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Abstract

The Navier–Stokes transport coe�cients of a granular gas are obtained from the Chapman–
Enskog solution to the Boltzmann equation. The granular gas is heated by the action of an
external driving force (thermostat) which does work to compensate for the collisional loss of
energy. Two types of thermostats are considered: (a) a deterministic force proportional to the
particle velocity (Gaussian thermostat), and (b) a random external force (stochastic thermostat).
As happens in the free cooling case, the transport coe�cients are determined from linear integral
equations which can be approximately solved by means of a Sonine polynomial expansion. In
the leading order, we get those coe�cients as explicit functions of the restitution coe�cient �.
The results are compared with those obtained in the free cooling case, indicating that the above
thermostat forces do not play a neutral role in the transport. The kinetic theory results are also
compared with those obtained from Monte Carlo simulations of the Boltzmann equation for the
shear viscosity. The comparison shows an excellent agreement between theory and simulation
over a wide range of values of the restitution coe�cient. Finally, the expressions of the transport
coe�cients for a gas of inelastic hard spheres are extended to the revised Enskog theory for a
description at higher densities.
c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 45.70.Mg; 05.20.Dd; 51.10.+y; 47.50.+d

Keywords: Granular gas; Thermostat forces; Kinetic theory; Direct simulation Monte Carlo method

1. Introduction

The usefulness of @uid-like type equations to describe systems of granular particles
in rapid, dilute @ow has been recognized for many years. The essential diBerence from
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ordinary @uids is the absence of energy conservation, yielding subtle modiGcations of
the conventional Navier–Stokes equations for states with small spatial gradients of the
hydrodynamic Gelds. Although many eBorts have been made in the past few years in
the understanding of these systems, the analysis of the in@uence of dissipation on the
transport coe�cients still remains a topic of interest and controversy. For a low den-
sity gas, these coe�cients may be determined from the Boltzmann equation modiGed
to account for inelastic binary collisions. The idea is to extend the Chapman–Enskog
method [1] to the inelastic case by expanding around the local version of the homo-
geneous cooling state (HCS), i.e., a reference state in which all the time dependence
occurs through the granular temperature. In the Grst order of the expansion, explicit
expressions for the transport coe�cients as functions of the restitution coe�cient have
been obtained in the case of hard spheres [2] as well as for a d-dimensional system
[3]. This analysis has also been extended to higher densities in the context of the
Enskog equation [4]. The results obtained in the latter theory describe very well the
hydrodynamic proGles obtained in a recent experimental study of a three-dimensional
system of mustard seeds @uidized by vertical vibrations of the container [5].

One of the main di�culties in obtaining the above transport coe�cients lies in
the fact that, in contrast to what happens for molecular @uids, the reference state
(zeroth-order solution of the Chapman–Enskog expansion) depends on time due to the
dissipation of energy through collisions. In addition, it is also well known that this
state is unstable to long enough wavelength perturbations so that the state becomes
inhomogeneous for long times (see for instance, the review of [6]). To overcome such
di�culties, one possibility is to introduce external forces to accelerate the particles
and hence compensate for collisional cooling. As a consequence, the corresponding
reference state is stationary and linearly stable against spatial inhomogeneities. This
mechanism of energy input (diBerent from those in shear @ows or @ows through
vertical pipes) has been used by many authors [7–12] in the past years to analyze
diBerent problems, such as non-Gaussian properties (cumulants, high-energy tails) of
the velocity distribution function [9,12], long-range correlations [10], and collisional
statistics and short-scale structure [11]. Since the latter requires the solution of the
corresponding linearized hydrodynamic equations around the homogeneous state, the
explicit expressions for the transport coe�cients are needed. Given that the dependence
of these coe�cients on the restitution coe�cient is not known, the expressions of these
coe�cients are usually assumed to be the same as those for the elastic gas. However,
according to the results derived in the free cooling case [2–4], the above assumption
could be only justiGed in the small inelasticity limit.

The goal of this paper is to determine the transport coe�cients of a heated granular
gas. This allows us to measure the new eBects induced by the external force on trans-
port by comparison with the results derived in the unforced case [2,3]. In addition,
one could also assess to what extent the previous results on short and large structure
[10,11] are indicative of what happens for Gnite degree of dissipation. There are diBer-
ent mechanisms to inject energy to the gas. Here, the @uidization is driven by the action
of external forces (thermostats) acting locally on each particle. In this paper, we will
consider two types of thermostats: the Gaussian and the stochastic thermostats. In the
case of the Gaussian thermostat, the gas is heated by the action of an external force
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proportional to the peculiar velocity. This type of “anti-drag” force can be justiGed
by Gauss’s principle of least constraints [13] and has been widely used in nonequi-
librium molecular dynamics simulations of molecular @uids. Another mechanism for
thermostatting the system is to assume that the particles are subjected to a random
external force, which gives frequent kicks to each particle between collisions. If this
stochastic force has the properties of a white noise, it gives rise to a Fokker–Planck
diBusion term in the Boltzmann equation [9].

It must be remarked that in most experiments, energy is added to the granular gas
through a boundary, causing gradients in the energy perpendicular to that boundary.
In this sense, we do not claim that the above forcing terms are the most suited to
model any particular real system. However, they have the advantage of that it can
be incorporated into the kinetic theory very easily. This allows for instance, to test
the assumptions of the Chapman–Enskog method through a direct comparison with
computer simulations, such as Monte Carlo or molecular dynamics simulations [14].

