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Shear viscosity for a moderately dense granular binary mixture
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The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing
uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first
analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as
for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine
polynomial approximation. In the leading order, we determine the shear viscosity in terms of the control
parameters of the problem: solid fraction, composition, mass ratio, size ratio, and restitution coefficients. Both
kinetic and collisional transfer contributions to the shear viscosity are considered. To probe the accuracy of the
Chapman-Enskog results, the Enskog equation is then numerically solved for systems driven by a Gaussian
thermostat by means of an extension to dense gases of the well-known direct simulation Monte Carlo method
for dilute gases. The comparison between theory and simulation shows, in general, an excellent agreement over
a wide region of the parameter space.
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[. INTRODUCTION same mass and size. However, a real granular system is al-
ways characterized by some degrees of polydispersity in den-
An usual way of capturing the dissipative nature of granu-sity and size, which often leads to segregation of an other-
lar media is through an idealized fluid of smooth, inelasticwise homogeneous mixture. Needless to say, the analysis of
hard spheres. Despite the simplicity of the model, it has beetransport for multicomponent systems is much more in-
shown to be quite useful in describing the dynamics ofvolved than for a monocomponent gas. Not only the number
granular materials under rapid flow conditidrds2]. The es-  of transport coefficients is higher but also they are functions
sential difference from molecular fluids is the absence ofof parameters such as the mole fractions, the mass ratios, the
energy conservation, leading to both obvious and subtlsize ratios, and the restitution coefficients. For this reason,
modifications of the Navier-Stokes hydrodynamic equationsmost of the previous studigsl0] are restricted tanearly
Although many efforts have been made in the past few yearslastic spheres. In addition, they usually assume energy eqg-
in the understanding of granular fluids, the derivation of theuipartition so that the partial temperaturEsare made equal
form of the transport coefficients remains a topic of interesto the global granular temperatufie Nevertheless, recent
and controversy. This problem has been addressed using tie&periments of vibrated mixtures in thrgEl] and two[12]
inelastic Boltzmann equation or its dense fluid generalizadimensions clearly show the breakdown of energy equiparti-
tion, the Enskog equation. Assuming the existence of a notion. Related findings have also been reported by using ki-
mal solution for sufficiently long space and time scales, thenetic theory tool§13,14] and computer simulatior[45,16.
Chapman-Enskog methd@], conveniently adapted to in- To the best of our knowledge, the only kinetic theory deri-
elastic collisions, has been applied to get the Navier-Stokegation of hydrodynamics for a granular binary mixture at low
transport coefficients. For a monocomponent gas at low derdensity which takes into account nonequipartition of granular
sity, the above coefficients have been explicitly determinedenergy has been made by Gaerad Dufty[17]. They solved
as functions of the restitution coefficiefd—6] from ap- the Boltzmann equation by applying the Chapman-Enskog
proximate solutions of the corresponding kinetic equationsmethod to obtain the Navier-Stokes equations and detailed
The accuracy of these approximate results has been then coexpressions for the transport coefficients. In the case of the
firmed by computer simulatiori$,7]. The analysis for dilute shear viscosity, the reliability of the kinetic theory predic-
gases has been also extended to finite densities in the contdidns has also been asses$&d] in a wide parameter space
of the revised Enskog kinetic theofRET) [8]. This hydro- by comparing those predictions with the results obtained
dynamic theory successfully models the density and temfrom a numerical solution of the Boltzmann equation by
perature profiles obtained in a recent experimental study of emeans of the direct simulation Monte Ca(@SMC) method
three-dimensional system of mustard seeds fluidized by vef19]. The comparison shows an excellent agreement between
tical container vibration$9]. theory and simulation.
The majority of the studies on granular fluids are confined The objective here is to extend the analysis carried out in
to monocomponent systems, where the particles are of thRef.[18] for the shear viscosity to higher densities by using
the RET. The RET for elastic collisiod20] is known to be
an accurate theory over the entire fluid domain. Its generali-
*Email address: vicenteg@unex.es zation to inelastic collisions is straightforwatdee, for ex-
TEmail address: jmm@unex.es ample, Ref[21]) and the Chapman-Enskog method can be
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applied to obtain the transport coefficients. However, the The plan of the paper is as follows. In Sec. Il we review
derivation of the hydrodynamic equations for a binary mix-the Enskog theory and deduce the associated macroscopic
ture described by the RET is more complicated than in the&onservation equations. The Chapman-Enskog method is ap-
case of the Boltzmann equation, due mainly to the technicgblied in Sec. Ill to solve the Enskog equation in the USF
difficulties associated with the spatial dependence of the pastate through first order in the shear rate. An explicit expres-
correlation function. To simplify this analysis, here attentionsion for the shear viscosity coefficient is obtained in Sec. IV
is restricted to the special hydrodynamic state of uniformby using a lowest order expansion in Sonine polynomials.
shear flow(USH. At a macroscopic level, this state is char- This transport coefficient is given in terms of the restitution
acterized by constant partial densitigs uniform tempera- coefficients, the temperature, the solid fraction, and the pa-
tureT, and a linear flow velocity profile; = ayx, abeing the ~rameters characterizing the mixtumasses, sizes, concen-
constant Shear rate. For th|s particu'ar prob'em the RET retrauons. Section V deals with the Monte Carlo simulation of
duces to the original phenomenological kinetic theory prothe Enskog equation particularized to USF. The comparison
posed by Enskogzz:l We solve the Enskog equation up to between theory and simulation is carried out in Sec. VI,
first order in the shear rate and evaluate both kinetic an#hile a brief discussion on the relevance of the results ob-
collisional transfer contributions to the shear viscosity. Thistained is given in Sec. VIL.
transport coefficient is expressed in terms of the solution of a
set of coupled linear integral equations, which are then Il. ENSKOG KINETIC THEORY
solved approximatelyfirst Sonine polynomial approxima- AND CONSERVATION LAWS
tion) just as in the case of elastic collisions. As done in the
low-density analysig18], the Sonine solution is compared ~ We consider a binary mixture of smooth hard spheres of
with a numerical solution of the RET by using the Enskogmassesn; andm,, and diameters; ando,. The inelastic-
simulation Monte CarldESMC) method[23], which is an ity of collisions among all pairs is characterized by three
extension to the Enskog equation of the well-known DSMcindependent constant coefficients of normal restitutign,
method[19]. @y, and ai,= ayy, Wherea;; is the restitution coefficient

