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The Hilbert method is applied to the Bhatnagar—Gross—Krook (BGK)
model kinetic equation with a velocity dependent collision frequency; we con-
sider the so-called VHP interaction. The pressure tensor and heat flux vector
are evaluated to the Navier—Stokes hydrodynamic order.

The Bhatnagar-Gross-Krook (BGK) [1] model kinetic equation is a version of
the non-linear Boltzmann equation in which the collision integral is replaced by a
simple relaxation term. The details of the interaction potential are modelled by
means of an independent-velocity collision frequency {. Recently [2], the BGK
equation has been solved using the Hilbert perturbative method. Detailed calcu-
lations for the momentum and heat fluxes have been achieved up to the Burnett
hydrodynamic order. However, if the collision frequency is velocity dependent, the
conventional BGK model is not adequate since the collision term does not satisfy
the conservation laws. Following Brey and Santos [3], we propose a BGK equation
whose reference distribution function is a gaussian function of the velocity. The
parameters defining this reference function are determined by requiring the conser-
vation laws to be verified. The purpose of this note is to solve the BGK equation for
the so-called very hard particle (VHP) model interaction [4]. Again, we apply the
Hilbert method and our analysis is centred on the Navier-Stokes level (first
approximation).

We consider a dilute gas whose distribution function f(r, v; t) obeys the BGK
equation

(% + v,-V,->f(r, Vi) = =0 V3 000 Vi ) — file, Vs ) )

where, for the VHP interaction, the collision frequency for molecules of velocity v,
{(r, v; t), is defined by

{r, v; 1) = Cnfr; t)[—3k"—7,;f’;—” +Iv —u(r; ) |2]. @

Here C is a constant, n is the number density, T is the temperature, u is the fluid
velocity, kg is the Boltzmann constant and m is the mass of a particle. Also in
equation (1) we have considered the reference distribution function [3] fi(r, v; t)

Jalr, v t) = a(r; o) exp [b(r; ) . V(r; 1) — s OV r; 1)), G
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with V(r; t)=v —u(r;t), and a, b and ¢ being determined by imposing the
BGK equation (1) to conserve mass, momentum and energy, ie. j'dv{l, mV,
(m/2)V3(f — fr) = 0. These relations lead to the set of equations (see Appendix A

of [3]),
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where D = a exp (b*/4c)n/c)*?, I(r; t) = [ dv(m/2)V*(r; )V(r; O)f(r, v; t) is the heat
flux vector and ®(r; 1) = [ dvV*(r; )f(r, v; ).

In Hilbert theory, the distribution function f and the hydrodynamic variables n,
u and T are expanded in powers of an auxiliary parameter ¢ which may be set equal
to unity at the end of the calculations. Now, in an analogous way we must also
consider the expansion of the variables a, b and ¢

a a®

©
bi = Z £k bgk) > (5)
¢ k=0 C(k)

where the parameters {a®, b, c™} are, for the moment, left arbitrary. When we
insert the corresponding expansions in the BGK equation (1) we obtain the follow-
ing algebraic equations [2]
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At zeroth order, we obtain the function f{’ defined from the variables a®, b‘® and

¢®, In order to obtain these parameters we may consider the definition of the
hydrodynamic variables n®®, u® and T©
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In this way, after some algebra, we get b©® =0 (or J©@ = 0), ¢ = m/2ks T and
a® = n®(m/2nky T)32. Therefore, /' corresponds to the conventional local equi-

librium function
3/2 (0)2
© _ o M\ | - ®)
R 2mky T 2k T



Preliminary Communication 519

and the pressure tensor P = [ dvmVOVOS O = nOky TOS,; = p@6,;. These
results are identical to those given in the Hilbert theory of the conventional BGK
equation [2]. On the other hand, it is easy to show that coefficients a'®, b® and @
satisfy equations (4) when the expansion of these relations is considered.

Solving sequentially, at Navier-Stokes order (first approximation), we obtain the
formal solution

(1)
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where {, = 3(C/m)p'® can be considered as the independent velocity collision fre-
quency that appears in the conventional BGK model. The parameters a*), b and
¢V can be determined from the relations

n 1
AWy 4%
3 = Jdv m o, (10)
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with p = nWMky T® + n @k, T, When these integrals are performed, we get
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From the expression for £ we can evaluate the pressure tensor and the heat flux
vector in the Navier—Stokes order. Thus, taking into account relations (11) and after
some algebra, it is straightforward to show that

J
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where we have introduced the shear viscosity # and the thermal conductivity A
coefficients given by

1= lim 3 Z(‘W%}?ﬁ, (14)
e 1_5 Z 1y G (15

and ny = p' 9/, , Ao = 3p'Vky/m{, can be considered as the shear viscosity and the
thermal conductivity coefficients given by the conventional BGK model [2]. The
pressure tensor and the heat flux vector expressions (12), (13) are similar to those
obtained from the BGK model [2] or the Boltzmann equation [5] using the Hilbert
expansion. However, now the limit required in the transport coefficients expressions
does not exist and so solution (9) is not uniformly convergent with respect to v. But
we can identify the transport coefficients with well-defined functions having the
same asymptotic series. In fact, considering the integral form for the factorials, we
can represent the transport coefficients by means of the well-defined functions

1= 3o jw dt exp (— 1)t exp (—t*/6), (16)
0

A= %10[1 — J‘w dt exp (— 1)t + t3/6) exp (—t2/6):|. an
o

We take equations (16) and (17) as the proper definitions of coefficients n and 4. In
this way, n and A can be understood as the Laplace transform f{s) of the functions
t exp (—t%/6) and (¢t + t3/6) exp (—t%/6) evaluated at s = 1. In accordance with
Laplace transform theory, we get the results

n= %'70[1 - \/(3;) exp (3) Erfc (\/%):I, . (18)
A= 9).0[5 -6 \/ (%) exp (3) Erfc (\/ %)], 19

where Erfc (x) is the complementary error function whose series representation is
given by [6]
2k+1

Erfc(x)=l—iexp(—x Z i

Jr S0 2k + ) 20)

Therefore, the transport coefficients can be represented by the convergent expan-

sions
i 3n 3
= 3| 1 —\/<2>exp(z)+3 ) mﬁ]
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Finally, we remark that the results obtained in this approximation are totally con-
sistent again with relations (4).

The author wishes to thank A. Casanovas for assistance on the computational
work.
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