The plan of the paper is as follows. In Section 2, we review the Boltzmann equation
and associated macroscopic conservation laws in the presence of the external forces
discussed above. The Chapman–Enskog method for solving this equation is presented
in Section 3 and subsequently applied to the cases of Gaussian and stochastic ther-
mostats. As happens in the free cooling case [2], the transport coe�cients are deter-
mined from linear integral equations which can be approximately solved by means of
a Sonine polynomial expansion. In the leading order, we get the transport coe�cients
as explicit functions of the restitution coe�cient. Section 3 ends with a comparison
between the results derived here in both driven cases with those previously obtained
in the unforced case [3]. Such a comparison shows that, in general, the thermostats
do not play a neutral role in the transport since they clearly aBect the dependence
of the Navier–Stokes transport coe�cients on the dissipation. In order to check the
degree of reliability of the Sonine approximation, a comparison with direct Monte
Carlo simulation of the Boltzmann equation is carried out in Section 4. More speciG-
cally, the simulations are performed for a gas undergoing uniform shear @ow, using the
Gaussian and the stochastic thermostats to control inelastic cooling. In the long time
limit, a (reduced) shear viscosity can be measured in both simulations. The comparison
with the Chapman–Enskog solution shows an excellent agreement, indicating that the
Sonine results have an accuracy comparable to that for elastic collisions. The paper
is closed in Section 5 with a brief summary and discussion of the results presented.
In addition, the corresponding expressions of the transport coe�cients for a granular
gas of hard spheres in the framework of Enskog kinetic theory are also displayed in
Appendix B.

2. Heated granular gases

We consider a granular gas composed by smooth inelastic disks (d = 2) or spheres
(d = 3) of mass m and diameter �. The inelasticity of collisions among all pairs is
characterized by a constant restitution coe�cient �6 1. In the low-density regime, the
evolution of the one-particle velocity distribution function f(r; v; t) is given by the
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Boltzmann kinetic equation [15,16]

(@t + v1 · ∇ + F)f(r; v1; t) = J [v1|f(t); f(t)] ; (1)

where the Boltzmann collision operator J [v1|f;f] is

J [v1|f;f] = �d−1
∫

dv2

∫
d�̂
(�̂ · g)(�̂ · g)

×[�−2f(r; v′1; t)f(r; v′2; t) − f(r; v1; t)f(r; v2; t)] : (2)

In Eq. (1), F is an operator representing the eBect of an external forcing which injects
energy into the granular gas allowing it to reach a steady state. Furthermore, d is the
dimensionality of the system, �̂ is a unit vector along their line of centers, 
 is the
Heaviside step function, and g= v1 − v2. The primes on the velocities denote the initial
values {v′1; v

′
2} that lead to {v1; v2} following a binary collision:

v′1 = v1 − 1
2 (1 + �−1)(�̂ · g)�̂; v′2 = v2 + 1

2 (1 + �−1)(�̂ · g)�̂ : (3)

The macroscopic balance equations for density n, momentum mu, and energy (d=2)nT
follow directly from Eq. (1) by multiplying with 1, mv1, and (m=2)v2

1 and integrating
over v1:

Dtn + n∇ · u = 0 ; (4)

Dtui + (mn)−1∇jPij = 0 ; (5)

DtT +
2
dn

(∇ · q + Pij∇jui) = −(�− �)T : (6)

In the above equations, Dt = @t + u · ∇ is the material derivative,

P =
∫

dvmVVf(v) (7)

is the pressure tensor,

q =
∫

dv 1
2mV

2Vf(v) (8)

is the total heat @ux, and V = v − u is the peculiar velocity. On the right-hand side of
temperature equation (6), the cooling rate � (measuring the rate of energy loss due to
dissipation) and the source term � (measuring the rate of heating due to the external
force) are given by

� = − 1
dn T

∫
dvmv2J [f;f] ; (9)

� = − 1
dn T

∫
dvmv2Ff(v) : (10)

It is assumed that the external driving does not change the number of particles or the
momentum, i.e.,∫

dvFf(v) =
∫

dv vFf(v) = 0 : (11)
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In the case of elastic particles (�=1) and in the absence of external forcing (F=0),
it is well known that the long-time uniform solution of Eq. (1) is the Maxwell–
Boltzmann distribution function. However, if the particles collide inelastically (�¡ 1)
and F = 0, a steady state is not possible in uniform situations since the temperature
decreases monotonically in time. In this case, Goldshtein and Shapiro [15] showed
that Eq. (1) admits an isotropic solution, describing the HCS, in which all the time
dependence of f occurs only through the thermal velocity v0(t)=

√
2T (t)=m :f(v; t) →

n�−d=2v−d
0 (t)�(v=v0(t)). So far, the exact form of � has not been found, although a

good approximation for thermal velocities can be obtained from an expansion in Sonine
polynomials. In the leading order, � is given by

�(v∗) →
{

1 +
c
4

[
v∗4 − (d + 2)v∗2 +

d(d + 2)
4

]}
e−v∗2

; v∗ = v=v0 ; (12)

where the estimated value of c is [9]

c =
32(1 − �)(1 − 2�2)

9 + 24d− �(41 − 8d) + 30(1 − �)�2 : (13)

Estimate (13) presents a quite good agreement with Monte Carlo simulations of the
Boltzmann equation [12,17].