In a molecular fluid under USF, unless a thermostatingor collisions between particles of speciesndj. Due to the
force is introduced, the temperature grows in time due tdntrinsic dissipative character of collisions, in order to keep
viscous heating. As a consequence, the average collision fréhe system under rapid flow conditions it is usual to intro-
quency (1)< TY%(t) increases with time and the reduced duce an external driving foraghermostatwhich does work
shear rate* =a/v goes to zero in the long time limit. This to compensate for the collisional loss of energy. This mecha-
fact allows one to identify in the simulation the Navier- Nism of energy inputdifferent from those of shear flows or
Stokes shear viscosity coefficient for sufficiently long ~ flows through vertical pipgshas been used for many authors
times. This route has been shown to be quite efficient tdn the past years to study different problems, such as non-
measurey for dilute and dense gasg23,24). For a granular Gaussian properties of thg velocity d|_s§r|but|on f_un_ctlon
fluid, there is an additional energy sink term in the balancd26,27, long-range correlation$28], collisional statistics
equation for the temperature competing with the viscougind short-scale structuf9], or transport propertie$0]. In
heating term. However, if the effect of the former term is this paper, for simplicity, we introduce a deterministic force
exactly compensated by for the action of an external drivingProportional to the peculiar velocity (Gaussian thermo-
force, the viscous heating prevails and the shear viscosity caffad. This thermostat has been frequently employed in non-
be again identified in the limia* —0, just as in the elastic equilibrium molecular dynamics simulations of elastic par-
case. This was the procedure followed in Réf] to mea-  ticles _[31]. Under these conditions, the Enskog kinetic
sure from the simulation in the long time limit. It must be equa_tlo_n_for_the one-particle velocity distribution function of
noted that the value of calculated in this waydriven casg ~ SPecies is given by

