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Shear viscosity for a moderately dense granular binary mixture
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The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing
uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first
analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as
for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine
polynomial approximation. In the leading order, we determine the shear viscosity in terms of the control
parameters of the problem: solid fraction, composition, mass ratio, size ratio, and restitution coefficients. Both
kinetic and collisional transfer contributions to the shear viscosity are considered. To probe the accuracy of the
Chapman-Enskog results, the Enskog equation is then numerically solved for systems driven by a Gaussian
thermostat by means of an extension to dense gases of the well-known direct simulation Monte Carlo method
for dilute gases. The comparison between theory and simulation shows, in general, an excellent agreement over
a wide region of the parameter space.
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I. INTRODUCTION

An usual way of capturing the dissipative nature of gran
lar media is through an idealized fluid of smooth, inelas
hard spheres. Despite the simplicity of the model, it has b
shown to be quite useful in describing the dynamics
granular materials under rapid flow conditions@1,2#. The es-
sential difference from molecular fluids is the absence
energy conservation, leading to both obvious and su
modifications of the Navier-Stokes hydrodynamic equatio
Although many efforts have been made in the past few ye
in the understanding of granular fluids, the derivation of
form of the transport coefficients remains a topic of inter
and controversy. This problem has been addressed usin
inelastic Boltzmann equation or its dense fluid generali
tion, the Enskog equation. Assuming the existence of a n
mal solution for sufficiently long space and time scales,
Chapman-Enskog method@3#, conveniently adapted to in
elastic collisions, has been applied to get the Navier-Sto
transport coefficients. For a monocomponent gas at low d
sity, the above coefficients have been explicitly determin
as functions of the restitution coefficient@4–6# from ap-
proximate solutions of the corresponding kinetic equatio
The accuracy of these approximate results has been then
firmed by computer simulations@6,7#. The analysis for dilute
gases has been also extended to finite densities in the co
of the revised Enskog kinetic theory~RET! @8#. This hydro-
dynamic theory successfully models the density and te
perature profiles obtained in a recent experimental study
three-dimensional system of mustard seeds fluidized by
tical container vibrations@9#.

The majority of the studies on granular fluids are confin
to monocomponent systems, where the particles are of
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same mass and size. However, a real granular system i
ways characterized by some degrees of polydispersity in d
sity and size, which often leads to segregation of an oth
wise homogeneous mixture. Needless to say, the analys
transport for multicomponent systems is much more
volved than for a monocomponent gas. Not only the num
of transport coefficients is higher but also they are functio
of parameters such as the mole fractions, the mass ratios
size ratios, and the restitution coefficients. For this reas
most of the previous studies@10# are restricted tonearly
elastic spheres. In addition, they usually assume energy
uipartition so that the partial temperaturesTi are made equa
to the global granular temperatureT. Nevertheless, recen
experiments of vibrated mixtures in three@11# and two@12#
dimensions clearly show the breakdown of energy equipa
tion. Related findings have also been reported by using
netic theory tools@13,14# and computer simulations@15,16#.
To the best of our knowledge, the only kinetic theory de
vation of hydrodynamics for a granular binary mixture at lo
density which takes into account nonequipartition of granu
energy has been made by Garzo´ and Dufty@17#. They solved
the Boltzmann equation by applying the Chapman-Ens
method to obtain the Navier-Stokes equations and deta
expressions for the transport coefficients. In the case of
shear viscosity, the reliability of the kinetic theory predi
tions has also been assessed@18# in a wide parameter spac
by comparing those predictions with the results obtain
from a numerical solution of the Boltzmann equation
means of the direct simulation Monte Carlo~DSMC! method
@19#. The comparison shows an excellent agreement betw
theory and simulation.

The objective here is to extend the analysis carried ou
Ref. @18# for the shear viscosity to higher densities by usi
the RET. The RET for elastic collisions@20# is known to be
an accurate theory over the entire fluid domain. Its gener
zation to inelastic collisions is straightforward~see, for ex-
ample, Ref.@21#! and the Chapman-Enskog method can
©2003 The American Physical Society02-1
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applied to obtain the transport coefficients. However,
derivation of the hydrodynamic equations for a binary m
ture described by the RET is more complicated than in
case of the Boltzmann equation, due mainly to the techn
difficulties associated with the spatial dependence of the
correlation function. To simplify this analysis, here attenti
is restricted to the special hydrodynamic state of unifo
shear flow~USF!. At a macroscopic level, this state is cha
acterized by constant partial densitiesni , uniform tempera-
tureT, and a linear flow velocity profileui5ayx̂, a being the
constant shear rate. For this particular problem the RET
duces to the original phenomenological kinetic theory p
posed by Enskog@22#. We solve the Enskog equation up
first order in the shear rate and evaluate both kinetic
collisional transfer contributions to the shear viscosity. T
transport coefficient is expressed in terms of the solution
set of coupled linear integral equations, which are th
solved approximately~first Sonine polynomial approxima
tion! just as in the case of elastic collisions. As done in
low-density analysis@18#, the Sonine solution is compare
with a numerical solution of the RET by using the Ensk
simulation Monte Carlo~ESMC! method@23#, which is an
extension to the Enskog equation of the well-known DSM
method@19#.

In a molecular fluid under USF, unless a thermostat
force is introduced, the temperature grows in time due
viscous heating. As a consequence, the average collision
quency n(t)}T1/2(t) increases with time and the reduce
shear ratea* 5a/n goes to zero in the long time limit. Thi
fact allows one to identify in the simulation the Navie
Stokes shear viscosity coefficienth for sufficiently long
times. This route has been shown to be quite efficien
measureh for dilute and dense gases@23,24#. For a granular
fluid, there is an additional energy sink term in the balan
equation for the temperature competing with the visco
heating term. However, if the effect of the former term
exactly compensated by for the action of an external driv
force, the viscous heating prevails and the shear viscosity
be again identified in the limita* →0, just as in the elastic
case. This was the procedure followed in Ref.@18# to mea-
sureh from the simulation in the long time limit. It must b
noted that the value ofh calculated in this way~driven case!
not necessarily coincides with the value of the shear visc
ity obtained in the free cooling case~unforced case!.

There are several motivations for this study. First,
want to assess to what extent the previous results obta
for the low-density regime are indicative of what happens
finite densities. Second, the comparison between theory
simulation allows one to check the degree of reliability of t
approximate Sonine solution over a wide region of param
space. Finally, by extending the Boltzmann analysis to hig
densities, comparison with molecular dynamics simulatio
becomes practical. This comparison would determine the
lidity ~or limitations! of the kinetic and hydrodynamic de
scriptions for granular flow. Such a test is essential to cla
the frequently made speculation that the above descript
of granular flow are limited to weak dissipation. Some p
vious comparisons@16,25# support the hydrodynamic de
scription, beyond complications due to possible instabiliti
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The plan of the paper is as follows. In Sec. II we revie
the Enskog theory and deduce the associated macrosc
conservation equations. The Chapman-Enskog method is
plied in Sec. III to solve the Enskog equation in the US
state through first order in the shear rate. An explicit expr
sion for the shear viscosity coefficient is obtained in Sec.
by using a lowest order expansion in Sonine polynomia
This transport coefficient is given in terms of the restituti
coefficients, the temperature, the solid fraction, and the
rameters characterizing the mixture~masses, sizes, concen
trations!. Section V deals with the Monte Carlo simulation
the Enskog equation particularized to USF. The compari
between theory and simulation is carried out in Sec.
while a brief discussion on the relevance of the results
tained is given in Sec. VII.