However, by driving a granular gas by boundaries or external Gelds it can reach a
steady state. The energy injected in the gas may exactly compensate for the energy
dissipated by collisional cooling. The same eBect can be obtained by means of external
forces acting locally on each particle. These forces, which we will call thermostats,
are represented by the operator F in Eq. (1) and depend on the state of the system.
Several types of thermostats can be used. Here, we will consider two. One of them is a
deterministic thermostat widely used in nonequilibrium molecular dynamics simulations
of elastic particles [13], which is based on Gauss’s principle of least constraints. In
this case, F is given by [12]

Ff(v) =
1
2
�
@
@v

· [vf(v)] ; (14)

where, according to Eqs. (6) and (10), the thermostat has been adjusted to get a con-
stant temperature in the long-time limit. It must be pointed out that the corresponding
Boltzmann equation (1) for this Gaussian thermostat force is formally identical with
the Boltzmann equation in the HCS (i.e., with F=0) when both equations are written
in terms of the reduced distribution �(v∗). As a consequence, result (13) applies to
this thermostatted case as well.

Another way of heating the gas is by means of a stochastic force assumed to have
the form of a Gaussian white noise [7]. The corresponding operator F has a Fokker–
Planck form [9]

Ff(v) = −1
2
T
m

�
(

@
@v

)2

f(v) ; (15)

where again the strength of the correlation has been chosen to achieve a time-
independent temperature. By using this thermostat, van Noije and Ernst [9] have
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studied the stationary solution to the uniform Boltzmann equation (1) and found for
the coe�cient c the value

c =
32(1 − �)(1 − 2�2)

73 + 56d− 3�(35 + 8d) + 30(1 − �)�2 : (16)

As happened in the Gaussian case, recent Monte Carlo simulations of the Boltzmann
equation [12] agree quite well with the Sonine estimate (16).

3. Chapman–Enskog solution: Navier–Stokes transport coe#cients

As said in the Introduction, our goal is to get the Navier–Stokes transport coe�-
cients in the presence of the thermostats introduced in the previous section. This allows
one to assess the in@uence of these thermostats on transport by comparison with the
results obtained in the free cooling case [2,3]. To do that, we consider now a spa-
tially inhomogeneous state, created by initial preparation or by boundary conditions.
We assume that the spatial variations of n, u, and T are small on the scale of the
mean free path. Under these conditions, the Chapman–Enskog method [1] provides a
solution to the Boltzmann equation based on an expansion around the local version
of the heated homogeneous state induced by the thermostat forces. This is obtained
from the above states by replacing the temperature, density, and @ow velocity by their
nonequilibrium local values. As a consequence, the local version of the operators F
consists of replacing v → V = v − u in Eqs. (14) and (15).

The Chapman–Enskog method assumes the existence of a normal solution in which
all the space and time dependence of the distribution function appears through a func-
tional dependence on the hydrodynamic Gelds

f(r; v; t) = f[v|n(t); u(t); T (t)] : (17)

For small spatial variations, this functional dependence can be made local in space and
time through an expansion in gradients of the Gelds. To generate the expansion, it is
convenient to write f as a series expansion in a formal parameter � measuring the
nonuniformity of the system,

f = f(0) + �f(1) + �2f(2) + · · · ; (18)

where each factor of � means an implicit gradient of a hydrodynamic Geld. The local
reference state f(0) is chosen such that it has the same Grst moments as the exact distri-
bution f, or equivalently, the remainder of the expansion must obey the orthogonality
conditions∫

dv[f(v) − f(0)(v)] = 0;
∫

dv v[f(v) − f(0)(v)] = 0 ; (19)

∫
dv v2[f(v) − f(0)(v)] = 0 : (20)

The time derivatives of the Gelds are also expanded as @t = @(0)
t + �@(1)

t + · · · . The
coe�cients of the time derivative expansion are identiGed from the balance equations
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(4)–(6) with a representation of the @uxes, the cooling rate � and the heating term
� in the macroscopic balance equations as a similar series through their deGnitions
as functionals of the distribution f. This is the usual Chapman–Enskog method for
solving kinetic equations [1]. The main diBerence with respect to the unforced case
[2] is that now (as happens in the elastic case) the sink term in the energy equation
is zero, so that the terms coming from the time derivative @(0)

t vanish.
Now, we derive the corresponding hydrodynamic equations in the presence of the

Gaussian and the stochastic thermostats.

3.1. Gaussian thermostat

In the case of the Gaussian thermostat (14), the Boltzmann equation becomes

@tf + v · ∇f +
1
2
�

@
@V

· (Vf) = J [f;f] : (21)

Substitution of the Chapman–Enskog solution (18) into Eq. (21) leads to diBerent
kinetic equations for the distributions f(k). To zeroth-order in �, the Boltzmann equation
reads

1
2
�(0) @

@V
· (Vf(0)) = J [f(0); f(0)] ; (22)

where use has been made of the macroscopic balance equations at this order

@(0)
t n = 0; @(0)

t u = 0; @(0)
t T = 0 : (23)

Here, the cooling rate �(0) is determined by Eq. (9) to zeroth-order

�(0) = − 1
dn T

∫
dvmv2J [f(0); f(0)] : (24)

The solution to Eq. (22) f(0) = f(0)(V ) is isotropic so that the zeroth-order approxi-
mations to the pressure tensor and heat @ux are

P(0)
ij = p�ij; q(0) = 0 ; (25)

where p= nT is the hydrostatic pressure. The distribution f(0) is essentially given by
the Sonine approximation (12) with the cumulant c given by Eq. (13).

