); �1(a); �2(a); �(a), and �(a) de9ned in Eqs. (5)–(9), respectively. The non-
linear shear viscosity coeBcient is

�(a) =
4√
�

nkBT
N∑

i=1

xi$i

�2i

N∑
j=1

�ij$ij

∫ ∞

0
du e−u2u2

∫ ∞

0
dt e−t t(1 + 2&ijw2)−1 :

(34)

The viscometric functions characterizing normal stresses are

�1(a) =− 2√
�

nkBT
�2a2

N∑
i=1

xi$i

�i

N∑
j=1

�ij$ij

∫ ∞

0
du e−u2

×
∫ ∞

0
dt e−t[1− 2(1− a2i t

2)u2](1 + 2&ijw2)−1 ; (35)

�2(a) =
2√
�

nkBT
�2a2

N∑
i=1

xi$i

�i

N∑
j=1

�ij$ij

∫ ∞

0
du e−u2 (1− 2u2)

×
∫ ∞

0
dt e−t(1 + 2&ijw2)−1 : (36)

The generalized thermal conductivity coeBcient �(a) is

�(a) =
4√
�

nk2BT
N∑

i=1

xi$2i
mi�2i

N∑
j=1

�ij$2ij

∫ ∞

0
du e−u2u

×
∫ ∞

0
dt e−tw[1 + (1 + a2i t

2)u2](1 + 2&ijw2)−2 : (37)

Finally, the expression for the cross coeBcient �(a) in the heat (ux is

�(a) =− 4√
�

nk2BT�a
N∑

i=1

xi$2i
mi�3i

N∑
j=1

�ij$2ij

∫ ∞

0
du e−u2u

×
∫ ∞

0
dt e−twt[2 + (1 + a2i t

2)u2](1 + 2&ijw2)−2 : (38)
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An interesting and simple case corresponds to the limit of mechanically equivalent
particles. In this case, mi = m; �ij = �; � ˙ nT"=2; &i = &, and $i = 1, so that the GK
model reduces to the well-known Bathnagar–Gross–Krook (BGK) model for a single
gas. Thus, Eqs. (34)–(38) reduce, respectively, to

�(a) =
4√
�

nkBT
�

∫ ∞

0
du e−u2u2

∫ ∞

0
dt e−t t(1 + 2&w2)−1 ; (39)

�1(a) =− 2√
�

nkBT
�2a2

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t[1− 2(1− a2t2)u2](1 + 2&w2)−1 ;

(40)

�2(a) =
2√
�

nkBT
�2a2

∫ ∞

0
du e−u2 (1− 2u2)

∫ ∞

0
dt e−t(1 + 2&w2)−1 ; (41)

�(a) =
4√
�

nk2BT
m�

∫ ∞

0
du e−u2u

∫ ∞

0
dt e−tw[1 + (1 + a2t2)u2](1 + 2&w2)−2 ;

(42)

�(a) =− 4√
�

nk2BT
m�

a
∫ ∞

0
du e−u2u

∫ ∞

0
dt e−twt[2 + (1 + a2t2)u2](1 + 2&w2)−2 :

(43)

These expressions coincide with those previously derived from an exact solution of the
BGK model [12].
Apart from evaluating the transport properties, the use of the GK model allows one

to explicitly get the velocity distribution functions fi. These quantities provide all the
complete information on the nonequilibrium state of the mixture. Taking into account
the hydrodynamic (bulk) pro9les (26) and (27), the distributions fi can be written as
(see the details in Appendix B)

fi(s;V) =
N∑

j=1

�ij

�
�ij(s;V) ; (44)

where

�ij(s;V) =fLE
i (s;V) e,2i ($i$ij)−3=2 2-(1 + -)3=2

.i|,i;y|
∫ w1

w0

dw[2w − (1− -)w2]−5=2

×exp
[
− 2-
1 + -

�i

�
1− w
.i,i;y

]
exp

{
− 1 + -

2w − (1− -)w2 ($i$ij)−1

×
[(

,i;x +
2a-
1 + -

1− w
.i

)2

+ ,2i;y + ,2i; z

] }
: (45)
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Here, (w0; w1)= (0; 1) if ,i;y ¿ 0 and (w0; w1)= [1; 2=(1− -)] if ,i;y ¡ 0. Furthermore,
^i = (mi=2kBT )1=2V,

fLE
i = ni

(
mi

2�kBT

)3=2

exp
(
− mi

2kBT
V 2

)
; (46)

is a local equilibrium distribution function of species i,

.i =

√
2kB

miT
@T
@s

; (47)

is a reduced thermal gradient and

- =
.i√

.2i + 8�i
; (48)

with �i = �2i &i=�2$i.
In summary, the velocity distribution functions, hydrodynamic 9elds, and generalized

transport coeBcients for the steady Couette (ow have been determined exactly in
terms of the shear rate a, the thermal gradients .i, and the mechanical parameters
characterizing the mixture. The 9nal results are still given implicitly, but the problem
has been reduced to quadratures. A numerical evaluation of these expressions will be
done in the next section for the simple case of a binary mixture. Finally, let us mention
that in Appendix C we show that all the above results are equivalent to those previously
obtained by using a formal series representation [8]. This proves the consistency of
our results.

