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The kinetic granular temperatures of a binary granular
mixture in simple shear flow are calculated by means of
the Direct Simulation Monte Carlo method. The results
show that the temperature ratio is clearly different from
unity (as may be expected since the system is out of
equilibrium) and strongly depends on the restitution
coefficients as well as on the parameters of the mixture.
The influence of the temperature differences on the

rheological properties is also discussed. The results are

compared with the theoretical predictions obtained from
the Boltzmann kinetic theory by using a Sonine
polynomial expansion. The comparison shows an
excellent agreement over the range of parameters
investigated.
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INTRODUCTION

Although experimental and theoretical studies on
granular media have been mainly focused on
assemblies of identical particles, there appears to be
a recent growing interest among both theorists and
experimentalists in the more complicated case of
polydisperse systems. In this case, several kinetic
theory studies in the freely cooling [1,2] and
thermostatted steady [3] states have shown that the
kinetic temperatures of each species are different.
This violation of energy equipartition has been
subsequently confirmed in experiments of vibrated
granular mixtures [45] and in recent molecular
dynamics (MD) simulations [6] of the homogeneous
cooling state. When the system is sheared, a similar
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result has been found by Clelland and Hrenya [7]
from MD simulations of a binary-sized mixture of
inelastic, smooth hard disks engaged in rapid shear
flow. Their results were compared with previous
kinetic theory calculations [8,9] based on the
assumption of equipartition of granular energy.
As Clelland and Hrenya conclude [7], although this
equipartition-of-energy assumption does not appear
to have a great negative impact on the ability of those
earliest theories to predict the stress tensor in simple
shear flow, a multi-temperature theory must be more
appropriate.

The goal of this paper is to analyze the dependence
of the temperature ratio y=T;/T, on particle
properties as well as on compositional parameters
of a granular binary mixture subjected to the simple
shear flow. Our motivation is two-fold. First, the
calculation of -y allows one to assess the magnitude of
the equipartition violation and its dependence on the
parameters of the system. Second, given that in
general y # 1, we want also to evaluate what is the
influence of temperature differences on the rheo-
logical properties of the mixture. As will be shown
later, the consequences of the two-temperature effect
for the shear and normal stresses are significant,
especially for strong dissipation, and so energy
nonequipartition must be taken into account
in studying transport properties in granular
mixtures [10].

Due to the complexity of the general problem, here
we will restrict ourselves to the low-density regime.
In this context, and from a numerical point of view,
the Direct Simulation Monte Carlo (DSMC) method
[11] is the most convenient algorithm to study non-
equilibrium phenomena. It was devised to mimic the
dynamics involved in the Boltzmann collision term.
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The extension of the DSMC method to deal with
inelastic collisions is straightforward [2,12-14], and
here we have used it to numerically solve the
Boltzmann equation in the simple shear flow.
In addition, since the simple shear flow is spatially
homogeneous in the local Lagrangian frame, the
simulation method becomes especially easy to
implement. This is an important advantage with
respect to MD simulations. Also, the restriction to
this homogeneous state prevents us from analyzing
the possible instability of simple shear flow or the
formation of clusters or microstructures. A previous
study of the dependence of the temperature ratio on
the parameters of the mixture was carried out in Ref.
[14] for a three-dimensional system. In this paper, we
extend such analysis for a general d-dimensional
fluid as well as make a comparison with other
theories in the case of hard disks. In addition, apart
from computing the temperature ratio, we are also
interested in evaluating the elements of the stress
tensor in order to test the accuracy of our two-
temperature description with respect to previous
single-temperature theories.

In the context of kinetic theory, the only primary
attempts to include temperature differences in dense
granular mixtures were put forward by Jenkins and
Mancini [15] and more recently by Huilin et al.
[16,17]. These theories are applicable to a general
flow field. However, both works are phenomeno-
logical with no attempt to solve the kinetic equation.
Instead, they assume that the velocity distribution
functions are local Maxwellians. This can be
reasonable to estimate the dense gas collisional
transfer contributions to the fluxes, but not to
compute their kinetic contributions. As shown in
the following, the low-density results of the Jenkins
and Mancini theory [15] present important discre-
pancies with computer simulations and conse-
quently, this theory does not estimate well the
kinetic part of the stress tensor.