The analysis to Grst order in � is similar to the one worked out in Ref. [2] for the
free cooling case. We only display here the Gnal expressions for the @uxes with some
details being given in Appendix A. The Gnal result to Grst order in the spatial gradients
is

P(1)
ij = − 

(
∇iuj + ∇jui − 2

d
�ij∇ · u

)
; (26)

q(1) = −!∇T − "∇n ; (27)

where  is the shear viscosity, ! is the thermal conductivity, and " is an additional
transport coe�cient not present in the elastic case. In dimensionless form, the transport
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coe�cients are given by

 ∗ =
 
 0

=
1

#∗ − �∗
; (28)

!∗ =
!
!0

=
d− 1
d

1 + c
#∗! − 3

2�
∗ ; (29)

"∗ =
n"
T!0

=
d− 1
2d

c
#∗" − 3

2�
∗ : (30)

Here,  0 and !0 are the elastic values of the shear viscosity and thermal conductivity
[1], respectively,

 0 =
d + 2

8
�−(d−1)=2$(d=2)(mT )1=2�−(d−1); !0 =

d(d + 2)
2(d− 1)

 0

m
; (31)

�∗ = �(0)=#0, #0 =p= 0 is a characteristic collision frequency, and c(�) is related to the
fourth moment of f(0) by

c(�) =
8

d(d + 2)

[( m
2T

)2 1
n

∫
dvV 4f(0) − d(d + 2)

4

]
: (32)

The coe�cient c(�) is a measure of the deviation of the reference state from that of
a gas with elastic collisions. As said above, a good estimate of c(�) is given by the
Sonine approximation (13). Furthermore, in Eqs. (28)–(30), we have introduced the
reduced collision frequencies

#∗ =

∫
dvDij(V)LCij(V)

#0
∫

dvDij(V)Cij(V)
; (33)

#∗! =

∫
dv S(V) ·LA(V)

#0
∫

dv S(V) ·A(V)
; #∗" =

∫
dv S(V) ·LB(V)

#0
∫

dv S(V) ·B(V)
; (34)

where

Dij(V) = m
(
ViVj − 1

d
�ijV 2

)
; S(V) =

(
m
2
V 2 − d + 2

2
T
)

V : (35)

So far, all the results are exact but not explicit because of �∗; #∗ ; #
∗
!, and #∗". To

get more explicit expressions for the dependence of the transport coe�cients on � it is
convenient to use the leading Sonine polynomial approximations for A(V), B(V),
Cij(V), and f(0). In the case of f(0), we take the approximation (12) while the
remaining quantities are given by

 A(V)
B(V)
Cij(V)


→ fM (V )


 cTS(V)

cnS(V)
cuDij(V)


 ; fM (V ) = n�−d=2v−d

0 e−(V=v0)2
: (36)

The factor fM (V ) occurs since these polynomials are deGned relative to a Gaussian
scalar product. The coe�cients are the projections of A, B, and Cij along S(V),
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and Dij(V),

(
cT
cn

)
=

2
d(d + 2)

m
nT 3

∫
dv

(
A(V) · S(V)

B(V) · S(V)

)
=




− 2
d + 2

m
nT 2 !

− 2
d + 2

m
T 3 "


 ; (37)

cu =
1

(d + 2)(d− 1)
1

nT 2

∫
dVCij(V)Dij(V) = − 1

nT 2  ; (38)

where use has been made of the deGnitions (A.11), (A.12), and (A.13). With these
expressions, the cooling rate �∗ and the collision frequencies #∗ , #∗!, and #∗" can be
explicitly computed. These calculations have been made by Brey and Cubero [3], with
the result

�∗ =
d + 2
4d

(1 − �2)
(

1 +
3
32

c
)

; (39)

#∗ =
3
4d

(
1 − � + 2

3d
)
(1 + �)

(
1 − c

64

)
; (40)

#∗! = #∗" =
1 + �
d

[
d− 1

2
+

3
16

(d + 8)(1 − �) +
4 + 5d− 3(4 − d)�

1024
c
]
; (41)

where c is given by Eq. (13).
Substitution of the above expressions into Eqs. (28)–(30) gives Gnally the explicit

dependence of the transport coe�cients on the restitution coe�cient �. In order to gain
some insight into the behavior of  ∗, !∗, and "∗ it is convenient to consider the weak
dissipation limit. In this limit, the above coe�cients can be expanded in powers of the
inelasticity parameter 1 − �2. The leading contributions are

 ∗ ≈ 1 +
64d2 − 97d + 32

128d(d− 1)
(1 − �2) + · · · ; (42)

!∗ ≈ 1 +
56d− 191
128(d− 1)

(1 − �2) + · · · ; (43)

"∗ ≈ 1
4(1 − d)

(1 − �2) + · · · : (44)

3.2. Stochastic thermostat

In the case of the stochastic thermostat (15), the Boltzmann equation becomes

@tf + v · ∇f − 1
2
T
m

�
(

@
@V

)2

f = J [f;f] : (45)

As before, this equation can be solved by means of the Chapman–Enskog method. Since
the procedures to arrive at the expressions of the transport coe�cients are identical to
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the ones employed in the case of the Gaussian force, here we only quote the Gnal
expressions of the transport coe�cients. In dimensionless form, they are

 ∗ =
1
#∗ 

; (46)

!∗ =
d− 1
d

1 + c
#∗!