4. A binary mixture

In this section we will numerically evaluate the expressions (31), (34)–(38), and
(45) in the simple case of a binary mixture (N = 2). In this case, the (independent)
parameters of the system are the mass ratio 1 ≡ m1=m2, the molar fraction x1, the size
ratios !11 ≡ �11=�12 and !22 ≡ �22=�21, and the interaction parameter ". First, we are
interested in analyzing the shear-rate dependence of the temperature ratio T1=T2 and
the transport coeBcients �; �1;2; �, and � for several values of the parameters of the
mixture. For the sake of concreteness, we will consider the case x1=5=6; !11=!22=1,
and two diGerent values of the mass ratio: 1 = 0:1 and 1 = 10. We also consider the
two extreme cases of Maxwell molecules (" = 0) and hard spheres (" = 1).
At a kinetic level, an interesting quantity is the temperature ratio. It measures the

lack of equidistribution of the total energy between both species. In Fig. 1 we plot
T1=T2 as a function of the shear rate. We see how the traditional equipartition theorem
fails in far from equilibrium situations. The deviations from the energy equipartition
can be weak or strong depending on the strength of the shear rate as well as on the
mechanical diGerences between the species. Thus, for 9nite shear rates, T1 �=T2 even
for not very disparate masses. This justi9es the use of the so-called two-temperature
theory [13]. With respect to the in(uence of the interaction potential, we see that the
temperature ratio is practically independent of the scattering law considered.
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1
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µ = 0.1

µ = 10

T
1 /

 T
2

a2

Fig. 1. Shear-rate dependence of the temperature ratio T1=T2 for w11 =w22 = 1; x1 = 5=6, and two values of
the mass ratio 1: 1 = 10, and 1 = 0:1. The solid lines correspond to Maxwell molecules (" = 0) while the
dashed lines refer to hard spheres (" = 1).

Once the temperature ratio has been computed, one can study the shear-rate depen-
dence of the generalized transport coeBcients. Perhaps, the most important quantity in
a sheared (ow problem is the generalized shear viscosity �(a). In Fig. 2 we plot the
reduced shear viscosity �(a)=�(0) where

�(0) = nkBT
2∑

i=1

xi

�i
(49)

is the Navier–Stokes shear viscosity coeBcient. We observe that �(a) decreases as a
increases (shear thinning) whatever the interaction potential considered is. Concern-
ing the dependence on the mass ratio we see that, at a given value of the shear
rate, the generalized shear viscosity increases as the mass ratio m1=m2 decreases when
n1=n2 ¿ 1. In addition, for a given value of a; � increases (decreases) as the po-
tential becomes harder when the excess component is heavier (lighter) than the de-
fect component. In Figs. 3–6 we plot the remaining reduced transport coeBcients
�1(a)=�1(0); �2(a)=�2(0); �(a)=�(0), and �(a)=�(0), respectively. Here,

�1(0) =−2
nkBT
�2

2∑
i=1

xi

�i

2∑
j=1

�ij

(
�2

�2i
+ 2&(0)ij

)
; (50)

�2(0) = 4
nkBT
�2

2∑
i=1

xi

�i

2∑
j=1

�ij&
(0)
ij ; (51)

�(0) =
5
2

nk2BT
2∑

i=1

xi

mi�i
; (52)
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Fig. 2. Shear-rate dependence of the reduced shear viscosity �(a)=�(0) for w11 =w22 = 1; x1 = 5=6, and two
values of the mass ratio 1: 1 = 10, and 1 = 0:1. The solid lines correspond to Maxwell molecules (" = 0)
while the dashed lines refer to hard spheres (" = 1).
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Fig. 3. Shear-rate dependence of the reduced 9rst viscometric function �1(a)=�1(0) for w11 = w22 = 1;
x1 = 5=6, and two values of the mass ratio 1: 1 = 10, and 1 = 0:1. The solid lines correspond to Maxwell
molecules (" = 0) while the dashed lines refer to hard spheres (" = 1).
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Fig. 4. Shear-rate dependence of the reduced second viscometric function �2(a)=�2(0) for w11 = w22 = 1;
x1 = 5=6, and two values of the mass ratio 1: 1 = 10, and 1 = 0:1. The solid lines correspond to Maxwell
molecules (" = 0) while the dashed lines refer to hard spheres (" = 1).
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Fig. 5. Shear-rate dependence of the reduced thermal conductivity �(a)=�(0) for w11 = w22 = 1; x1 = 5=6,
and two values of the mass ratio 1: 1 = 10, and 1 = 0:1. The solid lines correspond to Maxwell molecules
(" = 0) while the dashed lines refer to hard spheres (" = 1).