not necessarily coincides with the value of the shear viscos- 1 g 2

ity obtained in the free cooling caganforced case (Gy+vy- V)i + = E— - (Vyf) =2, ‘]ﬁ[r,vﬂfi(t)'fj(t)],
There are several motivations for this study. First, we 270V, =1

want to assess to what extent the previous results obtained 1)

for the low-density regime are indicative of what happens for
finite densities. Second, the comparison between theory an
simulation allows one to check the degree of reliability of the®
approximate Sonine solution over a wide region of paramete?
space. Finally, by extending the Boltzmann analysis to higher J_E,[r,\,1|fi i
densities, comparison with molecular dynamics simulations J ’

here the constar is chosen to be the same for both spe-
les. HereV,=v;—u, u being the flow velocity. The En-
kog collision operatoﬂﬁ[fi fi1is [21]

becomes practical. This comparison would determine the va- 5 ~ oA - 5
lidity (or limitations of the kinetic and hydrodynamic de- :"iiJ dV2J do®(o-g)(o-9gle; ")
scriptions for granular flow. Such a test is essential to clarify

the frequently made speculation that the above descriptions X(r,r—oy)fi(r,vi;Ofi(r—aoy,va5t)

of granular flow are limited to weak dissipation. Some pre-
vious comparisong 16,25 support the hydrodynamic de-
scription, beyond complications due to possible instabilities. 2

= xij(r.,r+ o) fi(r,v O f(r+ oy, voit) ],
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wherea;; :Uij‘}u with o7 = (o + a;)/2 ando is a unit vec- Here, { is the cooling rate due to inelastic collisions among

tor directed along the line of centers from the sphere of speall species. The flow velocity and the “granular” tempera-

ciesi to the sphere of specigsupon collision(i.e., at con-  ture T are defined by

tacy. In addition, ® is the Heaviside step function, aryl

=V, —V,. The primes on the velocities denote the initial val- 2

ues{vy,v,} that lead to{v,,v,} following a binary collision: pu=> | dvmvfi(v), ®)
=1

Vi=vi—uji(1+ e ) (0 9)o,

2
mA
nT=>, f dvg'vzfi(v), 9)
=1
Vo=Vot wij(1+ oY) (0 9) 0, )
wheren=n,+n, is the total number density, ang=min,
where w;; =m;/(m;+m;). Finally, x;;[r,r+ oj;|{n,}] is the ~ +myn, is the total mass densi_ty. The mass fjufor species
equilibrium pair correlation function of two hard spheres,i relative to the local flow is given by
one of species and the other of specigs at contact, i.e.,
when the distance between their centersiis In the origi-
_nal phenomenological kinetic theory of Enski&®] (which ji:mif dW (V). (10)
is usually referred to as the standard Enskog thedng x;;

are the samdunctionsof the densities{n,} as in a fluid o
mixture in uniform equilibrium. Here, The pressure tens@ and the heat fluxy have bothkinetic

and collisional transfer contributionsi.e., P=P*+P° and
q=g*+qC. The kinetic contributions are given by

n= [ aviv @

2

. | ) | P [ avmwviw), 1
is the number density of speciésOn the other hand, this i=1
choice fory;; leads to some inconsistencies with irreversible
thermodynamics. In particular, the standard Enskog theory
does not verify Onsager’s reciprocity relations. In order to ‘ 2 . 5
resolve it, van Beijeren and Ern20] proposed an alterna- q :Z'l f dvzmVVTi(v), (12)
tive generalization to the Enskog equation for mixtures,
which is usually referred to as the RET. In the RET, jhe
are the saméunctionalsof the densitie§n,} as in a fluid in
nonuniformequilibrium. This fact increases considerably the
technical difficulties involved in the derivation of the general
hydrodynamic equations from the REB82,33, unless the 2 2 mm: 1+ a.
partial densities are uniform. P(ri)=2, > of——>=——