In this paper, the simulation results are compared
with those calculated from the nonlinear Boltzmann
equations for the velocity distribution functions for
the two species. This set of equations is first
analytically solved by using a Sonine polynomial
approximation, explicitly getting the temperature
ratio as function of the mass ratio, size ratio,
composition and restitution coefficients. Then, to
check the reliability of our theoretical predictions, we
compare them with those obtained from Monte
Carlo simulations for hard disks (d = 2) over a wide
range of parameter space. As happens in the three-
dimensional case [14], our theory compares quite
well with DSMC results.

The plan of the paper is as follows. In the second
section we describe the simple flow problem and
give a brief survey of the Sonine approximation
used. The computer simulation method employed to

numerically solve the Boltzmann equation for a
dissipative fluid under shear flow is described in the
third section. The paper is closed in the fourth
section with a careful comparison between theory
and simulation as well as with a brief discussion on
the results obtained.

SIMPLE SHEAR FLOW

Let us consider a granular binary mixture composed
by smooth inelastic disks or spheres of masses m;
and m, and diameters o and a». Collisions between
particles are inelastic and characterized by three
constant (independent) restitution coefficients a1,
az and app = ay;, where a5 =<1 refers to the
restitution coefficient for collisions between particles
of species i and j. The mixture is under simple shear
flow, namely, a macroscopic state with a constant
linear velocity profile U = a-r, where ay = a8, 8y, a
being the constant shear rate. In addition, the partial
densities n; and the (global) granular temperature
T are uniform. The simple shear flow state has
been extensively studied for molecular fluids as a
prototype problem to analyze nonlinear transport
properties [18]. Nevertheless, the nature of this state
is quite different in the case of granular fluids. While
for elastic fluids the temperature grows monotoni-
cally in time due to viscous heating, a steady state
is possible for granular media when the effect of
viscosity is exactly compensated by the
collisional cooling. In this case, the system reaches
a steady state and the temperature achieves a
constant value. This steady state is what we want
to analyze here. ‘

From a microscopic point of view, the simple
shear flow problem becomes spatially uniform in
the local Lagrangian frame moving with the flow
velocity U. In this frame, the velocity distribution
functions become uniform: fi(r,v)— fi(V), where
V=v-—1U is the peculiar velocity. Under these
conditions, the set of Boltzmann kinetic equations
read [14]

_avy%fi(V) = Z]ij[vlfi’f]']’ M
x j

where the Boltzmann collision operator J;[V|fi,f]
describing the scattering of pairs of particles is

J5tValfi, ,-]=05-_1Jdvzjd&@(&-gu)(&-gm

x| F VIV =FiV DR (VD). @)

Here, d is the dimensionality of the system, o; =
(0;+07)/2, & is a unit vector along their
line of centers, @ is the IHeaviside step
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function and g2 =V;— V2. In addition, the
primes on the velocities denote the initial values
\/1,\/ that lead to {Vi,V>} following a binary
collision:

Vll =V, — Wji (1 + a,-;l) (6"812)6'a

Vy = Vot w1+ a5 ) 68129,

where p;; = m;/(m; +m;).

Our study is mainly focused on the evaluation of
the partial temperatures T;, which measure the mean
kinetic energy of each species. In terms of the
distributions f;, they are defined as

an i Jdv m;V f1 @)

The temperature of the mixtureis T = x1T1 + x2T>,
where x; = n;/(n1 + n2) is the mole fraction of species
i. The balance equation of the granular temperature
for species i can be obtamed by multiplying the
Boltzmann equation (1) by m,V 2 and integrating over
V. The result is

Pz + g &pi =0, ®)

where p; = n;T;,
Pi=m; [aVVVQV), ©
is the partial pressure tensor of the species i and

& =2;l; is the cooling rate associated with the
partial temperature T;, where

1
6=~ g | EVRVIIVILL )

The total cooling rate { corresponding to the
granular temperature T is defined as