; (47)

"∗ =
d− 1
2d

c
#∗"

: (48)

Here, in the Grst Sonine approximation, the expressions of �∗, #∗ , and #∗! are also given
by Eqs. (39)–(41), respectively, with c(�) given by Eq. (16). In the quasielastic limit,
one has

 ∗ ≈ 1 +
32d2 − 129d + 96

128d(d− 1)
(1 − �2) + · · · ; (49)

!∗ ≈ 1 +
8d− 287

128(d− 1)
(1 − �2) + · · · ; (50)

"∗ ≈ 1
4(1 − d)

(1 − �2) + · · · : (51)

3.3. Comparison with the free cooling case

The transport coe�cients for a dilute unforced granular gas in d dimensions has
been recently obtained by Brey and Cubero [3]. These authors generalize a previous
derivation made from the Boltzmann equation in the three-dimensional case [2]. The
results are

 ∗ =
1

#∗ − 1
2�

∗ ; (52)

!∗ =
d− 1
d

1 + c
#∗! − 2�∗

; (53)

"∗ =
2�∗

2#∗" − 3�∗

[
!∗ +

(d− 1)c
2d�∗

]
; (54)

where c(�) is given by Eq. (13). In the quasielastic limit, these coe�cients behave as

 ∗ ≈ 1 +
48d2 − 113d + 64

128d(d− 1)
(1 − �2) + · · · ; (55)

!∗ ≈ 1 +
72d− 159
128(d− 1)

(1 − �2) + · · · ; (56)

"∗ ≈ d + 1
4(d− 1)

(1 − �2) + · · · : (57)
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Fig. 1. Reduced shear viscosity  ∗= = 0 as a function of the restitution coe�cient � for a three-dimensional
system. The solid lines refer to the theoretical expressions derived in the unforced case (a), in the Gaussian
case (b), and in the stochastic case (c). The symbols are the results obtained from the direct simulation
Monte Carlo method in the Gaussian (circles) and stochastic (triangles) cases.

Fig. 2. Reduced thermal conductivity !∗ = !=!0 as a function of the restitution coe�cient � for a three-
dimensional system in the unforced case (a), in the Gaussian case (b), and in the stochastic case (c).

Comparison between Eqs. (42)–(44), (49)–(51), and (55)–(57) shows that the
leading order corrections to the elastic values of the transport coe�cients are clearly
diBerent in the free cooling and driven cases. This illustrates the fact that the transport
properties are aBected by the thermostat introduced so that the latter does not play a
neutral role in the problem. In Figs. 1–3, we plot the reduced coe�cients  ∗, !∗, and
"∗, respectively, for hard spheres (d=3) in the cases of the unforced gas, the Gaussian
thermostat, and the stochastic thermostat. In general, we observe that the predictions
obtained in the Gaussian case for the shear viscosity and the thermal conductivity are
closer to those of the unforced case than to the ones obtained with the stochastic
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Fig. 3. Reduced coe�cient "∗ = n"=T!0 as a function of the restitution coe�cient � for a three-dimensional
system in the unforced case (a), in the Gaussian case (b), and in the stochastic case (c).

force. This is in part motivated by the fact that, in dimensionless form, the results of
the unforced and Gaussian cases are identical in the uniform problem (reference state).
In the case of the shear viscosity, all the theories give the same trends for  ∗ since this
coe�cient increases with the dissipation. However, at a qualitative level, the in@uence
of dissipation on the viscosity in the stochastic case is much less signiGcant than in
the other two cases. Thus, for instance, for � = 0:8 (moderate dissipation), the shear
viscosity of the granular gas  has only changed about 1% with respect to its elastic
value when the gas is heated by means of the stochastic force. This could justify the
use of the elastic values of the transport coe�cients in the analysis of the long-range
correlations in a randomly driven granular @uid [10]. Discrepancies between unforced
and the two driven systems are more important in the case of the thermal conductivity
!∗, as Fig. 2 shows. In addition, while in the free cooling and Gaussian cases !∗

increases with �, the opposite happens in the stochastic case. Finally, Fig. 3 shows the
dependence of the coe�cient "∗ on �. We observe that "∗ 
 0 for both thermostats,
while this coe�cient is clearly diBerent from zero in the free cooling problem. This is
basically due to the fact that "∗ ˙ c(�) in the Gaussian and stochastic cases, Eqs. (30)
and (48), and so it vanishes exactly if one takes the Maxwellian approximation (which
is known to give a very accurate description) for the reference state. This means that,
for practical purposes, one can neglect the contribution to the heat @ux coming from
the term proportional to the density gradient in the heated gas case: q(1) → −!∇T .
As is apparent from Fig. 3, this cannot be assumed in the unforced case since "∗ is
clearly diBerent from zero even in the quasielastic limit.

4. Comparison with Monte Carlo simulations

As has been discussed above, the practical evaluation of the transport coe�cients
requires the truncation of an expansion for the solutions of the integral equations in
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Sonine polynomials. In the case of elastic collisions, the leading order truncation is
known to be a very good approximation [1]. A natural question is whether the above
degree of accuracy is also maintained in the inelastic case. To answer this question,
one has to resort to numerical solutions of the Boltzmann equation, such as those
obtained from the direct simulation Monte Carlo (DSMC) method [19]. Although this
method was originally devised for molecular @uids, its extension to deal with inelastic
collisions is straightforward [12,18].