II. ENSKOG KINETIC THEORY
AND CONSERVATION LAWS

We consider a binary mixture of smooth hard spheres
massesm1 andm2, and diameterss1 ands2. The inelastic-
ity of collisions among all pairs is characterized by thr
independent constant coefficients of normal restitutiona11,
a22, and a125a21, wherea i j is the restitution coefficient
for collisions between particles of speciesi and j. Due to the
intrinsic dissipative character of collisions, in order to ke
the system under rapid flow conditions it is usual to intr
duce an external driving force~thermostat! which does work
to compensate for the collisional loss of energy. This mec
nism of energy input~different from those of shear flows o
flows through vertical pipes! has been used for many autho
in the past years to study different problems, such as n
Gaussian properties of the velocity distribution functi
@26,27#, long-range correlations@28#, collisional statistics
and short-scale structure@29#, or transport properties@30#. In
this paper, for simplicity, we introduce a deterministic for
proportional to the peculiar velocityV ~Gaussian thermo-
stat!. This thermostat has been frequently employed in n
equilibrium molecular dynamics simulations of elastic pa
ticles @31#. Under these conditions, the Enskog kine
equation for the one-particle velocity distribution function
speciesi is given by

~] t1v1•“ ! f i1
1

2
j

]

]v1
•~V1f i !5(

j 51

2

Ji j
E@r ,v1u f i~ t !, f j~ t !#,

~1!

where the constantj is chosen to be the same for both sp
cies. Here,V15v12u, u being the flow velocity. The En-
skog collision operatorJi j

E@ f i , f j # is @21#

Ji j
E@r ,v1u f i , f j #

5s i j
2 E dv2E dŝQ~ŝ•g!~ŝ•g!@a i j

22x i j

3~r ,r2si j ! f i~r ,v18 ;t ! f j~r2si j ,v28 ;t !

2x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !#,

~2!
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wheresi j 5s i j ŝ, with s i j 5(s i1s j )/2 andŝ is a unit vec-
tor directed along the line of centers from the sphere of s
cies i to the sphere of speciesj upon collision~i.e., at con-
tact!. In addition, Q is the Heaviside step function, andg
5v12v2. The primes on the velocities denote the initial va
ues$v18 ,v28% that lead to$v1 ,v2% following a binary collision:

v185v12m j i ~11a i j
21!~ŝ•g!ŝ,

v285v21m i j ~11a i j
21!~ŝ•g!ŝ, ~3!

wherem i j 5mi /(mi1mj ). Finally, x i j @r ,r1si j u$n,%# is the
equilibrium pair correlation function of two hard sphere
one of speciesi and the other of speciesj, at contact, i.e.,
when the distance between their centers iss i j . In the origi-
nal phenomenological kinetic theory of Enskog@22# ~which
is usually referred to as the standard Enskog theory!, thex i j
are the samefunctionsof the densities$n,% as in a fluid
mixture in uniform equilibrium. Here,

ni5E dvf i~v! ~4!

is the number density of speciesi. On the other hand, this
choice forx i j leads to some inconsistencies with irreversib
thermodynamics. In particular, the standard Enskog the
does not verify Onsager’s reciprocity relations. In order
resolve it, van Beijeren and Ernst@20# proposed an alterna
tive generalization to the Enskog equation for mixtur
which is usually referred to as the RET. In the RET, thex i j
are the samefunctionalsof the densities$n,% as in a fluid in
nonuniformequilibrium. This fact increases considerably t
technical difficulties involved in the derivation of the gene
hydrodynamic equations from the RET@32,33#, unless the
partial densities are uniform.

The macroscopic balance equations for the particle n
ber of each species, the total momentum, and the total en
follow directly from Eq. ~1! by multiplying by 1,miv, and
1
2 miv

2, respectively, integrating overv, and summing overi.
They are given by

]

]t
ni1“•~niu!1

“• j i

mi
50, ~5!

]

]t
u1u•“u1r21

“•P50, ~6!

]

]t
T1u•“T2

T

n (
i 51

2
“• j i

mi
1

2

3n
~“•q1P:“u!

52~z2j!T. ~7!
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Here,z is the cooling rate due to inelastic collisions amo
all species. The flow velocityu and the ‘‘granular’’ tempera-
ture T are defined by

ru5(
i 51

2 E dvmivf i~v!, ~8!

nT5(
i 51

2 E dv
mi

3
V2f i~v!, ~9!

wheren5n11n2 is the total number density, andr5m1n1
1m2n2 is the total mass density. The mass fluxj i for species
i relative to the local flow is given by

j i5miE dvV f i~v!. ~10!

The pressure tensorP and the heat fluxq have bothkinetic
and collisional transfer contributions, i.e., P5Pk1Pc and
q5qk1qc. The kinetic contributions are given by

Pk5(
i 51

2 E dvmiVV f i~v!, ~11!

qk5(
i 51

2 E dv1
2 miV

2V f i~v!, ~12!

while the collisional transfer contributions to the pressu
tensor and the heat flux are, respectively,

Pc~r ,t !5(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!2ŝŝ

3E
0

1

dlx i j @r2~12l!si j ,r1lsi j # f i

3@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !,

~13!

qc~r ,t !5(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2

3E dv1E dv2E dŝ Q~ŝ•g!~ŝ•g!2ŝ

3F ~ŝ•Gi j !1
1

4

mj2mi

mi1mj
~12a i j !~ŝ•g!G
2-3



i-

a
n
u
al

-

flu
is

ia

h

te
ha

g
he
e

or
e
w

s
ry
o
-

t in
-
ro
ck

se
n-

en-

be-
ting
n-
ym-

n is

s-

s
ty

tor

al
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3E
0

1

dlx i j @r2~12l!si j ,r1lsi j #

3 f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !.

~14!

Here,Gi j 5m i j V11m j i V2 is the center-of-mass velocity. F
nally, the cooling ratez in Eq. ~7! is

z~r ,t !5
1

6nT (
i 51

2

(
j 51

2

s i j
2 mimj

mi1mj
~12a i j

2 !

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!3

3x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !.

~15!

The derivation of Eqs.~13!–~15! is given in Appendix A.
The collisional transfer contributions are due to the deloc
ization of the colliding pair and the additional density depe
dence of the RET. They vanish in the low-density limit b
dominate at high densities. In the case of mechanic
equivalent particles (m15m2 , a115a225a12[a, s15s2
[s, x i j [x), Eqs.~13!–~15! reduce to those previously ob
tained in the monocomponent case@21#.

The balance equations contain the mass flux, the heat
and the pressure tensor as specific averages over the d
bution functionsf i . The Chapman-Enskog method@3# pro-
vides a solution of the RET for states with small spat
variations in the form

f i~r ,v1 ,t !5 f i@v1un1~r ,t !,T~r ,t !,u~r ,t !#. ~16!

This means that all space and time dependence off i(r ,v1 ,t)
occurs entirely through a functional dependence on the
drodynamic fields. Such a solution is callednormal and it is
the basis for a fluid dynamics description of granular ma
rials. Regarding the energy input mechanism we see t
according to the energy balance equation~7!, the existence of
a driving with the choicej5z compensates for the coolin
effect due to the inelasticity of collisions. In that case, t
macroscopic balance equations look like those of a conv
tional mixture with elastic collisions, although the transp
coefficients entering in the constitutive equations are, in g
eral, different from those of a gas of elastic particles. Ho
ever, the evaluation of the complete transport coefficient
the RET for a multicomponent granular mixture is a ve
hard task and here we will pay attention to the shear visc
ity coefficient only. Specifically, this coefficient will be de
termined in a particular simple situation~uniform shear flow!
where the velocity field is the only inhomogeneity presen
the system. In this case, thex i j are uniform so that the stan
dard and revised Enskog theories are equivalent in this p
lem. Further, the simplicity of this state allows us to che
04130
l-
-
t
ly

x,
tri-

l

y-

-
t,

n-
t
n-
-
of

s-

b-

our theoretical predictions for the shear viscosity with tho
obtained from a numerical solution of the corresponding E
skog equation.

III. SHEAR VISCOSITY OF A DENSE GRANULAR
BINARY MIXTURE

As said above, we want to solve the Enskog equation~1!
in the specific state of the USF. In this state, the partial d
sitiesni and the temperatureT are uniform, while the veloc-
ity field is due to a simple shear

u15u25u5ayx̂, a5
]ux

]y
5const. ~17!

The temperature changes in time due to the competition
tween two mechanisms: on the one hand, viscous hea
and, on the other hand, energy dissipation in collisions. U
der these conditions, the mass and heat fluxes vanish by s
metry reasons and the~uniform! pressure tensorP is the only
nonzero flux of the problem. The relevant balance equatio
that for temperature~7!, which reduces to

] tT1
2

3n
aPxy52~z2j!T. ~18!