328 C. Mar� n, V. Garz�o / Physica A 312 (2002) 315–341

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ = 0.1

µ = 10

 
( a

) 
/ Φ

Φ
(0

)

a2

Fig. 6. Shear-rate dependence of the reduced cross coeBcient �(a)=�(0) for w11 = w22 = 1; x1 = 5=6, and
two values of the mass ratio 1: 1=10, and 1=0:1. The solid lines correspond to Maxwell molecules ("=0)
while the dashed lines refer to hard spheres (" = 1).

�(0) =−7nk2BTa�
2∑

i=1

xi

mi�2i
; (53)

with

&(0)11 = &(0)12 =
1
5

(
�
�1

)2 �1�12 + �2�21
1�1�12 + �2�21

; (54)

and &(0)22 = &(0)21 = (�21=�
2
2)1&(0)11 . In general, we observe that the dependence of these

reduced coeBcients on the shear rate is very similar to the one found for the shear
viscosity, namely, the corresponding transport property decreases as a increases.
Since the velocity distribution function depends on the three components of ^i, it is

useful to de9ne the marginal distribution

R1;y(,1;y) =

∫∞
−∞

∫∞
−∞ d,1; xd,1; z f1∫∞

−∞
∫∞
−∞ d,1; xd,1; zfLE

1

: (55)

Figs. 7 and 8 show the shape of this distribution when the (reduced) shear rate a = 1
and the (reduced) thermal gradient .1 =1. Further, w11 =w2 =1; x1 =5=6; 1=0:1, and
1 = 10 in the cases of Maxwell molecules and hard spheres. In general, the distortion
from local equilibrium (R1;y =1) is quite important for the two mass ratios considered.
We also observe that the qualitative diGerences between Maxwell molecules and hard
spheres are more signi9cant when the mass of the defect particles is smaller than that
of the excess component, especially in the high-velocity region.
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Fig. 7. Marginal distribution R1;y(,1;y) versus ,1;y for a = 1 and .1 = 1. The parameters characterizing the
mixture are w11 = w22 = 1; x1 = 5=6, and 1 = 0:1. The solid line refers to Maxwell molecules while the
dotted line refers to hard spheres.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
1,

y

ξ 1,y

Fig. 8. Marginal distribution R1;y(,1;y) versus ,1;y for a = 1 and .1 = 1. The parameters characterizing the
mixture are w11 =w22 =1; x1 =5=6, and 1=10. The solid line refers to Maxwell molecules while the dotted
line refers to hard spheres.
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5. Discussion

An exact solution of the GK kinetic model of the Boltzmann equation for a multi-
component mixture with repulsive intermolecular forces describing combined heat and
momentum transport has been obtained. This nonequilibrium state is usually referred
to as the steady Couette (ow. The macroscopic state is characterized by constant
partial pressures, no diGusion, and linear velocity and parabolic temperature pro9les
with respect to a given scaled variable (distance times the local collision frequency).
Consequently, there are two parameters measuring the departure of the mixture from
equilibrium: the shear rate and the thermal gradient. The main motivation of our work
has been to get the transport properties and the velocity distribution functions for
arbitrary values of the velocity and temperature gradients. In addition, no restriction to
speci9c values of the parameters of the mixture (mass ratios, concentration ratios, and
size ratios) is considered in our solution. This makes the analysis of this nonequilib-
rium problem more complicated than others, say for instance the case of uniform shear
(ow [3]. Progress has been possible here due to a previous analysis [8] based on a
formal series solution of the GK model.
In Section 2, speci9c forms for the hydrodynamic 9elds have been postulated to

hold for Couette (ow. Then, in Section 3 an exact solution to the GK model kinetic
equation has been constructed and the assumed forms for the densities, velocity and
temperature have been consistently obtained from the corresponding distribution func-
tions. In particular, the parameters &i (which measure the curvature of the parabolic
temperature pro9les) and the temperature ratios $i have been determined from the nu-
merical solution of a set of N trascendent equations, Eqs. (31). Since we are interested
in describing transport properties in the bulk of the system, we have considered ide-
alized boundary conditions such that boundary layer complications are avoided and
simple pro9les are possible in the appropriate variables.
Once the temperature ratios are determined, the generalized transport coeBcients