Recently, the shear viscosity of a low-density granular gas of freely evolving hard
spheres has been determined from the DSMC method [20]. The results show a very
good agreement with the predictions based on the Boltzmann equation in the Grst
Sonine approximation, Eq. (52). This experiment consists in preparing an initial in-
homogeneous nonequilibrium state corresponding to a transverse shear wave, and then
analyzing its subsequent evolution in time. The shear wave decays exponentially with a
time scale inversely proportional to the viscosity. An alternative route to measuring the
shear viscosity consists of preparing a state of uniform shear @ow using Lees–Edwards
boundary conditions [21]. Macroscopically, this state is characterized by constant den-
sity n, a uniform temperature T , and a linear velocity proGle a= @ux=@y ≡ const. In a
molecular @uid, unless a termostatting force is introduced, the temperature increases in
time due to viscous heating. The corresponding energy balance equation can be used
to determine the shear viscosity for su�ciently long times [22]. In a granular @uid, the
relationship between the temperature and the shear viscosity is not simple since there
is a competition between viscous heating and collisional cooling [23,24]. However, if
external forces of the form (14) and (15) that exactly compensate for the collisional
energy loss are introduced, the viscous heating eBect is still able to heat the system.
Under these conditions, the Boltzmann equation to be solved is

@tf − aVy
@
@Vx

f +
1
2
�

@
@V

· (Vf) = J [f;f] (58)

in the case of the Gaussian thermostat, and

@tf − aVy
@
@Vx

f − 1
2
T
m

�
(

@
@V

)2

f = J [f;f] (59)

in the case of the stochastic thermostat.
Eqs. (58) and (59) have been numerically solved by means of the DSMC method

for a three-dimensional system (d = 3). At given values of the shear rate a and the
restitution coe�cient �, we start from a local equilibrium state and monitor the time
evolution of a∗ =a=#0 and P∗

xy =Pxy=p. Here, #0 =p= 0 ˙ T 1=2 is an eBective collision
frequency,  0 is the elastic shear viscosity. The simulations show that, after a transient
regime, the ratio −P∗

xy=a
∗ reaches a constant value (independent of the shear rate),

which can be identiGed as the shear viscosity in the linear hydrodynamic regime.
Details of the simulation for dense @uids will be published elsewhere [25], and here
only compare the Monte Carlo simulations for the shear viscosity with the Sonine
approximations given by Eqs. (28) and (46).

In our simulations we have typically taken 105 particles and have averaged over
5 replicas. Since the thermal velocity v0 is not constant in the transient regime, we
have taken a time-dependent time step given by 0:01‘=v0(t), where ‘ = (

√
2�n�2)−1
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is the mean free path. The simulation results are shown in Fig. 1. In general, we
observe a very good agreement between the predictions of the Chapman–Enskog theory
in the Grst Sonine approximation and the simulation data. This agreement is similar
to the one previously found in the free cooling case [20]. At a quantitative level,
we see that the discrepancies between theory and simulation tend to increase as the
dissipation increases, although these diBerences are quite small (less than 3%). As a
Gnal conclusion, it is important to remark that the agreement extends over a wide range
of values of the restitution coe�cient (�¿ 0:6), indicating the reliability of the Sonine
approximation for describing granular @ows beyond the quasielastic domain.

5. Summary and discussion

In this paper, we have addressed the derivation of the hydrodynamic equations
of a granular gas from the Boltzmann kinetic theory. The system is heated by the
action of “thermostatting” external forces which exactly compensate for cooling eBects
associated with the inelasticity of collisions. Two diBerent types of thermostats have
been considered: (a) an “anti-drag” force proportional to the particle peculiar velocity
(Gaussian force), and (b) a stochastic force, which gives frequent kicks to each particle
between collisions. The introduction of these thermostats has the advantage of avoiding
the intrinsic time dependence of the homogeneous cooling state (unforced gas), but at
the price of introducing unknown new eBects induced by the external forcing. While
in the homogeneous problem the results obtained with and without a Gaussian thermo-
stat are completely equivalent (when one scales the particle velocity with the thermal
velocity), this equivalence does not hold in the stochastic case and the non-Maxwellian
properties of the distribution function (cumulants) are diBerent from those obtained in
the unforced case. Here, our goal has been to assess the in@uence of thermostats on
the transport properties of the gas.

The transport processes considered are those for a @uid with small spatial gradients
of the hydrodynamic Gelds. For this reason, the Boltzmann equation has been solved
perturbatively using an adaptation of the Chapman–Enskog method recently proposed
for inelastic collisions [2,4]. By using similar procedures as those made in the free
cooling case [2], we calculate the distribution function to Grst order in the gradients.
Its use in the functionals for the pressure tensor and heat @ux provides a representation
of these as linear combinations of the gradients. The corresponding coe�cients in these
expressions are the shear viscosity  (deGned in Eq. (26)), the thermal conductivity
! and the new coe�cient " (both coe�cients deGned in Eq. (27)). These transport
coe�cients are in general functions of the restitution coe�cient �. Their expressions are
given by Eqs. (28)–(30) in the case of the Gaussian thermostat and Eqs. (46)–(48)
in the case of the stochastic thermostat. A practical evaluation of these coe�cients
is possible by means of a Sonine polynomial approximation and the derivation and
approximate results are not limited to weak inelasticity.