At a microscopic level, the USF is generated by Lee
Edwards boundary conditions@34# which are simply periodic
boundary conditions in the local Lagrangian frameV5v
2a•r andR5r2a•r t. Here,a is the tensor with element
aab5adaxdby . In terms of the above variables, the veloci
distribution functions are uniform@35#

f i~r ,v,t !5 f i~V,t !, ~19!

and the Enskog equation takes the form

] t f i2aVy

]

]Vx
f i1

1

2
j

]

]V
•~V f i !5(

j 51

2

Ji j
E@Vu f i~ t !, f j~ t !#.

~20!

In the Lagrangian frame, the Enskog collision opera
Ji j

E@Vu f i(t), f j (t)# becomes

Ji j
E@V1u f i , f j #5s i j

2 x i j E dV2E dŝQ~ŝ•g!~ŝ•g!

3@a i j
22f i~V18 ,t ! f j~V281as i j ŝyx̂,t !

2 f i~V1 ,t ! f j~V22as i j ŝyx̂,t !#. ~21!

Here, we have taken into account thatx i j is uniform in the
USF problem. Finally, the expressions for the collision
transfer contribution to the pressure tensorPc and the cool-
ing ratez in the Lagrangian frame are
2-4
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Pc5
1

2 (
i 51

2

(
j 51

2
mimj

mi1mj
x i j s i j

3 ~11a i j !

3E dV1E dV2E dŝQ~ŝ•g!~ŝ•g!2

3ŝŝf i~V11as i j ŝyx̂,t ! f j~V2 ,t !, ~22!

z5
1

6nT (
i 51

2

(
j 51

2
mimj

mi1mj
x i j s i j

2 ~12a i j
2 !

3E dV1E dV2E dŝQ~ŝ•g!~ŝ•g!3

3 f i~V11as i j ŝyx̂,t ! f j~V2 ,t !. ~23!

The normal solution for the USF state adopts the form

f i~r ,v,t !5 f i„V,T~ t !…, ~24!

i.e., all the space dependence is accounted for by the
velocity while all the time dependence appears through
temperature. The Chapman-Enskog method provides
normal solution as an expansion for small spatial gradie
i.e., as a power series in the shear ratea,

f i5 f i
(0)1 f i

(1)1•••, ~25!

where f i
(k) is of order k in a. The time derivatives of the

fields, the Enskog collision operator, and the pressure te
are also expanded as

] t5] t
(0)1] t

(1)1•••, Ji j
E5Ji j

(0)1Ji j
(1)1•••, ~26!

P5P(0)1P(1)1•••. ~27!

The coefficients in the time derivative expansion are ide
fied by a representation of the momentum flux, the cool
rate, and the external parameter forcej in the energy balance
equation~18! as a similar series through their definitions
functionals of f i . Consequently, the action of the operat
] t

(k) is

] t
(0)T52~z (0)2j (0)!T, ] t

(1)T50, ~28!

] t
(k)T52

2

3n
aPxy

(k21)2~z (k)2j (k)!T, k>2. ~29!

Upon writing these equations we have taken into acco
that Pxy

(0)5z (1)5j (1)50. The last equality follows from the
fact that the cooling rate is a scalar, and contributions toz in
the first order in the gradients can arise only from“•u,
which is zero in the USF.

The leading term is the solution to the nonlinear equat
04130
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] t
(0)f i

(0)1
1

2
j (0)

]

]V
•~V f i

(0)!5(
j 51

2

Ji j
(0)@ f i

(0) , f j
(0)#, ~30!

where

Ji j
(0)@ f i

(0) , f j
(0)#5x i j s i j

2 E dV2E dŝQ~ŝ•g!~ŝ•g!

3@a i j
22f i

(0)~V18! f j
(0)~V28!

2 f i
(0)~V1! f j

(0)~V2!#. ~31!

Dimensional analysis requires thatf i
(0)(V) must be of the

form

f i
(0)~V!5niv0

23F i~V/v0!, ~32!

where

v05A2T(
i 51

2

mi
21 ~33!

is a thermal velocity defined in terms of the temperatureT of
the mixture. According to Eq.~32!, the time derivative in Eq.
~30! can be represented more usefully as

] t
(0)f i

(0)52~z (0)2j (0)!T]Tf i
(0)5

1

2
~z (0)2j (0)!

]

]V
•~V f i

(0)!.

~34!

The Enskog equation at this order can be written finally

1

2
z (0)

]

]V
•~V f i

(0)!5(
j 51

2

Ji j
(0)@ f i

(0) , f j
(0)#. ~35!

Therefore, Eq.~30! happens to be formallyidentical to the
one obtained in the unforced case~i.e., with j50) @13#, and
consequently there is an exact correspondence betwee
homogeneous cooling state and this type of driven ste
state. This is one of the advantages of the Gaussian the
stat. Since the distribution functionsf i

(0) are isotropic, the
zeroth order pressure tensor is found from Eqs.~11! and~22!
asPab

(0)5pdab , where the pressurep is

p5(
i 51

2

niTi1
1

6 (
i 51

2

(
j 51

2
mimj

mi1mj
s i j

3 x i j ~11a i j !

3E dV1E dV2f i
(0)~V1! f j

(0)~V2!E dŝQ~ŝ•g!~ŝ•g!2

5(
i 51

2

niTi1
2p

3 (
i 51

2

(
j 51

2

s i j
3 x i j ninjm j i ~11a i j !Ti . ~36!

Here, we have introduced the kinetic temperaturesTi for
each species defined as
2-5
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3

2
niTi5E dv

mi

2
V2f i

(0) . ~37!

As said in the Introduction, in general the partial tempe
tures Ti differ from the ~global! temperatureT and so the
total energy is not equally distributed between both spe
~breakdown of energy equipartition!.

The analysis to first order ina is worked out in Appendix
B. The distributionf 1

(1) obeys the integral equation

F ~j (0)2z (0)!T]T1
1

2
j (0)

]

]V
•V1L1G f 1

(1)1M1f 2
(1)

5aVy

]

]Vx
f 1

(0)1a(
j 51

2

L1 j@ f 1
(0) , f j

(0)#. ~38!

A similar equation can be obtained forf 2
(1) , by just making

the changes 1↔2. The specific forms of the linear operato
Li ,Mi , andL i j are also given in Appendix B. The contr
butions f i

(0) and f i
(1) determine the pressure tensorP(1) to

first order in the shear rate. The result is

Pab
(1)52ha~daxdby1daydbx!, ~39!

where h is the shear viscosity coefficient. This coefficie
has kinetic and collisional transfer contributions

h5hk1hc. ~40!

The kinetic contributionhk is given by

hk5(
i 51

2

h i
k , h i

k52
mi

a E dVVxVyf i
(1)~V!, ~41!

while the collisional contributionhc is

hc5
4p

15 (
i 51

2

(
j 51

2

s i j
3 x i j ~11a i j !njm j i Fh i

k

1
mis i j

4nj
E dV1E dV2f i

(0)~V1! f j
(0)~V2!gG . ~42!

IV. SONINE POLYNOMIAL APPROXIMATION

For practical purposes the integral equations~35! and~38!
for f i

(0) and f i
(1) are solved by using low order truncation
04130
-

s

expansions in a series of Sonine polynomials. The poly
mials are defined with respect to a Gaussian weight fa
whose parameters are chosen such that the leading ter
the expansion yields the exact moments of the entire dis
bution with respect to 1,miv, and 1

2 miv
2. In the leading

order, the distributionF i appearing in Eq.~32! is given by

F i~V* !→S u i

p D 3/2

e2u iV* 2F11
ci

4 S u iV* 425u iV* 21
15

4 D G ,
~43!

whereV* 5V/v0,

u i5
mi

g i
(
j 51

2

mj
21 , ~44!

and g i5Ti /T. For elastic collisions,g i51, i.e., the partial
temperaturesTi coincide with the global temperatureT. In
the inelastic case,g iÞ1 and presents a complex dependen
on the parameters of the problem. The coefficientsci ~which
measure the deviation ofF i from the reference Maxwellian!
are determined consistently from the Enskog equation.
proximation~43! provides detailed predictions for the coo
ing ratez (0), the temperature ratioT1 /T2, and the cumulants
ci as functions of the mass ratio, size ratio, compositi
density, and restitution coefficients@13#. Recently, the accu-
racy of this approximate solution has been confirmed
Monte Carlo@15# and molecular dynamics simulations@16#
over a wide range of values in the parameter space.