�; �1; �2; �, and � are explicitly obtained. Their expressions are given by Eqs. (34),
(35), (36), (37), and (38), respectively. In general, these coeBcients present a very
complex dependence on the gradients as well as on the parameters of the mixture. The
in(uence of the interaction potential considered appears through the eGective collision
frequencies �ij, which depend on the temperature of each species. Apart from the
transport properties, one of the main motivations of this paper has been to get the
explicit form of the distribution functions fi. Their expressions are given by Eqs. (44)
and (45). Such distributions can be considered as normal solutions since all space
dependence occurs entirely through the hydrodynamic 9elds.
To illustrate the dependence of the transport coeBcients and the distributions on

the parameters of the problem, the special case of a binary mixture is considered
in Section 4. In general, we observe that the magnitude of the generalized transport
coeBcients decreases as the shear rate increases so that the main eGect of the shear (ow
is to inhibit the transport of momentum and energy across the system. This inhibition
is more signi9cant when the defect component is lighter than the excess component,
with independence of the model interaction considered. Concerning the in(uence of
the interaction potential, the results for the main transport properties show that, by
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a convenient scaling of the physical quantities, the reduced transport coeBcients are
rather insensitive to the choice of the interaction law. This in(uence is more signi9cant
as the mechanical diGerences between the two species and=or the strengths of gradients
increase. With respect to the distribution functions, we observe that they are strongly
distorted from their equilibrium values. This fact could be anticipated on the basis of
the highly nonlinear dependence of the transport coeBcients on the shear rate and the
parameters of the mixture.
As a 9nal comment, it is apparent that the results found here can also be of rel-

evance in connection with computer simulations. As we have indicated in previous
works, in the context of the Boltzmann equation, the so-called direct simulation Monte
Carlo method [14] is an eBcient tool to analyze nonlinear transport properties in a
low-density (uid. We hope that this paper may stimulate the performance of Monte
Carlo simulations to test the accuracy of the GK predictions. In the case of a single
gas, recent computer simulations [15] have shown the reliability of the BGK kinetic
model to study nonlinear transport in the Couette (ow state.
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Appendix A. Consistency conditions and the 'uxes

A.1. Generating function

The veri9cation of the consistency conditions (30) requires the explicit form of the
velocity distribution function fi in terms of the hydrodynamic 9elds. To do this, it is
convenient to refer the velocities of the particles to a local Lagrangian frame V=v−u,
so that fi with the idealized boundary conditions is given by

fi(s;V) =
N∑

j=1

�ij

�

∫ ∞

0
dt e−�it=� e−tVy@s eatVy@Vx fij(s;V) : (A.1)

In this equation, the derivative @s is taken at constant V and the distribution fij is

fij(s;V) = 5(T (s))
2pij

mi
�−3=2v−5

0; ij(s) exp[− (V=v0; ij(s))2] : (A.2)

Here, pij = nikBTij ≡ const:; v20; ij = 2kBTij(s)=mi is the thermal velocity corresponding
to the “temperature” Tij and 5 is the Heaviside function. In terms of the variable s,
the temperature pro9le becomes simply

T (s) = T0 − mi

kB
�i(a)s2 =

mi�i

kB
(s20 − s2) ; (A.3)
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where �i =�2i &i=�2$i and s0 ≡ (kBT0=mi�i)1=2. Notice that, according to Eq. (24), mi�i =
mj�j. Since the ratio Tij=T is uniform, the dependence of Tij on the scaled space
variable s can be written as

Tij(s) =
mi�ij

kB
(s20 − s2) ; (A.4)

where �ij = (�2i =�
2)&ij, with &ij = $ij&i.

The velocity integrals for the consistency conditions and for the (uxes are the
low-order moments of the distribution fi. They can be obtained from appropriate deriva-
tives of its corresponding generating function

Gi(s; k) =
∫

dV eik·Vfi(s;V)

=
N∑

j=1

�ij

�

∫ ∞

0
dt e−�it=�

∫
dV eik·V e−tVy@s eatVy@Vx fij(s;V)

≡
N∑

j=1

�ij

�
Gij(s; k) ; (A.5)

where the corresponding generating function Gij can be easily identi9ed from Eq. (A.5).
Our goal now is to get the explicit expression of Gij(s; k). This function is given by