The dependence of  , !, and " on � has been illustrated in the case of hard
spheres (d = 3). As Figs. 1–3 show, the thermostats aBect the transport properties
since the discrepancies between the driven and free cooling results are quite signiGcant.
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Although not widely recognized, the above conclusion illustrates the fact that generally
the inclusion of an external force depending on the state of the system changes the
apparent transport coe�cients. This has been demonstrated as well for uniform shear
@ow with elastic collisions where thermostats are used to produce a steady state. In
that case, the Navier–Stokes shear viscosity is unchanged, but nonlinear rheological
properties are aBected by the thermostat [26]. In the context of granular @uids, the
eBects already occur at the Navier–Stokes order. Notice that the above conclusion only
aBects to this type of external forcing mechanisms (thermostats), since driving the
system by shaking, vibration, and even the action of a weak external Geld (such as
the gravity Geld) does not modify the transport coe�cients of the gas. Concerning the
in@uence of dissipation on transport, we observe that in general the deviation from the
functional form for elastic collisions is more signiGcant in the unforced gas than in
the driven cases. In particular, the coe�cient " (which is zero in the elastic limit) is
clearly diBerent from zero in the unforced gas (for instance, "∗ 
 0:27 at �=0:8) while
is negligible in the Gaussian and stochastic cases (for instance, at �= 0:5, "∗ 
 0:064
for the Gaussian force while "∗ 
 0:012 for the stochastic force).

To check the accuracy of the Sonine approximation, we have numerically solved
the Boltzmann equation by means of the DSMC method [19] for a granular gas
under uniform shear @ow. To control inelastic cooling, a thermostat force is intro-
duced in the system. In these conditions, the (apparent) Navier–Stokes shear viscos-
ity can be measured directly in the long-time limit just as for the case of elastic
collisions. This simulation method has been recently proved [25] to be an e�cient
way of measuring the shear viscosity of a moderately dense granular gas. The com-
parison carried out here in the low-density regime shows that the Chapman–Enskog
results in the Grst Sonine approximation exhibit an excellent agreement with the sim-
ulation data, even for moderate dissipation (say, for instance � = 0:7). These results
indicate clearly the reliability of the quantitative predictions for transport coe�cients
from the Chapman–Enskog method with small spatial gradients but including strong
dissipation.

As said before, a study of long-range correlations in a granular system @uidized by
the random stochastic force (13) has been recently made [10]. In order to analyze
the decay of @uctuations, it was assumed that the transport coe�cients are equal to
the corresponding quantities given by the elastic Enskog theory [1]. According to the
results obtained in this paper for a heated granular gas in the low-density regime,
although this assumption can be considered as a quite good approximation for the
shear viscosity  and the coe�cient ", this is not true for the thermal conductivity
since !∗ clearly diBers from 1, even for small inelasticity. In this context, it would be
interesting to reexamine the conclusions obtained in Ref. [10] when the true Enskog
transport coe�cients are considered. As said in the Introduction, the Enskog equation
for a gas of inelastic hard spheres (d = 3) in the absence of thermostats has been
recently solved [4] up to Navier–Stokes order. Taking into account these results [4],
the extension of the calculations carried out in this paper to higher densities can be
easily made. The Gnal expressions of the corresponding Enskog transport coe�cients
in the three-dimensional case are displayed in Appendix B. We plan to extend these
expressions for a d-dimensional granular @uid in the near future.
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Appendix A. Chapman–Enskog expansion

In the case of the Gaussian thermostat, the velocity distribution f(1) obeys the kinetic
equation(

L +
1
2
�(0) @

@V
· V
)
f(1) +

1
2
�(1) @

@V
· (Vf(0)) = −(D(1)

t + V · ∇)f(0) ;

(A.1)

with D(1)
t = @(1)

t + u · ∇, L is the linear operator given by

Lf(1) = −(J [f(0); f(1)] + J [f(1); f(0)]) ; (A.2)

and �(1) is a linear functional of f(1) deGned as

�(1) = − 1
dn T

∫
dvmV 2(J [f(0); f(1)] + J [f(1); f(0)]) : (A.3)

The macroscopic balance equations to Grst order in the gradients are

D(1)
t n = −n∇ · u; D(1)

t ui = −(mn)−1∇ip; D(1)
t T = −2T

d
∇ · u : (A.4)

Use of these in Eq. (A.1) yields(
L +

1
2
�(0) @

@V
· V
)
f(1) +

1
2
�(1) @

@V
· (Vf(0))

= A · ∇ ln T + B · ∇ ln n + Cij∇iuj ; (A.5)

where the expressions of A, B, and Cij are the same as those obtained in Appendix A
of Ref. [2], i.e.,

A(V) =
1
2

V
@
@V

· (Vf(0)) − T
m

@
@V

f(0) ; (A.6)

B(V) = −Vf(0) − T
m

@
@V

f(0) ; (A.7)

Cij(V) =
@
@Vi

(Vjf(0)) − 1
d
�ij

@
@V

· (Vf(0)) : (A.8)

The fact that Cij is traceless implies that the scalar �(1) = 0 by symmetry. This is
special to the low-density Boltzmann equation, since at higher densities [4] there is
a contribution to f(1) proportional to ∇ · u leading to a nonzero value of �(1). This
can be seen in Appendix B. Comparison with the kinetic equation obeying f(1)

1 in the
unforced case (Eq. (A.4) of Ref. [2]) shows that both kinetic equations only diBer
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in the terms @(0)
t f(1)

1 (unforced description) and (�(0)=2)(@=@V) · Vf(1)
1 (driven case).