1 2
= TinTifi- ®
=1

The total pressure tensor of the mixture is

P=) P )

According to Eq. (5), in the steady state the
temperature ratio y = T1 /T, is given by the relation

_0bhPiy

. 10
x181P2 xy (10)

Thus, to get y one needs to determine the cooling
rates {; and the xy element of the partial pressure
tensors P An equation for the elements of P;
follows immediately from the definition (6) and

the Boltzmann equation (1}:

2
OGPt + Wi Pigme =y Ag KL, 11
j=1

where we have introduced the collisional moments

A,] as
Ay =m; JdVVVL-,-[VI fufid 12)

The determination of P; is a closed problem provided
the moments A;; are explicitly known. This requires the
knowledge of the velocity distribution functions f,
which is quite an intricate problem, even in the elastic
case. A useful way to estimate {; and A,;; is to expand f;
in Sonine polynomials. This approach is similar to the
usual moment method for solving kinetic equations in
the elastic case where the leading order truncation is
known tobe a good approximation. In the case of shear
flow, we take the leading Sonine approximation:

fitV) = fimWI1 + C; : Di(V)/2T 1] 13

where

. V2
Cizi—ﬂ, D,-(V)=mi(VV——71]>. 14)

Here, 1 is the dXd unit tensor and fiy is a
Maxwellian distribution at the temperature of the
species i, i.e.

m; \*? m;V?
fim(V) =n; (277,1,1) exp (“ 2T, ) (15)

With this approximation, the integrals appearing
in the expressions of the cooling rates ; and the
collisional moments A; can be explicitly evaluated.
Retaining only linear terms in C; and after a lengthy
calculation, one gets [19]

27@-D/2 a1, [0:+ 6 172
&ij ard ) i 0o ( 0., ) A+ ay)

(16)

0; + 6;
|:2 (1 + al]) :I >

]

7472 d 0; + 6, 32
Al-]- = — dF(d/Z) M ;o 103( 6. ) a+ aij)

d
X { l:)‘ij d+ 3,‘171(1 + az]):{
06;
+2 1+
(6:+ 6)

(1 d+3 0; + 6; Ve
(1 TiD 4 A,])c]]}. a)

In these expressions, vy = ﬁT(ml + myp) /mymyisa
thermal velocity defined in terms of the temperature

d+3 6,46 c.
2d+2 6 1)
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of the mixture T, and

01=1+x1(y—1), 02:1+x1(y—1)’ _(18)
M21Y M12

.u'q - I‘jioi
Aj=2
! 616

T 3(2d+3 3a;). (19)

Equations (16) and (17) extend previous
expressions [14] obtained in the three-dimensional
case. The approximation (17) allows one to solve the
set of equations (11) and express P; as a function of v,
- while the approximation (16) gives the cooling rates
;. When all these expressions are used in Eq. (10),
one gets a closed equation for the temperature ratio
v, that can be solved numerically. Once the
temperature ratio is known, the elements of the
pressure tensor P can be explicitly obtained.

DIRECT SIMULATION MONTE CARLO
METHOD

The DSMC method as applied to the simple shear
flow is as follows. The velocity distribution function
of the species i is represented by the peculiar
velocities {Vk} of N; “simulated” particles:

flV, - miss Z 8(V — Vi()). (20)

t=1

Note that the number of particles N; must be taken
according to the relation Ni/N, =ni/n;. At the
initial state, one assigns velocities to the particles
drawn from the Maxwell-Boltzmann probability
distribution:

Fi(V,0) = mm 2V #0)exp (—V2/Va(0), (1)

where V2,(0) = 2T(0)/m; and T(0) is the initial
temperature. To enforce a vanishing initial total
momentum, the velocity of every particle is
subsequently subtracted by the amount N; '3, V(0).