Gij(s;V) =
∫ ∞

0
dt e−�it=�

∫
dV eik′(t)·V e−tVy@sfij(s;V) ; (A.6)

where

k′(t) = e−atkx@kyk ; (A.7)

and in the last step we have made use of the identity∫
dVF1(V) eatVy@Vx F2(V) =

∫
dVF2(V) e−atVy@Vx F1(V) : (A.8)

Integration over V⊥ ≡ V − Vyŷ leads to

Gij(s; k) = G(+)
ij (s; k) + G(−)

ij (s; k) ; (A.9)

where

G(±)
ij (s; k) =

∫ ∞

0
dt e−�it=�

∫ ∞

0
dVy e±ik′y(t)Vy e∓tVy@s e−V 2

y =v20; ij(s)Fij(s; k′
⊥) ; (A.10)

with

Fij(s; k′
⊥) = 5(T (s))

2pij

mi
�−1=2v−3

0; ij(s) exp
[
−1
4

k
′2
⊥ (t)v20; ij(s)

]
: (A.11)

We will focus on our attention in the calculation of G(+)
ij since G(+)

ij (s; k)=

G(−)
ij (−s;−k).



C. Mar� n, V. Garz�o / Physica A 312 (2002) 315–341 333

Next, we consider the change of variables in the t integration, z=Vyt, and take into
account the action of the shift operator

e−z@sf(s) = f(s − z) : (A.12)

The function G(+)
ij becomes

G(+)
ij (s; k) =

∫ ∞

0
dz

∫ ∞

0
dVyV−1

y e−�iz=�Vy

×exp

[
ik ′y(t)Vy − V 2

y

v20; ij(s − z)

]
Fij(s − z; k′

⊥(t))

=
∫ ∞

0
dz

∫ ∞

0
du u−1 e−u2

×exp
[
− �iz

�uv0; ij(s − z)
+ ik ′y(t)uv0; ij(s − z)

]
Fij(s − z; k′

⊥(t))

(A.13)

where a change of variables in the Vy integral has been made, Vy → uv0; ij(s − z). In
this way, the variable t becomes: t → z=uv0; ij(s − z). Next, for the z integral change
variables to w = z=v0; ij(s − z). As a consequence, z as a function of w is z = z+(s; w),
where z+(s; w) is the positive root of the quadratic equation

(1 + 2�ijw2)z2 − 4w2�ijsz − w2v20; ij(s) = 0 ; (A.14)

where use has been made of the relationship

v20; ij(s − z)

v20; ij(s)
= 1 +

2sz − z2

s20 − s2
= 1 +

2�ij

v20; ij(s)
(2sz − z2) : (A.15)

It can be shown that
dw
dz

= v−1
0; ij(s − z)− zv−2

0; ij(s − z)
d
dz

v0; ij(s − z)

= v−1
0; ij(s − z)− zv20; ij(s)v

−3
0; ij(s − z)

s − z
s20 − s2

=
(

w
z+

)3

v20; ij(s)
(
1 +

sz+
s20 − s2

)

=
(

w
z+

)3

v20; ij(s)
[
1− z+

2
@s ln Tij(s)

]
: (A.16)

Thus, the generating function G(+)
ij can be written as

G(+)
ij (s; k) =

2pij

miv20; ij(s)�1=2

∫ ∞

0
du u−1 e−u2

∫ ∞

0
dw e−�iw=�u

×exp
[
ik ′y(t)

uz+
w

− 1
4

k
′2
⊥ (t)

z2+
w2

] [
1− z+

2
@s ln Tij(s)

]−1
: (A.17)
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Finally, change variables in the w integration to t → w=u leads to the explicit result

G(+)
ij (s; k) =

pij

�1=2kBTij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−�it=�A(+)

ij (s; k; u; t) ; (A.18)

where

A(+)
ij (s; k; u; t) =

[
1− z+(s; w)

2
@s ln Tij(s)

]−1

×exp
[
i(ky − atkx)

z+(s; w)
t

− 1
4

k2⊥
z2+(s; w)

u2t2

]
: (A.19)

The function G(−)
ij (s; k) = G(+)

ij (−s;−k) is given by

G(−)
ij (s; k) =

pij

�1=2kBTij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−�it=�A(−)

ij (s; k; u; t) ; (A.20)

where

A(−)
ij (s; k; u; t) =

[
1− z−(s; w)

2
@s ln Tij(s)

]−1

×exp
[
i(ky − atkx)

z−(s; w)
t

− 1
4

k2⊥
z2−(s; w)

u2t2

]
; (A.21)

with z−(s; w) =−z+(−s; w) being the negative root of the quadratic equation (A.14).