The macroscopic balance equations for the particle num- == mtm 2
ber of each species, the total momentum, and the total energy
follow directly from Eq.(1) by multiplying by 1, m;v, and X f dvlf dvzf do®(o-g)(o-9)’cc
imv?, respectively, integrating over, and summing oveir
They are given by

while the collisional transfer contributions to the pressure
tensor and the heat flux are, respectively,

1
XJ d)\X”[r_(l_)\)O'” ,r+)\0’ij]fi
0

d Vi (11— N PY oy
Eni+V-(niu)+ m-JI -0, ®) X[r=(1=N)oyj vy t]fj(r+Nayjj ,vait),
| a3
i +u-Vu+p v.P=0 (6) 2 mm; 1+ a;
—u+u-Vu+p 'V-P=0, . 3
d TE Vi, 2 XJdV1J deJ d(}(i)((}.g)({,-.g)Z(}
_I -
ET%—u.VT—H; m (VAP A A A
=—({-9T. ) x ("'Gii)+Zmi+mj(1_aij)(0"9)

041302-3



V. GARZO AND J. M. MONTANERO PHYSICAL REVIEW E68, 041302 (2003

1 our theoretical predictions for the shear viscosity with those
Xj d\xii[r=(1=N) oy ,r + o] obtained from a numerical solution of the corresponding En-
0 skog equation.
X fi[r_(l_)\)()'ij ,Vl;t]fj(r+)\a'ij ,Vz;t).
(14) Il. SHEAR VISCOSITY OF A DENSE GRANULAR
BINARY MIXTURE

Here,Gj; = uijV1+ u;jiV, is the center-of-mass velocity. Fi- As said above, we want to solve the Enskog equation
nally, the cooling rate in Eq. (7) is in the specific state of the USF. In this state, the partial den-
sitiesn; and the temperatur€ are uniform, while the veloc-
ity field is due to a simple shear

-

2 2 .
2 7
Zl 2 g,

_ 2 —a?
g(r’t)_Gn == Ilmi+mj(l C(”)

—

R AUy
U;=U,=u=ayx, azwzconst. a7

X dvlf dvzf do®(o-g)(o-9)°
The temperature changes in time due to the competition be-
(0 + o) Fi(r v O F(r+ oy vast). tween two mechanisms: on the one hand, viscous heating
and, on the other hand, energy dissipation in collisions. Un-
(15 der these conditions, the mass and heat fluxes vanish by sym-
metry reasons and thaniform) pressure tensd® is the only
The derivation of Eqs(13)—(15) is given in Appendix A.  nonzero flux of the problem. The relevant balance equation is
The collisional transfer contributions are due to the delocalthat for temperatur€?7), which reduces to
ization of the colliding pair and the additional density depen-
dence of the RET. They vanish in the low-density limit but
dominate at high densities. In the case of mechanically
equivalent partiCleS ml: m2 y 1= A= A1p=Q, 01=0)
=0, xij=x), Egs.(13)—(15) reduce to those previously ob-
tained in the monocomponent cd$4]. At a microscopic level, the USF is generated by Lees-
The balance equations contain the mass flux, the heat fludwards boundary conditiofi84] which are simply periodic
and the pressure tensor as specific averages over the distbieundary conditions in the local Lagrangian frande=v

X

>o

2
T+ 3—nany=—(§— OT. (18

bution functionsf;. The Chapman-Enskog methg8] pro- —a-r andR=r—a-rt. Here,a is the tensor with elements
vides a solution of the RET for states with small spatiala,z=ad.«ds, . In terms of the above variables, the velocity
variations in the form distribution functions are uniforrf35]

f(rva D=Vl (r). Tl (19 frvh=fiv.n, 19

and the Enskog equation takes the form
This means that all space and time dependende(pjv, ,t)

occurs entirely through a functional dependence on the hy-
drodynamic fields. Such a solution is calledrmaland it is d 2 £
the basis for a fluid dynamics description of granular mate- Jifi—aVyZo-fi+ §§W‘(Vfi):_21 JiLVITi(0,f (D]
rials. Regarding the energy input mechanism we see that, X a (20)
according to the energy balance equation the existence of
a driving with the choic&=¢ compensates for the cooling |n the Lagrangian frame, the Enskog collision operator
effect due to the inelasticity of collisions. In that case, theJ,E,[V“,(t) f:(t)] becomes