In the case of the distributionsf i
(1) , the leading Sonine

approximation is

f i
(1)→2a fi ,M

mih i
k

niTi
2

VxVy ,

f i ,M~V!5ni~mi /2pTi !
3/2exp~2miV

2/2Ti !. ~45!

By using Eq.~45!, the partial kinetic contributionsh i
k to the

shear viscosity can be obtained from Eq.~38! by multiplying
it with miVxVy and integrating over the velocity. From d
mensional analysish i

k}T1/2 and so one gets the coupled s
of equations
S t112
1
2 ~j (0)1z (0)! t12

t21 t222
1
2 ~j (0)1z (0)!

D S h1
k/n1T1

2

h2
k/n2T2

2D 5S T1
212L̃112L̃12

T2
212L̃212L̃22

D , ~46!
2-6
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where

t i i 5
1

niTi
2E dVmiVxVyLi~ f i

(1)!, ~47!

t i j 5
1

niTi
2E dVmiVxVyMi~ f j

(1)! ~ iÞ j !, ~48!

L̃ i j 5
1

niTi
2E dVmiVxVyL i j @ f i

(0) , f j
(0)#. ~49!

Integrals~49! are evaluated in Appendix C, while the coll
sion integrals~47! and ~48! were already evaluated in th
Boltzmann limit ~except for the factorx i j ). The explicit
forms of these integrals are also quoted in Appendix C. T
solution of Eq.~46! with the matrix elements known is e
ementary and so the kinetic contributionhk to the shear vis-
cosity can be easily calculated from Eq.~41!. Finally, use of
Eq. ~43! in Eq. ~42! determines the collisional transfer co
tribution to the shear viscosity. The result is~see Appendix
C!

hc5
4p

15 (
i 51

2

(
j 51

2

s i j
3 x i j ~11a i j !njm j i

3H h i
k1minis i j S miTj1mjTi

2pmimj
D 1/2

3F12
ci

8 S mjTi

miTj1mjTi
D 2G J . ~50!

Equations~41!, ~46!, and~50! provide the explicit expres
sion for the shear viscosityh of a dense granular binar
mixture under driven USF in the first Sonine approximatio
This coefficient is given in terms of the restitution coef
cientsa11, a22, anda12, the temperatureT, and the param-
eters of the mixture, namely, the massesmi , the sizess i , the
mole fractionsxi , and the solid volume fractionf5f1

1f2. Here,f i5(p/6)nis i
3 is the species volume fraction o

the componenti. To get the explicit dependence ofh on f,
the form of the pair correlation functionx i j at contact must
be chosen. A good approximation forx i j for a mixture of
hard spheres is given by the generalized Carnahan-Sta
form @36#

x i j 5
1

12f
1

3

2

b

~12f!2

s is j

s i j
1

1

2

b2

~12f!3 S s is j

s i j
D 2

,

~51!

whereb5p(n1s1
21n2s2

2)/6.
Before studying the general dependence ofh on the pa-

rameter space, let us consider some special limit cases. I
elastic limit, a115a225a1251, z50, g i51, u151/m21,
04130
e

.

ng

the

u251/m12, andc15c250. In this case, the shear viscosi
coefficient of an unforced (j50) mixture can be written as

h5(
i 51

2 S 11
8p

15 (
j 51

2

s i j
3 x i j njm j i Dh i

k

1
4

15 (
i 51

2

(
j 51

2 S 2pmimjT

mi1mj
D 1/2

ninjs i j
4 x i j , ~52!

where now the kinetic contributionsh i
k verify the set of

equations~46! with z (0)5j (0)50 and

t i j 5
16

15 (
,51

2 n,s i ,
2 x i ,

~mi1m,!3/2S 2pTm,

mi
D 1/2

3~5mid i j 13m,d i j 22mid j ,!, ~53!

L̃ i j 52
8p

15

njs i j
3

T
m j i x i j . ~54!

Equations~52!–~54! agree with the first Sonine approxima
tion to the coefficient of shear viscosity of a molecular g
mixture of hard spheres@37#. In the case of mechanically
equivalent ~inelastic! particles, g i51, z15z2[z, and c1
5c2[c, where

z5
4

3
ns2ApT

m
~12a2!S 11

3c

32D , ~55!

c5
32~12a!~122a2!

81217a130a2~12a!
. ~56!

In this case, Eqs.~41!, ~46!, and~50! yield

h5hkF11
4fx~11a!

5 G1
4

5
AnT

p
fnxs~11a!S 12

c

32D ,

~57!

and the kinetic parthk is

hk5
nT

nh2 1
2 ~j (0)1z (0)!

F12
2

5
~11a!~123a!fxG ,

~58!

where

nh5
16

5
ns2ApT

m
xF12

1

4
~12a!2G S 12

c

64D . ~59!

Expression~57! coincides with the one recently obtained f
a granular monocomponent gas@6,8#. Finally, whenf→0 it
is easy to check that the results derived here reduce to t
2-7
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previously found in Ref.@18# for a dilute gas. This shows th
self-consistency of the present description.

Before comparing the kinetic theory predictions with n
merical simulation data, it is instructive to compare the
sults obtained in the unforced (j (0)50) and driven (j (0)

5z (0)) cases. In Fig. 1 we plot the reduced shear visco
h* as a function of the~common! restitution coefficient
a i j 5a for s1 /s251, m1 /m254, x151/2, andf50 in the
above two cases. Here, the reduced shear viscosityh* is
defined as

h* 5
n

nT
h, ~60!

where

n5Apns12
2 v0 ~61!

is an effective collision frequency. We see that the Nav
Stokes shear viscosity of the~unforced! gas differs from the
shear viscosity of the gas when the latter isexcitedby the
~Gaussian! external force, the discrepancy increasing as
restitution coefficient decreases. This shows again that
driving force does not play a neutral role in the problem a
the transport property is affected by this type of exter
forcing mechanism@6#. However, for practical purposes, th
introduction of these driving forces has the advantage of
they can be incorporated into the kinetic theory very ea
and they allow, for instance, to test the validity of some
the underlying assumptions made in the theory throug
direct comparison with computer simulations.

V. MONTE CARLO SIMULATION FOR UNIFORM
SHEAR FLOW

The expression obtained in the preceding section for
shear viscosity requires the truncation of an expansion of
integral equations in Sonine polynomials. To assess the
gree of accuracy of this approximation, one has to resor
numerical solutions of the Enskog equation, such as th
obtained from Monte Carlo simulations. In this section,

FIG. 1. Plot of the reduced shear viscosityh* as a function of
the restitution coefficienta for a binary mixture with parameter
f50, x151/2, s1 /s251, andm1 /m254 in ~a! the unforced case
(j (0)50) and~b! the forced case (j (0)5z (0)).
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briefly describe the method employed in the simulation in
case of the USF state.

For a granular fluid under USF and in the absence o
thermostating force (j50), the energy balance~18! leads to
a steady state when the viscous heating effect is exactly
anced by the collisional cooling@38#. However, when the
granular mixture is excited by the Gaussian force

Fi5
1
2 mijV, ~62!

which exactly compensates for the collisional energy lo
(j5z), the viscous heating dominates and the tempera
obeys the equation

]T

]t
52

2

3n
aPxy . ~63!

Since the granular temperatureT increases in time, so doe
the collision frequencyn(t)}AT(t), and hence the reduce
shear ratea* (t)5a/n(t) ~which is the relevant uniformity
parameter! monotonically decreases in time. Under the
conditions, the system asymptotically reaches a regime
scribed by linear hydrodynamics and the~reduced! Navier-
Stokes shear viscosityh* can be measured as@24#

h* 52 lim
t→`

Pxy*

a*
, ~64!

where Pxy* 5Pxy /nT. Recently, this idea has been used
identify the shear viscosity of a~heated! granular binary mix-
ture in the low-density regime@18#. The comparison with
kinetic theory showed an excellent agreement over a w
range of values of the restitution coefficient and the rest
parameters characterizing the system.