In the DSMC method, the free motion and the
collisions are uncoupled over a time step At which is
small compared with the mean free time and the
inverse shear rate. In the local Lagrangian frame,
particles of each species (i = 1,2) are subjected to the
action of a non-conservative inertial force F;=
—m;a-'V. This force is represented by the terms on
the left-hand side of Eq. (1). Thus, the free motion
stage consists of making Vi — Vi — a-ViAt. In the
collision stage, binary interactions between particles
of species i and j must be considered. To simulate
the collisions between particles of species i with j
a sample of (1/2)N; W) At pairs is chosen at random
with equiprobability. Here, ol is an upper bound
estimate of the probability that a particle of the
species i collides with a particle of the species j.

Let us consider a pair {k, £} belonging to this sample.
Here, k denotes a particle of species i and £ a particle
of species j. For each pair [k, £} with velocities {Vj,
Vi), the following steps are taken: (1) a given
direction &y, is chosen at random with equiprob-
ability; (2) the collision between particles k and
£ is acce ted with a probability equal to
O(gre-Ore)w / w2, where gre =Viy—Veand o (U)
24- 102n]|gke -Gyel, G being the total cross-section for
colhslons i—j; (@) if the collision is accepted,
postcollisional velocities are assigned to -both
particles according to the scattering rules:

Vi — Vi — wi(1 + o) (gre Gre) ke (22)
Ve— Ve + w1 + ay) (8re Ore) ke (23)

In the case that in one of the collisions w}djz > wg{z,x,

the estimate of wm)ax is updated as wg{)ax = w D The
procedure described above is performed for i =1,2
and j=1,2.

In the course of the simulations, one evaluates the
total pressure tensor P and the partial temperatures
T;. They are given as

2 N
P=> 25y vy, @4)
i=1 k=1
N;
M2
T; dN,-;V"' (25)

To improve the statistics, the results are averaged -
over a number 4 of independent realizations or
replicas. In our simulations we have typically taken a
total number of particles N=N;+N,=10° a
number of replicas A" =10, and a time step At =
3%x1073A11/Vp1(0), where Ay = (v2ma3)7! is the
mean free path for collisions 1 — 1.

As mentioned above, in the simulations the initial
velocity distribution function is that of local
equilibrium (21). After an initial transient period,
the system reaches the steady state. The values
obtained for the reduced quantities y and P* = P/nT
in this state are independent of the inijtial preparation
of the system, and only depend on the values of the
restitution coefficients and the ratios of mass,
concentration and sizes. We will mainly focus on
the influence of the restitution coefficients and the
parameters of the mixture on the (steady) tempera-
ture ratio.

RESULTS AND DISCUSSION

A full presentation of the results is not possible
because of the complexity of the parameter space:
11, Q, K1y, ml/mz, Xq and 0'1/0'2. As in Ref. [7],
we assume for simplicity that the spheres or
disks are made of the same material, and thereby
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a1 = Q@ =0 =« and ml/m2 = (0’1/0’2)d. This
reduces the parameter space to «, x; and o1/ 0». As
expected, our results show that in general the kinetic
temperatures of the mixture are different (y # 1).
There are only two trivial exceptions: the elastic case
(a=1) and the case of mechanically equivalent
particles (m; = m,, (01 = 02)). Beyond these cases,
the dependence of y on the parameters of the
problem is quite intricate. As an illustration, we plot
the simulation results and the theoretical predictions
for the temperature ratio T1/T; versus the diameter
ratio o/ o, for x; = 1/3 (Fig. 1) and x; = 1/2 (Fig. 2)
for three different values of a: @ = 0.95, « = 0.9 and
o = 0.8. We have considered the two-dimensional
case (d=2). Also, for comparison we show the
kinetic theory predictions of Jenkins and Mancini
[15] particularized to the low-density regime.