A.2. Consistency conditions

The consistency for the density is

∫
dvfi =Gi(s; k = 0) =

N∑
j=1

�ij

�
Gij(s; k = 0)

=
N∑

j=1

�ij

�
pij

�1=2kBTij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−�it=�

×
{[

1− z+
2

@s ln Tij(s)
]−1

+
[
1− z−

2
@s ln Tij(s)

]−1
}

= 2
N∑

j=1

�ij

�i

pij

�1=2kBTij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t

=
ni

�i

N∑
j=1

�ij = ni(s) : (A.22)
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Use has been made of the identity[
1− z+

2
@s ln Tij(s)

]−1
+
[
1− z−

2
@s ln Tij(s)

]−1
= 2 ; (A.23)

which follows from the explicit form of the roots of (A.14). The result (A.23) is
consistent with the de9nition of the partial density ni.

The conditions for the (ow velocity components are satis9ed with independence of
the values of �ij. The consistency condition for the partial temperature Ti is

3ni(s)kBTi(s) =mi

∫
dvV 2fi =−mi[@2kGi(s; k)]k=0 =−mi

N∑
j=1

�ij

�
[@2kGij(s; k)]k=0

=mi

N∑
j=1

�ij

�
pij

�1=2kBTij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−�it=�[1+(1+a2t2)u2]w−2

×
{

z2+
[
1− z+

2
@s ln Tij(s)

]−1
+ z2−

[
1− z−

2
@s ln Tij(s)

]−1
}

:

(A.24)

Using the identity

z2+
[
1− z+

2
@s ln Tij(s)

]−1
+ z2−

[
1− z−

2
@s ln Tij(s)

]−1

=
4kBTij(s)

mi

w2

1 + 2�ijw2 ; (A.25)

one gets the result

3nikBTi

=
4√
�

N∑
j=1

�ij

�
pij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−�it=�[1 + (1 + a2t2)u2](1 + 2�ijw2)−1

=
4√
�

N∑
j=1

�ij

�i
pij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t[1 + (1 + a2i t

2)u2](1 + 2&ijw2)−1 ;

(A.26)

where ai = �a=�i. Eq. (A.26) can be 9nally written as

1 =
4

3
√

�

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t[1 + (1 + a2i t

2)u2](1 + 2&ijw2)−1 :

(A.27)

This completes con9rmation of the consistency conditions for the hydrodynamic 9elds.
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A.3. Momentum and heat 7uxes

The momentum and heat (uxes can also be obtained from the generating function
as

Pi;-9 =
∫

dvmiV-V9fi =−mi

N∑
j=1

�ij

�
[@k-@k9Gij(s; k)]k=0 ; (A.28)

qi;- =
∫

dv
1
2
miV 2V-fi = i

mi

2

N∑
j=1

�ij

�
[@k-@k2Gij(s; k)]k=0 : (A.29)

Following similar mathematical steps as those made in the consistency condition for
the temperature, the nonzero elements of the partial pressure tensor can be evaluated.
They are given by

Pi;xx =
2√
�

nikBTi

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t[1 + 2(aitu)2](1 + 2&ijw2)−1 ;

(A.30)

Pi;yy =
4√
�

nikBTi

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2u2

∫ ∞

0
dt e−t(1 + 2&ijw2)−1 ; (A.31)

Pi;zz =
2√
�

nikBTi

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2

∫ ∞

0
dt e−t(1 + 2&ijw2)−1 ; (A.32)

Pi;xy =− 4√
�

nikBTiai

N∑
j=1

�ij

�i
$ij

∫ ∞

0
du e−u2u2

∫ ∞

0
dt e−t t(1 + 2&ijw2)−1 :

(A.33)

It can be veri9ed that these expressions satisfy 3nikBTi = Pi;xx + Pi;yy + Pi;zz, which is
consistent with the third condition in (30).
The nonzero components of the heat (ux are qi;x and qi;y. They are given by

qi;y =− 4√
�

nik2BTi

mi�2i
�

N∑
j=1

�ij$ij

∫ ∞

0
du e−u2u

×
∫ ∞

0
dt e−t[1 + (1 + a2i t

2)u2]w(1 + 2&ijw2)−2@sTij(s) ; (A.34)

qi;x =
4√
�

nik2BTi

mi�2i
�

N∑
j=1

�ijai$ij

∫ ∞

0
du e−u2u

×
∫ ∞

0
dt e−t tw[2 + (1 + a2i t

2)u2](1 + 2&ijw2)−2@sTij(s) ; (A.35)
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where use has been made of the identity

z3+
[
1− z+

2
@s ln Tij(s)

]−1
+ z3−

[
1− z−

2
@s ln Tij(s)