We have numerically solved Eq.~20! by means of an
extension of the well-known DSMC method@19# to dense
gases. The method is usually referred to as the ES
method. This method was devised to mimic the dynam
involved in the Enskog collision term and it has been pre
ously used to analyze rheological properties of a ela
dense gas@23# and the shock-wave structure@39#. In the
present work, the ESMC algorithm has been modified
study the dynamics of a granular binary mixture of a fin
density. Since the USF is spatially homogeneous in the lo
Lagrangian frame, the simulation method becomes espec
easy to implement and efficient from a computational po
of view. This is an important advantage with respect to m
lecular dynamics simulations. Nevertheless, the restrictio
this homogeneous state prevents us from analyzing the
sible instability of USF or the formation of clusters or m
crostructures.

The ESMC method as applied to a granular binary m
ture under USF is as follows. The velocity distribution fun
tion of the speciesi is represented by the peculiar velocitie
$Vk% of Ni ‘‘simulated’’ particles,
2-8
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f i~V,t !→ni

1

Ni
(
k51

Ni

d„V2Vk~ t !…. ~65!

Note that the number of particlesNi is arbitrary, but must be
taken according to the relationN1 /N25n1 /n2. At the initial
state, one assigns velocities to the particles drawn from
Maxwell-Boltzmann probability distribution,

f i~V,0!5nip
23/2V0i

23~0!exp@2V2/V0i
2 ~0!#, ~66!

where V0i
2 (0)52T(0)/mi and T(0) is the initial tempera-

ture. To enforce a vanishing initial total momentum, the v
locity of every particle is subsequently subtracted by
amountNi

21(kVk(0). In theESMC method, the free motion
and the collisions are uncoupled over a time stepDt which is
small compared with both the mean free time and the inve
shear rate. Asa* decreases monotonically in time, the val
of Dt must be updated in the course of the simulation. In
local Lagrangian frame, particles of each species (i 51,2) are
subjected to the action of a nonconservative inertial fo
Fi52mia•V. Thus, the free motion stage consists of ma
ing Vk→Vk2a•VkDt. In the collision stage, binary interac
tions between particles of speciesi andj must be considered
To simulate the collisions between particles of speciesi with
j a sample of1

2 Nivmax
(ij ) Dt pairs is chosen at random wit

equiprobability. Here,vmax
( i j ) is an upper bound estimate of th

probability that a particle of the speciesi collides with a
particle of the speciesj. Let us consider a pair (k,,) belong-
ing to this sample. Hereafter,k denotes a particle of speciesi
and, a particle of speciesj. For each pair (k,,) with veloci-
ties (Vk ,V,), the following steps are taken.

~1! A given direction ŝk, is chosen at random with
equiprobability.

~2! The collision between particlesk and , is accepted
with a probability equal toQ(gk,•ŝk,)vk,

( i j )/vmax
(ij ) , where

vk,
( i j )54ps i j

2 nj ugk,•ŝk,u and the relative velocity in the La

grangian frame isgk,5Vk2V,2s i j a•ŝk, .
~3! If the collision is accepted, postcollisional velocitie

are assigned to both particles according to the scatte
rules ~3!, which in the Lagrangian frame are

Vk→Vk2m j i ~11a i j !~gk,•ŝk,!ŝk, , ~67!

V,→V,1m i j ~11a i j !~gk,•ŝk,!ŝk, . ~68!

If in a collision vk,
( i j ).vmax

(ij ) , the estimate ofvmax
(ij ) is updated

asvmax
(ij ) 5vk,

(ij ) . The procedure described above is perform
for i 51,2 andj 51,2. The granular temperature is calculat
before and after the collision stage, and thus the insta
neous value of the cooling ratez is obtained. After the col-
lisions have been calculated, the thermostat force~62! is con-
sidered by makingVk→Vk11/2zVkDt.

In the course of the simulations, one evaluates the kin
and collisional transfer contributions to the pressure ten
They are given as
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Pk5(
i 51

2
mini

Ni
(
k51

Ni

VkVk , ~69!

Pc5
n

2NDt (
†

k,
m i j mjs i j ~11a i j !~gk,•ŝk,!ŝk,ŝk, ,

~70!

where the dagger means that the summation is restricte
the accepted collisions. The shear viscosityh is obtained
from Eq. ~64!. To improve the statistics, the results are av
aged over a numberN of independent realizations or repl
cas. In our simulations we have typically taken a total nu
ber of particlesN5N11N25105, a number of replicasN
510, and a time stepDt5331023l11/V01(0), wherel11

5(A2pn1s11
2 )21 is the mean free path for collisions 1-1.

The ESMC method is based on and extends Bird’s DSM
method to solve the Boltzmann equation for molecular flui
Two trivial differences between both methods are the
crease of the collision rate by a factor and the change of
scattering rules to account for spatial correlations and ine
ticity in collisions, respectively. The main novelty of th
ESMC method with respect to the DSMC technique is th
in general, in the ESMC method the two particles of a co
sion pair must be taken from cells separated a distance e
to the diameter of the two colliding spheres. Neverthele
given that the USF becomes homogeneous in the local
grangian frame, this latter modification is not carried o
Instead, the use of thepeculiar velocities leads to modifica
tions in both the probability of a binary collision and th
corresponding scattering rules, as described above. From
change of the peculiar velocities~67! and ~68! due to colli-
sions one consistently obtains the collisional transfer con
butions to the pressure tensor.

VI. RESULTS

In this section we compare the results obtained from
Chapman-Enskog method for the shear viscosity coeffic
of a heatedgranular mixture~i.e., withj (0)5z (0)) with those
obtained from the ESMC method. For the sake of simplic
we assume thata115a225a12[a so that we reduce the
parameter set of the problem to five quantitie
$a,f,m1 /m2 ,s1 /s2 ,x1%. For concreteness, henceforth w
will assume thatm1>m2 ands1>s2. To compare and con
trast the results of a binary mixture with that of its mon
component counterpart, we first show some results fo
monodisperse system over a range of solid fractions and
titution coefficients.

A. Monocomponent dense gas

Figure 2 shows the dependence of the ra
h* (a,f)/h* (1,f) on the solid fractionf for two values of
the restitution coefficient. The symbols represent the simu
tion data while the lines refer to the theoretical results o
tained from the Enskog equation, Eqs.~57!–~59!. Both
theory and simulation show that, for a given value of t
density, the shear viscosity increases with decreasinga ~i.e.,
greater dissipation! if the solid fraction is smaller than
2-9
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threshold valuef0(a), while the opposite happens iff
.f0(a). Similar threshold values exist for the kinetic an
collisional parts of the shear viscosity. We observe that in
range 0.8<a<1, the kinetic theory calculations show th
these threshold values are practically independent of the
titution coefficient. Specifically,f0(a).0.16, while the cor-
responding values for the kinetic and collisional parts a
respectively, 0.23 and 0.05. It is apparent that the compar
between Monte Carlo simulation data and theoretical res
shows an excellent agreement over the entire range of
sities considered. The dependence ofh* (a,f) on dissipa-
tion is plotted in Fig. 3 for three different values of the so
fraction. We see that, in general, the influence of dissipa
on the shear viscosityh* (a) is quite significant, except fo
f50.2 which is very close to the threshold valuef0. As in
Fig. 2, the theory compares quite well with simulation da
except perhaps atf50.4 for strong dissipation (a50.6).