These terms give diBerent contributions to the transport coe�cients. The solution to
Eq. (A.5) is of the form

f(1) = A · ∇ ln T + B · ∇ ln n + Cij∇iuj : (A.9)

Substituting Eq. (A.9) into Eq. (A.1) and identifying coe�cients of independent gradi-
ents, one gets the following three integral equations determining the unknowns A(V),
B(V), and Cij(V):(

L +
1
2
�(0) @

@V
· V
) A

B
Cij


=


 A

B
Cij


 : (A.10)

Expressions (28)–(30) for the transport coe�cients follow directly from integral
equations (A.10). The transport coe�cients are deGned as [3]

 = − 1
(d− 1)(d + 2)

∫
dVDij(V)Cij(V) ; (A.11)

! = − 1
dT

∫
dv S(V) ·A(V) ; (A.12)

" = − 1
dn

∫
dv S(V) ·B(V) : (A.13)

The thermal conductivity ! and the coe�cient " can be easily obtained by multiplying
the Grst two equations of (A.10) by S(V) and integrating over the velocity. The result
is

(#! − 3
2�

(0))! =
d + 2

2
nT
m

(1 + c) ; (A.14)

(#" − 3
2�

(0))" =
d + 2

4
T 2

m
c ; (A.15)

Upon deriving these expressions, use has been made of the relation

1
2

@
@V

· (Vf(0)) = −T@Tf(0) (A.16)

which follows from the temperature dependence of f(0). The shear viscosity  can be
obtained in a similar way by multiplying the third equation of (A.10) by Dij(V):

(# − �(0)) = nT : (A.17)

Eqs. (A.14), (A.15), and (A.17) lead directly to expressions (28)–(30) appearing in
the text.

The analysis in the case of the stochastic thermostat (14) is similar to that made
above for the Gaussian one. To Grst order in gradients, one has[

L− 1
2
T
�(0)

m

(
@
@V

)2
]
f(1) = A · ∇ ln T + B · ∇ ln n + Cij∇iuj : (A.18)
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Here, the velocity dependence on the right-hand side of Eq. (A.18) is given by
Eqs. (A.6)–(A.8) and we have taken into account that �(1) = 0. The solution to
Eq. (A.18) is of the form (A.9), where now the corresponding integral equations are[

L− 1
2
T
�(0)

m

(
@
@V

)2
] A

B
Cij


=


 A

B
Cij


 : (A.19)

Now, we multiply Eq. (A.19) by S(V) and Dij(V) and integrate over the velocity to
get the expressions of !, ", and  :

#!! =
d + 2

2
nT
m

(1 + c) ; (A.20)

#"" =
d + 2

4
T 2

m
c ; (A.21)

#  = nT : (A.22)

Here, we have made use of the results∫
dv S(V) ·

(
@
@V

)2

A = 0 ; (A.23)

∫
dv S(V) ·

(
@
@V

)2

B = 0 ; (A.24)

∫
dvDij(V)

(
@
@V

)2

Cij = 0 ; (A.25)

which follow directly from the solubility conditions (19) and (20).

Appendix B. Results for a dense .uid of hard spheres

In this appendix, we display the results derived for inelastic hard spheres (d= 3) in
the framework of the Enskog equation when the gas is heated by the Gaussian and the
stochastic thermostats. To Grst order in the gradients, the momentum and heat @uxes
are

P(1)
ij = − 

(
∇iuj + ∇jui − 2

3
�ij∇ · u

)
− -�ij∇ · u ; (B.1)

q(1) = −!∇T − "∇n ; (B.2)

where - is the bulk viscosity coe�cient which vanishes in the low-density limit. In a
compact form, the transport coe�cients can be written as

 =  k
[
1 +

2�n∗.(1 + �)
15

]
+

3
5
- ; (B.3)

- =
2
9

√
�mTn∗n.�(1 + �)

(
1 − c

32

)
; (B.4)
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! = !k
[
1 +

�n∗.(1 + �)
5

]
+

1
3

√
�T
m

n∗.n�
(

1 +
7c
32

)
; (B.5)

" = "k
[
1 +

�n∗.(1 + �)
5

]
; (B.6)

where . is the pair correlation function at contact, n∗ = n�3 is a reduced density, and
the superscript k denotes the contributions from the kinetic parts of the @uxes [4].
These kinetic parts are given by

 k = nT
(
# − b �(0))−1 [

1 − 1
15 (1 + �)(1 − 3�)�n∗.

]
; (B.7)
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; (B.8)
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1 +
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×
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4
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c
]}

: (B.9)

In these equations, b =−1, and b! = b" =− 3
2 in the case of the Gaussian thermostat

while b = b! = b" = 0 for the stochastic thermostat.
Up to Grst order in gradients, the cooling rate � is given by

�→ 5
12

#0.(1 − �2)
(

1 +
3c
32

)

+
[
−1

3
�n∗. +

5
32

#0

(
1 +

3c
64

)
.0
]

(1 − �2)∇ · u ; (B.10)

where the expression of the quantity 0 depends on the thermostat used. In the Gaussian
case, one has

0 = �n∗.
(2=45)1− (c=6)(1 + �)(5 − 3�)

#- − 2�(0) − (5c=64)(1 − �2)
(
1 + 3c

64

)
.
; (B.11)

while in the stochastic case one gets

0 = �n∗.
(2=45)1− (c=3)(1 + �)

#-
: (B.12)
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Here, we have introduced the quantities [4]

1 =
3
8
(1 − �2)

(
5�2 + 4�− 1 +

c
12

159� + 3�2 − 19�− 15�3

1 − �

)
; (B.13)

#- =
1 + �
48

#0.
[
128 − 96� + 15�2 − 15�3

+
c
64

(15�3 − 15�2 + 498�− 434)
]
: (B.14)

To get the explicit dependence of the transport coe�cients and the cooling rate on
the reduced density n∗, one can take for instance the Carnahan–Starling approximation
for . given by

. =
1 − (1=12)�n∗

1 − (1=6)�n∗
: (B.15)

It is easy to check that all results of Appendix B reduce to those presented in the text
for the low-density limit (n∗ = 0).
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