]−1

=16�ijs
kBTij(s)

mi

w4

(1 + 2�ijw2)2
: (A.36)

Appendix B. Velocity distribution function

In this appendix we derive the explicit expression of the velocity distribution function
fi given by Eqs. (44) and (45). First, the normal solution to the GK equation in the
Couette (ow problem is given by Eq. (A.1) so that the functions �ij appearing in
Eq. (44) are given by

�ij(s;V) =
∫ ∞

0
dt e−�it=� e−tVy@s eatVy@Vx fij(s;V) : (B.1)

Now, we assume the temperature pro9le (A.3) and introduce it in the form of the
distribution (B.1). To do that, it is convenient to take into account the action of the
exponential operator:

exp [− tVy@s + atVy@Vx ]fij(s;V) = fij(s − tVy;V + ta · V) ; (B.2)

where a is the matrix with elements aij = a"ix"jy. In terms of the reduced velocity
^i = V=

√
2kBT (s)=mi and using the property (B.2), Eq. (B.1) can be written as

�ij(s;V) =fLE
i (s;V) e,2i ($i$ij)−3=2

∫ ∞

0
dt e−�it=�[:(s∗; t,i;y)]−5=25(:(s∗; t,i;y))

×exp{−[$i$ij:(s∗; t,i;y)]−1[(,i;x + at,i;y)2 + ,2i;y + ,2i; z]} ; (B.3)

where s∗ = s=
√

kBT0=mi,

fLE
i (s;V) = ni

(
mi

2�kBT (s)

)3=2

exp
(
− mi

2kBT (s)
V 2

)
; (B.4)

and

:(s∗; t,i;y) ≡ T (s − tVy)
T (s)

= 1 + 2
√
2�it,i;y

s∗√
1− �is∗2

− 2�it2,2i;y : (B.5)

We decompose �ij(s∗;V)=�(+)
ij (s∗;V)+�(−)

ij (s∗;V), with �(±)
ij (s∗;V)=5(±,i;y)×

�ij(s∗;V). Note that �(+)
ij (−s∗) = �(−)

ij (s∗). We introduce the reduced local thermal
gradient .i de9ned as

.i(s) =

√
2kB

miT (s)
@T
@s

=− 2
√
2�is∗√

1− s∗2
; (B.6)
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where in the last step use has been made of the explicit form of the temperature pro9le.
In terms of the variable u = t,i;y; �(+)

ij can be written as

�(+)
ij (s;V) =fLE

i (s;V)
e,2i

,i;y
($i$ij)−3=2

×
∫ ∞

0
du e−�iu=�,i; y(1− .iu − 2�iu2)−5=25(1− .iu − 2�iu2)

×exp

{
−(1− .iu − 2�iu2)−1 (,i;x + au)2 + ,2i;y + ,2i; z

$i$ij

}
: (B.7)

Due to the Heaviside function, u ¡ 9i where

9i =

√
.2i + 8�i − .i

4�i

=
1
.i

2-
1 + -

(B.8)

is the positive root of the quadratic equation 1− .iu − 2�iu2 = 0. Here,

- =
.i√

.2i + 8�i
; (B.9)

which is independent of the species considered. Let us make the change of variables:

u =
2-

1 + -
1− w

.i
= 9i(1− w) : (B.10)

Consequently,

1− .i9i(1− w)− 2�i92
i (1− w)2 = 1− .i9i − 2�i92

i (1 + w2) + w(.i9i + 4�i92
i )

=
2w

1 + -
− 1− -

1 + -
w2 ; (B.11)

where use has been made of the identities:

.i9i + 4�i92
i = .i9i + 2− 2.i9i = 2=(1 + -) ; (B.12)

2�i92
i = 1− .i9i = (1− -)=(1 + -) : (B.13)

In summary, Eq. (B.7) can be 9nally written as

�(+)
ij (s;V) =fLE

i (s;V)e,2i ($i$ij)−3=2 2-(1 + -)3=2

.i,i;y

∫ 1

0
dw[2w − (1− -)w2]−5=2

×exp
[
− 2-
1 + -

�i

�
1− w
.i,i;y

]
exp

{
− 1 + -

2w − (1− -)w2 ($i$ij)−1

×
[(

,i;x +
2a-
1 + -

1− w
.i

)2

+ ,2i;y + ,2i; z

] }
: (B.14)
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The other half-distribution �(−)
ij can be easily obtained from �(+)

ij when one takes into
account the symmetry property

�(−)
ij (a; .i;V) = �(+)

ij (a;−.i;−V) : (B.15)

Therefore, one gets

�(−)
ij (s;V) =fLE

i (s;V) e,2i ($i$ij)−3=2 2-(1 + -)3=2

.i|,i;y|
∫ 2=(1−-)

1
dw[2w−(1−-)w2]−5=2

×exp
[
− 2-
1 + -

�i

�
1− w
.i,i;y

]
exp

{
− 1 + -

2w − (1− -)w2 ($i$ij)−1

×
[(

,i;x +
2a-
1 + -

1− w
.i

)2

+ ,2i;y + ,2i; z

] }
; (B.16)

where the change of variable w → [2− (1 + -)t]=(1− -) has been performed.