B. Binary dense mixture

Now, we consider granular binary mixtures whose p
ticles can differ in size and mass. First, to analyze den

FIG. 2. Plot of the ratioh* (a,f)/h* (1,f) for a monocompo-
nent gas as a function of the solid fractionf for two different
values of the restitution coefficienta: ~a! a50.9 ~circles! and ~b!
a50.8 ~squares!. The lines are the theoretical predictions and t
symbols refer to the results obtained from Monte Carlo simulatio

FIG. 3. Plot of the reduced shear viscosityh* of a monocom-
ponent gas as a function of the restitution coefficienta for three
different values of the solid fractionf: ~a! f50 ~circles!, ~b! f
50.2 ~squares!, and~c! f50.4 ~triangles!. The lines are the theo
retical predictions and the symbols refer to the results obtained f
Monte Carlo simulations.
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effects on the shear viscosity, in Figs. 4 and 5 the parame
of the mixture arem1 /m254, s1 /s251, and x151/2.
Three different values ofa are studied:a50.9, 0.8, and 0.7.
The symbols are the same as in the previous figures. Figu
shows the dependence of the kinetic parthk* 5nhk/nT on
the solid fractionf, while the total shear viscosityh* is
plotted in Fig. 5. The good agreement between theory
simulation indicates that both kinetic and collisional trans
contributions are given accurately by the first Sonine
proximation. As in the monocomponent case@cf. Fig. 2#, the
shear viscosity of a granular mixture decreases~increases! as
the inelasticity increases if the solid fraction is larg
~smaller! than a given threshold valuef0. The value off0
depends on the parameters of the mixture although it is p
tically independent of dissipation. For the mixture cons
ered in Fig. 5,f0(a).0.22.

Next, we explore the influence of dissipation on the
duced shear viscosityh* for different values of the mas
ratio, the size ratio, and the mole fraction. We conside

s.

m

FIG. 4. Plot of the kinetic parthk* of the reduced shear viscos
ity as a function of the solid fractionf for m1 /m254, s1 /s2

51, x151/2 and three different values of the restitution coefficie
a: ~a! a50.9 ~circles!, ~b! a50.8 ~squares!, and ~c! a50.7 ~tri-
angles!. The lines are the theoretical predictions and the symb
refer to the results obtained from Monte Carlo simulations.

FIG. 5. Plot of the reduced shear viscosityh* as a function of
the solid fractionf for m1 /m254, s1 /s251, andx151/2 and
three different values of the restitution coefficienta: a50.9 ~solid
line and circles!, a50.8 ~dashed line and squares!, and a50.7
~dotted line and triangles!. The lines are the theoretical prediction
and the symbols refer to the results obtained from Monte Ca
simulations.
2-10
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solid fractionf50.2 and different values of the restitutio
coefficient. In Fig. 6 we ploth* versus the mass rati
m1 /m2 for s1 /s251 and x151/2. As in the low-density
case@18#, we see that the influence of dissipation onh*
becomes important as the mass disparity increases.
given value of the mass ratio,h* decreases~increases! with
dissipation if the mass ratio is smaller~larger! than a certain
threshold value, the value of which seems to be again p
tically independent of the restitution coefficient. Regardi
the comparison between kinetic theory and simulation,
see that the agreement between both approaches is simi
the one previously obtained, although the discrepancies
to increase asa decreases. Figure 7 shows the results forh*
as a function of the size ratio form1 /m254 andx151/2. We
observe that the influence ofa on h* is less significant as
the one found before in Fig. 6 for the mass ratio. Finally,
Fig. 8, h* is plotted as a function of the concentration ra
x1 /x2 for m1 /m254 ands1 /s251. As in Fig. 7, theory and
simulation predict a weak influence of dissipation on t
shear viscosity over the range of values of composition c

FIG. 6. Plot of the reduced shear viscosityh* as a function of
the mass ratiom1 /m2, for f50.2, s1 /s251, x151/2 and three
different values of the restitution coefficienta: a50.9 ~solid line
and circles!, a50.8 ~dashed line and squares!, anda50.7 ~dotted
line and triangles!. The lines are the theoretical predictions and t
symbols refer to the results obtained from Monte Carlo simulatio

FIG. 7. Plot of the reduced shear viscosityh* as a function of
the size ratios1 /s2 for f50.2, m1 /m254, x151/2 and two dif-
ferent values of the restitution coefficienta: a50.9 ~solid line and
circles! and a50.7 ~dashed line and triangles!. The lines are the
theoretical predictions and the symbols refer to the results obta
from Monte Carlo simulations.
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sidered. It is worth noting that the trends observed in Fi
6–8 for finite density are similar to those previously report
in the low-density limit@18#.

VII. DISCUSSION

The main goal of this paper has been to determine
shear viscosityh of a binary mixture of smooth inelasti
hard spheres described by the Enskog equation. To ge
dependence ofh on the parameters of the mixture, the sp
cial state of USF has been considered. The USF is chara
ized by constant partial densities, uniform temperature,
by a linear profile of thex component of the flow velocity
along they direction. The~constant! shear ratea is the rel-
evant nonequilibrium parameter of the problem. Tw
complementary approaches have been used. First, a no
solution to the Enskog equation is obtained through first
der ina by means of the Chapman-Enskog method. As in
elastic case, the shear viscosity coefficienth is given in
terms of the solution of a set of coupled linear integral eq
tions, which are solved approximately by taking the lead
terms in a Sonine polynomial expansion. The explicit fo
of h is given by Eqs.~46!–~50! as a function of the restitu
tion coefficients, the temperature, the total solid fraction, a
the masses, sizes, and concentrations of the constituen
the granular mixture. Second, the Enskog equation has b
numerically solved in the USF by using an extension of
well-known DSMC @19# of the Boltzmann equation. The
simulation has been performed by introducing an exter
~Gaussian! force which heats the system to compensate
the energy lost in collisions. Due to the action of this exter
driving force, the shearing work still heats the mixture and
the reduced shear ratea* (t) goes to zero for long times. As
a consequence, the system reaches a regime describe
linear hydrodynamics and the shear viscosity coefficient
be measured in the simulations.

The analysis made here extends previous results@18# ob-
tained by the authors for a binary mixture at low density.
in the latter case, the comparison between the Chapm
Enskog results in the first Sonine approximation and simu

s.

ed

FIG. 8. Plot of the reduced shear viscosityh* as a function of
the concentration ratiox1 /x2 for f50.2, m1 /m254, s1 /s251
and two different values of the restitution coefficienta: a50.9
~solid line and circles! anda50.7 ~dashed line and triangles!. The
lines are the theoretical predictions and the symbols refer to
results obtained from Monte Carlo simulations.
2-11
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tion data shows, in general, an excellent agreement fo
wide range of values of densities, dissipation, and parame
of the mixture. Discrepancies with simulation results are d
mainly to the approximations carried out in the Chapm
Enskog scheme, and more specifically in taking only the fi
Sonine correction. However, apart from this source of sli
discrepancy, the good agreement obtained here is a fu
testimony to the validity of a hydrodynamic description f
granular media beyond the weak dissipation limit. Moreov
a test of the utility of the Enskog theory at high densities
possible using molecular dynamics simulations. Previ
comparisons at the level of partial temperatures@16# and
self-diffusion coefficient@25# indicate that the range of den
sities for which the RET applies decreases with increas
dissipation. We hope that the present results stimulate
performance of such simulations in the case of the sh
viscosity.

As in the low-density case, theory and simulation sh
that the dependence ofh on dissipation increases as the ma
differences increase. The dependence of the shear visc
on inelasticity is not significantly affected when compositi
and diameters are changed. With respect to the depend
on density, the results indicate that the shear viscosity of
granular fluid is larger than the one corresponding to a m
lecular fluid if the solid fractionf is smaller than a threshol
value f0, while the opposite happens whenf.f0. The
value of f0 depends on the mechanical parameters of
mixture, but is practically independent of the restitution c
efficients.

Recently, a seemingly similar analysis on rheology of b
isperse granular mixtures has been carried out via ev
driven simulations@40#. However, this study is addressed
the steady sheared state achieved when viscous heating
collisional cooling exactly cancel each other. Under the
conditions, due to the coupling between dissipation and
shear rate, the granular fluid is far away from the Navi
Stokes regime~non-Newtonian fluid!, except whena→1.
This precludes the possibility of making a comparison
tween the molecular dynamics results found in Ref.@40# for
the shear viscosity with the predictions of the Enskog eq
tion.