It is apparent that an excellent agreement between
Monte Carlo simulations (symbols) and our theory is
found over the entire range of values of size and
mass ratios considered. Although the solid fractions
considered by Clelland and Hrenya [7] prevent us
from making a quantitative comparison between our
theory and their MD simulations, we observe that
the behavior of y in dilute systems is qualitatively
similar to that found in Ref. [7] for a finite-density
systems. Thus, for instance, at a given value of « the
granular energy of the larger particle (say for
instance, species 1) increases relative to that of the
smaller particle as the size ratio o7/ 0 increases. Both
Monte Carlo simulation and theory show that the
temperature ratio presents a strong dependence on
the restitution coefficient. With respect to the
influence of composition, comparison of Figs. 1
and 2 indicates that vy exhibits a very weak
dependence on the mole fraction x;. This behavior
has been also found in recent experiments [4,5]
carried out on binary vibrated granular gases and in
MD simulations of the free cooling case. [6] We also

o, /o,

FIGURE1 Plot of the temperature ratio T; /T, as a function of the
size ratio (g /a3)* = m;/m, for a two-dimensional system in the
case x; =1/3 and three different values of the restitution
coefficient a: (a) @ =0.95, (b) = 0.9 and (c) = 0.8. The solid
lines are the theoretical predictions while the symbols refer to the
Monte Carlo simulation results. The dashed line corresponds to
the prediction given by the theory of Jenkins and Mancini [15] in
the case « = 0.8.

2 3
/0,

FIGURE2 Plot of the temperature ratio T1 /T, as a function of the
size ratio (ay/0,)* = my/m; for a two-dimensional system in the
case . x; =1/2 and three different values of the restitution
coefficient oz (a) @ =0.95, (b) = 0.9 and (c) a = 0.8. The solid
lines are the theoretical predictions while the symbols refer to the
Monte Carlo simulation results. The dashed line corresponds to
the prediction given by the theory of Jenkins and Mancini [15] in
the case a =0.8.

see that all the above trends are qualitatively
reproduced by the theory of Jenkins and Mancini
[15] (which is restricted to nearly elastic disks),
although they are, however, strongly exaggerated.
This is basically due to the fact that the theory of
Jenkins and Mancini is especially targeted to dense
systems where the collisional transport effects are
more important than the kinetic ones.

An interesting point is to assess the influence of the
temperature differences on the rheological proper-
ties of the mixture. Although the comparison carried
out in Ref. [7] between previous theories (based on a
single temperature) and simulation shows a quali-
tative good agreement at the level of the shear
stresses, one expects that the new contributions
coming from the energy difference leads to an
improvement over previous theoretical predictions.
In Fig. 3, we plot the dimensionless stresses —P,, and
P! versus the restitution coefficient in the case x; =
17‘/2 and m; /my = (01 = 0»)* = 10. Also shown in this
Fig. 3 is the result which would be obtained if
the differences in the partial temperatures were

1.0 T ' | 1—‘.
06 : et ..________....._ _
A i---._.._..__ _
A P *

02} RS

0.0 L L 1 1 1 -
05 0.6 0.7 0.8 0.9 1.0

o

FIGURE 3 Plot of the reduced elements of the pressure tensor
P,, =Py/nT and P, = Py,/nT as a function of the restitution
coefficient « for a two-dimensional system in the case (o1/ o) =
my /m; = 10 x; = 1/2. The solid lines are the theoretical predictions
while the symbols refer to the Monte Carlo simulation results. The
dashed lines correspond to the theoretical results by assuming the
equality of the partial temperatures T, /T, = 1.
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neglected [ie. 6= “];1 in Egs. (16) and (17)].
In general, inclusion of the two-temperature effects
represents a significant improvement of the theory,
especially in the case of the shear stress P;y, which is
the most relevant rheological property in a sheared
flow problem. This justifies the use of a two-
temperature description to capture the dependence
of stresses on dissipation.

In summary, we have calculated the temperature
ratio of a sheared granular mixture by means of the
Monte Carlo simulation method. As was also found
in recent MD simulations [7], our results show that
the temperature ratio strongly depends on dissipa-
tion and the mechanical parameters of the mixture,
especially on the ratios of mass and size. In addition,
the effect of temperature differences on rheology is
important, especially in the case of the shear stress.
The simulation results have been compared with
those obtained analytically from the nonlinear
Boltzmann equations by using a first-Sonine poly-
nomial approximation. The accuracy of the theoreti-
cal predictions have been confirmed showing that the
inclusion of the temperature ratio in the calculations
leads to an improvement with respect to the
predictions made from a single-temperature theory.
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