Appendix C. Equivalence with formal series solution

The results obtained in Ref. [8] from the formal series representation are expressed
in terms of the functions

Fr(x) =
(

d
dx

x
)r

F0(x) ; (C.1)

where

F0(x) =
∫ ∞

0
dt t

∫ ∞

0
du u e−t2u2x=2 e−(t+u)

=
2
x

∫ ∞

0
dt t e−t2=2K0(2x−1=4t1=2) ; (C.2)

K0 being the zeroth-order modi9ed Bessel function. In terms of these functions, the
momentum and heat (uxes can be written as 1

Pi;xx =
nikBTi

�i

N∑
j=1

�ij$ij[1 + 2F1(&ij)(a2i − &ij)] ; (C.3)

Pi;yy =
nikBTi

�i

N∑
j=1

�ij$ij{1− 2&ij[F1(&ij) + 2F2(&ij)]} ; (C.4)

Pi;zz =
nikBTi

�i

N∑
j=1

�ij$ij[1− 2&ijF1(&ij)] ; (C.5)

1 While working on this paper, we have found some errors in the expression of the xx element of the
pressure tensor, namely Eqs. (32) and (45) of Ref. [8]. Their corresponding correct expressions are given
here in the Appendix C. These errors do not alter the qualitative behavior and the conclusions made in
Ref. [8] on the 9rst viscometric function �1.
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Pi;xy =−nikBTi

�i

N∑
j=1

�ij$ijF0(&ij)ai ; (C.6)

qi;y =−1
2

nik2BTi

mi�i

�
�i

N∑
j=1

�ij$ij{3F1(&ij) + 2F2(&ij)

+2a2i [4F4(&ij) + 4F3(&ij) + F2(&ij)]}@sTij(s) ; (C.7)

qi;x =
nik2BTi

mi�i

�
�i

ai

N∑
j=1

�ij$ij{5F2(&ij) + 2F3(&ij)

+2a2i [4F5(&ij) + 8F4(&ij) + 5F3(&ij) + F2(&ij)]}@sTij(s) : (C.8)

Let us show, for instance, that the expressions of the nonzero elements of the pressure
tensor Pi given by Eqs. (A.30)–(A.33) are the same as those found in Ref. [8],
Eqs. (C.3)–(C.6). First, taking into account the integral representation of K0 [16], the
function F0(&ij) can be rewritten as

F0(&ij) =
∫ ∞

0
dt t

∫ ∞

0
du e−t2u2&ij=2 e−(t+u)

=
4√
�

∫ ∞

0
dt e−t

∫ ∞

0
du u2 e−u2 (1 + 2&iju2t2)−1 : (C.9)

Substitution of Eq. (C.9) into Eq. (C.6) leads to Eq. (A.33) for the xy element of Pi.
Then, the function F1(&ij) is given by

F1(&ij) =
d
d&ij

(&ijF0(&ij)) =
4√
�

∫ ∞

0
dt e−t

∫ ∞

0
du u2 e−u2 (1 + 2&iju2t2)−2

=
1
2

&−1
ij − 1√

�
&−1
ij

∫ ∞

0
dt e−t

∫ ∞

0
du e−u2 (1 + 2&iju2t2)−1 ; (C.10)

where the last equality has been obtained after integrating by parts in the t integral.
From Eqs. (C.10) and (C.5), one gets the expression (A.32) for Pi;zz. The function
F2(&ij) is given by

F2(&ij) =
d
d&ij

(&ijF1(&ij)) =
2√
�

∫ ∞

0
dt t2 e−t

∫ ∞

0
du u2 e−u2 (1 + 2&iju2t2)−2 :

(C.11)

Substitution of Eqs. (C.10) and (C.11) into Eq. (C.4) yields Eq. (A.31) when one
takes into account the following integration by parts in the u integral:∫ ∞

0
du

u2 e−u2

1 + 2&iju2t2
=

1
2

∫ ∞

0
du e−u2 1− 2&iju2t2

(1 + 2&iju2t2)2
: (C.12)

The expression (A.30) for Pi;xx can be easily obtained from Eqs. (C.3) and (C.10).
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