The main limitation of the result derived here is its restr
tion to the uniform shear flow state. The extension of th
study to moregeneralhydrodynamic states for a dense b
nary mixture, e.g., those with gradients of concentrations
temperature as well, is somewhat complex due to the tec
cal difficulties of the Chapman-Enskog method associa
with the spatial dependence of the pair correlation functi
considered in the RET. We plan to extend the results deri
years ago from the RET by Lo´pez de Haroet al. @32# for a
mixture of smooth elastic particles to the case ofinelastic
collisions. Once the complete hydrodynamic equations of
mixture is known, some insight could be gained into t
understanding of phenomena very often observed in na
and experiments, such as separation or segregation.

ACKNOWLEDGMENTS

V.G. acknowledges partial support from the Ministerio d
Ciencia y Tecnologı´a ~Spain! through Grant No. BFM2001-
04130
a
rs
e
-
t
t
er

r,
s
s

g
he
ar

s
ity

nce
e
-

e
-

-
t-

and
e
e
-

-

-

-

d
i-
d
s
d

e

re

0718. J.M.M. also acknowledges partial support from
Ministerio de Ciencia y Tecnologı´a ~Spain! through Grant
No. ESP2003-02859.

APPENDIX A: COLLISIONAL
TRANSFER CONTRIBUTIONS

In this appendix some details of the derivation of the c
lisional transfer contributions to the heat and moment
fluxes are given. First, we consider the collisional mome
tum transfer

I p[(
i 51

2

(
j 51

2 E dv1miv1Ji j
E@r ,v1u f i , f j #

5(
i 51

2

(
j 51

2

s i j
2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!miv1

3@a i j
22x i j ~r ,r2si j ! f i~r ,v18 ;t ! f j~r2si j ,v28 ;t !

2x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !#. ~A1!

Now, we change variables to integrate overv18 andv28 instead
of v1 and v2 in the first term of the right-hand sid
of Eq. ~A1!. The Jacobian of the transformation isa i j

and ŝ•g52a i j (ŝ•g8). Also, v1(v18 ,v28)[v195v12m j i (1

1a i j )ŝ(ŝ•g) and in addition, we make the changeŝ→
2ŝ. Thus, integral~A1! becomes

I p5(
i 51

2

(
j 51

2

s i j
2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!mi

3~v192v1!x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !.

~A2!

Sincemi(v192v1)5mj (v22v29), Eq.~A2! can be rewritten as

I p5(
i 51

2

(
j 51

2

s i j
2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!mj

3~v22v29!x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !

5(
i 51

2

(
j 51

2

s i j
2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!mi

3~v12v19!x i j ~r2si j ,r ! f j~r ,v2 ;t ! f i~r2si j ,v1 ;t !,

~A3!

where in the last step we have exchanged the roles of
speciesi and j, which implies the changesŝ→2ŝ and
v1↔v2. Combination of Eqs.~A2! and ~A3! yields
2-12
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I p5(
i 51

2

(
j 51

2 s i j
2

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!mi~v192v1!

3@x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !

2x i j ~r2si j ,r ! f i~r2si j ,v1 ;t ! f j~r ,v2 ;t !#. ~A4!

Let Fi j (r1 ,r2) be the function

Fi j ~r1 ,r2!5x i j ~r1 ,r2! f i~r1! f j~r2!. ~A5!

Next, we use the identity

Fi j ~r ,r1si j !2Fi j ~r2si j ,r !

5E
0

1

dl
]

]l
Fi j @r2~12l!si j ,r1lsi j #

5si j •“E
0

1

dlFi j @r2~12l!si j ,r1lsi j #.

~A6!

Therefore, from Eqs.~A5! and~A6!, Eq. ~A4! can be rewrit-
ten as a divergence

I p52“•(
i 51

2

(
j 51

2 s i j
3

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!ŝ

3mi~v12v19!E
0

1

dlx i j @r2~12l!si j ,r1lsi j #

3 f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !

52“•(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!2ŝŝ
04130
3E
0

1

dlx i j @r2~12l!si j ,r1lsi j #

3 f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !. ~A7!

According to the momentum balance equation~6!, the diver-
gence of the collisional transfer partPc is

(
i 51

2

(
j 51

2 E dvmi~v2u!Ji j
E@vu f i , f j #52“•Pc. ~A8!

By taking into account Eq.~A8!, one directly gets expressio
~13! for the collisional part of the pressure tensor,

Pc~r ,t !5(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!2ŝŝ

3E
0

1

dlx i j @r2~12l!si j ,r1lsi j #

3 f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !.

~A9!

The collisional transfer contribution to the energy balan
equation is

Ie[(
i 51

2

(
j 51

2 E dv1

mi

2
v1

2Ji j
E@r ,v1u f i , f j #. ~A10!

By following similar mathematical steps as in the case
momentum, one gets
Ie5(
i 51

2

(
j 51

2 s i j
2

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!
mi

2
~v19

22v1!@x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !

2x i j ~r ,r2si j ! f i~r2si j ,v1 ;t ! f j~r ,v2 ;t !#2(
i 51

2

(
j 51

2

s i j
2 mimj

mi1mj

~12a i j
2 !

4

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!3x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !

52“•

s i j
3

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!ŝ
mi

2
~v1

22v19
2!E

0

1

dlx i j @r2~12l!si j ,r1lsi j #

3 f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !2(
i 51

2

(
j 51

2

s i j
2 mimj

mi1mj

~12a i j
2 !

4

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!3x i j ~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !. ~A11!
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Here, we have used the identity~A6! and the scattering law

mi~v19
22v1

2!5mj~v2
22v29

2!2
mimj

mi1mj
~12a i j

2 !~ŝ•g!2.

~A12!

The balance energy equation~7! yields

(
i 51

2

(
j 51

2 E dv
mi

2
~v2u!2Ji j

E@vu f i , f j #

52“•qc2Pc:“u2
3

2
nTz, ~A13!
-
-

e

o

04130
whereqc is the collisional contribution to the heat flux andz
is the cooling rate. To identify such quantities, we use
relation

mi

2
~v1

22v19
2!5

mi

2
m j i

2 ~12a i j
2 !~ŝ•g!21mim j i ~11a i j !~ŝ•g!

3@~ŝ•Gi j !1~ŝ•u!#, ~A14!

with Gi j 5m i j V11m j i V2 , V5v2u being the peculiar veloc-
ity. Comparing Eqs.~A11! and~A13! and taking into accoun
Eqs.~A7! and~A14!, one can finally obtain expressions~14!
and ~15! for qc andz. They are given by
qc~r ,t !5(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!2ŝF ~ŝ•Gi j !1
1

2
m j i ~12a i j !~ŝ•g!G

3E
0

1

dlx i j @r2~12l!si j ,r1lsi j # f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !

5(
i 51

2

(
j 51

2

s i j
3 mimj

mi1mj

11a i j

2 E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!2ŝF ~ŝ•Gi j !1
1

4
~m j i 2m i j !~12a i j !~ŝ•g!G

3E
0

1

dlx i j @r2~12l!si j ,r1lsi j # f i@r2~12l!si j ,v1 ;t# f j~r1lsi j ,v2 ;t !, ~A15!
e

that
z~r ,t !5
1

6nT (
i 51

2

(
j 51

2

s i j
2 mimj

mi1mj
~12a i j

2 !

3E dv1E dv2E dŝQ~ŝ•g!~ŝ•g!3x i j

3~r ,r1si j ! f i~r ,v1 ;t ! f j~r1si j ,v2 ;t !.

~A16!

The second equality in Eq.~A15! has been obtained by ex
changing the roles of speciesi andj. In the case of mechani
cally equivalent particles, Eqs.~A9!, ~A15!, and ~A16! re-
duce to those previously obtained for a monocompon
dense gas@21#.

APPENDIX B: FIRST ORDER SOLUTION TO THE USF

In this appendix we apply the Chapman-Enskog meth
to solve Eq.~20! to first order in the shear ratea. First, in
order to get the kinetic equation forf 1

(1) , the Enskog colli-
sion operator~21! must be expanded as

Ji j
E→Ji j

(0)@ f i
(0) , f j

(0)#1Ji j
(0)@ f i

(1) , f j
(0)#1Ji j

(0)@ f i
(0) , f j

(1)#

1aL i j @ f i
(0) , f j

(0)#, ~B1!

where the~Boltzmann! collision operatorJi j
(0)@X1 ,X2# is de-

fined in Eq.~31! and
nt

d

L i j @V1u f i
(0) , f j

(0)#5x i j s i j
3 E dV2E dŝQ~ŝ•g!~ŝ•g!ŝy

3Fa i j
22f i

(0)~V18!
]

]V2x8
f j

(0)~V28!

1 f i
(0)~V1!

]

]V2x
f j

(0)~V2!G . ~B2!

Therefore, the distributionf i
(1) verifies the equation

S ] t
(0)1

1

2
j (0)

]

]V
•V1Li D f i

(1)1Mi f j
(1)

5aVy

]

]Vx
f i

(0)1a(
j 51

2

L i j @ f i
(0) , f j

(0)#, ~B3!

where it is understood thatiÞ j on the left hand side and th
linear operatorsLi andMi are

Li f i
(1)52~Jii @ f i

(0) , f i
(1)#1Jii @ f i

(1) , f i
(0)#1Ji j @ f i

(1) , f j
(0)# !,

~B4!

Mi f j
(1)52Ji j @ f i

(0) , f j
(1)#. ~B5!

In these equations, use has been made of the fact
] t

(1)f i
(0)50 according to the second identity of Eq.~28!. Fur-
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thermore,z (1)50 by symmetry because“•u50 in the USF.
The action of the time derivative] t

(0) on f i
(1) can be easily

obtained from Eq.~28! as

] t
(0)f i

(1)52~z (0)2j (0)!T]Tf i
(1) , ~B6!

and so, the integral equation~B3! finally becomes

F2~z (0)2j (0)!T]T1
1

2
j (0)

]

]V
•V1Li G f i

(1)1Mi f j
(1)

5aVy

]

]Vx
f i

(0)1a(
j 51

2

L i j @ f i
(0) , f j

(0)#. ~B7!

This is the result~38! used in the text.

APPENDIX C: EVALUATION OF SOME
COLLISION INTEGRALS

In this appendix some collision integrals appearing alo
the text are evaluated. First, let us consider integral~49!,

L̃ i j 5
1

niTi
2E dV1miV1xV1yL i j @V1u f i

(0) , f j
(0)#

5
mi

niTi
2
x i j s i j

3 E dV1E dV2E dŝQ~ŝ•g!

3~ŝ•g!ŝyV1xV1yFa i j
22f i

(0)~V18!
]

]V2x8
f j

(0)~V28!

1 f i
(0)~V1!

]

]V2x
f j

(0)~V2!G . ~C1!

As done in Appendix A, we change variables to integr
overV18 andV28 instead ofV1 andV2 in the first term of the
right-hand side of Eq.~C1!. Thus, the integral becomes

L̃ i j 52
mi

niTi
2
x i j s i j

3 E dV1E dV2E dŝQ~ŝ•g!

3~ŝ•g!ŝyf i
(0)~V1!

]

]V2x
f j

(0)~V2!~V1x9 V1y9 2V1xV1y!,

~C2!

where

V195V12m j i ~11a i j !ŝ~ŝ•g!. ~C3!
04130
g

e

Using Eq.~C3!, the last term on the right-hand side of E
~C2! can be explicitly computed as

V1x9 V1y9 2V1xV1y52m j i ~11a i j !~ŝ•g!@Gi j ,xŝy1Gi j ,yŝx

1m j i ~gxŝy1gyŝx!2m j i ~11a i j !

3~ŝ•g!ŝxŝy#, ~C4!

where Gi j ,x5m i j V1x1m j i V2x and Gi j ,y5m i j V1y1m j i V2y .
Substitution of Eq.~C4! into Eq. ~C2! allows the angular
integral to be performed with the result

E dŝQ~ŝ•g!~ŝ•g!ŝy~V1x9 V1y9 2V1xV1y!

52
2p

15
m j i ~11a i j !F ~2gy

21g2!Gi j ,x12gxgyGi j ,y

1
2

7
m j i ~1123a i j !gxgy

21
1

7
m j i ~423a i j !gxg

2G .
~C5!

Using Eq.~C5!, integral~C2! becomes

L̃ i j 52
2p

15

mi

niTi
2
x i j s i j

3 m j i ~11a i j !

3E dV1E dV2f i
(0)~V1! f j

(0)~V2!

3Fm j i

3
~3a i j 21!~V1

21V2
2!2

4

3
~m i j V1

22m j i V2
2!G

52
2p

15

minj

Ti
2

x i j s i j
3 m j i ~11a i j !

3Fm j i ~3a i j 21!S Ti

mi
1

Tj

mj
D24

Ti2Tj

mi1mj
G . ~C6!

In the case of mechanically equivalent particles, Eq.~C6!
coincides with the one previously obtained in the context
determining the shear viscosity in a monocomponent gra
lar gas@8#.

The collision frequenciest i j defined by integrals~47! and
~48! are the same as those appearing in the Boltzmann l
~except for the factorsx i j ) @17,18#. The details will not be
repeated here and only the results are displayed. They
given by
2-15
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t115
16

5
ApT1

m1
n1s1

2x11F12
1

4
~12a11!

2G S 12
c1

64D1
8

15
Apn2s12

2 m21x12v0~11a12!u1
3/2u2

21/2

3F6u1
22~m12u22m21u1!~u11u2!21/21

3

2
m21u1

22~u11u2!1/2~32a12!15u1
21~u11u2!21/2

1
c2

16

2u2~12m2119m12210!2u1~526m21!2 3
2 m21~32a12!~u11u2!

~u11u2!5/2 G , ~C7!

t125
8

15
Apn2s12

2
m21

2

m12
x12v0~11a12!u1

3/2u2
21/2F6u2

22~m12u22m21u1!~u11u2!21/21
3

2
m21u2

22~u11u2!1/2~32a12!

25u2
21~u11u2!21/21

c1

16

2u1~10212m1229m21!1u2~526m12!2 3
2 m21~32a12!~u11u2!

~u11u2!5/2 G . ~C8!
is
te
The corresponding expressions fort22 and t21 can be in-
ferred from Eqs.~C7! and ~C8! by exchanging 1↔2.

Finally, the collision contribution to the shear viscosity
given by Eq.~42!. To get explicit results, we have to evalua
integrals of the form

Ai j 5E dV1E dV2f i
(0)~V1! f j

(0)~V2!g, ~C9!

by using the leading Sonine approximation~43!. Let us con-
sider the integralA12. Substitution of Eq.~43! into Eq. ~C9!
and neglecting nonlinear terms inci , A12 can be written as

A125n1n2p23v0~u1u2!3/2H I ~u1 ,u2!

1
c1

4 S u1
2 d2

du1
2

15u1

d

du1
1

15

4 D I ~u1 ,u2!

1
c2

4 S u2
2 d2

du2
2

15u2

d

du2
1

15

4 D I ~u1 ,u2!J ,

~C10!

where the dimensionless integralI (u1 ,u2) is

I ~u1 ,u2!5E dV1* E dV2* e2u1V1*
2
2u2V2*

2
~C11!
T.

f
e,

. E

04130
with V* 5V/v0. The integralI (u1 ,u2) can be performed by
the change of variables

x5V1* 2V2* , y5u1V1* 1u2V2* ~C12!

with the Jacobian (u11u2)23. The integral becomes

I ~u1 ,u2!52p5/2
~u11u2!1/2

u1
2u2

2
. ~C13!

Use of this result in Eq.~C10! gives

A125A215
2

Ap
n1n2v0S u11u2

u1u2
D 1/2

3F12
c1

16S u2

u11u2
D 2

2
c2

16S u1

u11u2
D 2G . ~C14!

The corresponding expressions forA11 andA22 can be easily
inferred from Eq.~C14! by exchanging 1↔2:

A115
4

Ap
n1

2AT1

m1
S 12

c1

32D , ~C15!

A225
4

Ap
n2

2AT2

m2
S 12

c2

32D . ~C16!

Equations~C14!–~C16! lead directly to the result given by
Eq. ~50! in the text.
ett.
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