. . . ij | LR
macroscopic balance equations look like those of a conven-
tional mixture with elastic collisions, although the transport
coefficients entering in the constitutive equations are, in gen- £ ) A .
eral, different from those of a gas of elastic particles. How- Ji[Valfi ifj]:Uinijf def doO(o-g)(o-9)
ever, the evaluation of the complete transport coefficients of

the RET for a multicomponent granular mixture is a very x[aﬁzfi(vi,t)fj(VbL a(rij&yi,t)
hard task and here we will pay attention to the shear viscos- o
ity coefficient only. Specifically, this coefficient will be de- —fi(Vy,Of(V,—aojox,)].  (21)

termined in a particular simple situatiganiform shear flow

where the velocity field is the only inhomogeneity present inHere, we have taken into account thaf is uniform in the
the system. In this case, thg are uniform so that the stan- USF problem. Finally, the expressions for the collisional
dard and revised Enskog theories are equivalent in this proliransfer contribution to the pressure tenB6rand the cool-
lem. Further, the simplicity of this state allows us to checking rate{ in the Lagrangian frame are
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2

2 2
1 m;m; 3 0)5(0), L J 0 0)r £(0) £(0
Pczii; 12’1 m,+m, X7 (1 ai) MO+ 505 (vh )):jgl IPIE.A, 30
xf dvlf dvzf do0(o-g)(o-g)> where
X aof(Vi+aojoX,)f(Vy,t), (22) Jgjt))[ng),f}O)]:X”aﬁf dvzf do®(o-g)(o-g)
—2¢£(0 ’ 0 ’
£=6nT & =4 my+m, X191 ai) —1OVFOV)]. (31)
R R R . . . . )
y J dVlf deJ 460(5-g)(6-g)° f[())lrr:qensmnal analysis requires th8 (V) must be of the
X fi(Vy+ao o) fi(Vp,t). (23)
A FOV)=nivg 3d;(Vivg), (32)
The normal solution for the USF state adopts the form H
where

fi(r,v,t)=1;(V,T(1)), (24

2
i.e., all the space dependence is accounted for by the flow vo=\/ 2Tz1 m; * (33
<

velocity while all the time dependence appears through the

temperature. The Chapman-Enskog method provides thig 5 thermal velocity defined in terms of the temperailicd
normal solution as an expansion for small spatial gradientsy,e mixture. According to E¢32), the time derivative in Eq.

i.e., as a power series in the shear rate (30) can be represented more usefully as
fi=fO+ ... (25 oo o 1 P .
GO = = (O €N Tort D=5 ({0 = €05 (V).
where f® is of orderk in a. The time derivatives of the (34)
fields, the Enskog collision operator, and the pressure tensor
are also expanded as The Enskog equation at this order can be written finally as
=0+ O+, IF=IP+IP+--, (26) 1 9 2
Z0) (0)y = (O)y £(0) £(0)
25( )(?V.(Vfi )_;1 IPEO 10 (35)
P=pO) 4+ pL) ..., 27

Therefore, Eq(30) happens to be formallidentical to the
The coefficients in the time derivative expansion are identiOn€ obtained in the unforced cage., with §=0) [13], and
fied by a representation of the momentum flux, the cooling?onsequently there is an exact correspondence between the

rate, and the external parameter fogde the energy balance homogeneous cooling state and this type of driven steady
equation(18) as a similar series through their definitions asState. This is one of the advantages of the Gaussian thermo-

functionals off;. Consequently, the action of the operator Stat. Since the distribution functiorf§®’ are isotropic, the
(9§k) is zeroth order pressure tensor is found from Ed$) and(22)

asP{0)=ps,,, where the pressungis

HOT== (=T, OT=0, (29

ol -

2 2 2
mimj 3

= T+ 3y (14 a:

P ;”'T' ;1;1 mi+ij”X”(1 @ij)

AT =— iaP§ky‘1>—(g<k>—§<k>)T, k=2. (29
s X f dv, J dV,fP(Vf2(Vy) J deO(a-g)(o-g)?
Upon writing these equations we have taken into account
that P{)= (M= &b =0. The last equality follows from the
fact that the cooling rate is a scalar, and contribution ito

the first order in the gradients can arise only frdmu,
which is zero in the USF. Here, we have introduced the kinetic temperatufesfor

The leading term is the solution to the nonlinear equatioreach species defined as

2 2 2
2m
:I=21 n|T|+?Zl le O'IP]X”nan,LL“(l‘i‘Ol”)Tl (36)
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M 2000 expansions in a series of Sonine polynomials. The polyno-
EniTi:f dvo- VA (37 mials are defined with respect to a Gaussian weight factor

whose parameters are chosen such that the leading term in

As said in the Introduction, in general the partial temperathe expansion yields the exact moments of the entire distri-

tures T, differ from the (globa) temperatureT and so the bution with respect to 1mjv, and smv®. In the leading

total energy is not equally distributed between both speciegrder, the distributionP; appearing in EQ(32) is given by

(breakdown of energy equipartitipn

The analysis to first order ia is worked out in Appendix

B. The distributionf{") obeys the integral equation 0.\%? . 15
! Y g ed <1>i(V*)—>(;') e OiV*? 1+ O V*4—50,V* 2+ — 2
1.4 (43)
(£0=ONTar+ 605 V+ Ly D+ My M
, whereV* =V/uv,
—av—f<°>+a2 Aqgy[F,£60. (38)
m 2
- _ _ _ _ S am (44)
A similar equation can be obtained f6§", by just making e

the changes & 2. The specific forms of the linear operators
L;i,M;, andA;; are also given in Appendix B. The contri-

butions f(©) and (1) determine the pressure tens®ft) to ~ andy=T;/T. For elastic collisionsy;=1, i.e., the partial
first order in the shear rate. The result is temperatured; coincide with the global temperatuie In

the inelastic casey; #1 and presents a complex dependence
" on the parameters of the problem. The coefficientavhich
Pap=— ma(0axOpyt+ SayOpx), (39 measure the deviation @ from the reference Maxwellian
are determined consistently from the Enskog equation. Ap-
where 7 is the shear viscosity coefficient. This coefficient proximation(43) provides detailed predictions for the cool-
has kinetic and collisional transfer contributions ing rate{(?), the temperature rati®, /T,, and the cumulants
¢; as functions of the mass ratio, size ratio, composition,
K density, and restitution coefficient$3]. Recently, the accu-
n=mntn. (40 racy of this approximate solution has been confirmed by
Monte Carlo[15] and molecular dynamics simulatiofis6]
over a wide range of values in the parameter space.
In the case of the distribution§), the leading Sonine
approximation is

The kinetic contributiony® is given by

m: 7:
fl(l)—> - afi’M _VXV
n

2 2
ﬁczl—z E |JX|J(1+a|J)nJMJ| 77

fi m(V)=ni(my/27T;) ¥2%exp — mV2/2T)). (45)

[ av, | avar @) @2

. By using Eq.(45), the partial kinetic contributiona{‘ to the

shear viscosity can be obtained from E8g8) by multiplying

it with m;V,V, and mtegratmg over the velocity. From di-
For practical purposes the integral equati@®® and(38)  mensional analysm; «TY2 and so one gets the coupled set

for {0 andf(}) are solved by using low order truncation of of equations

IV. SONINE POLYNOMIAL APPROXIMATION

11— 2(£O+ ) T12 ( 7]'2/an§> Ty =Au—Agp

K 2 PR
T21 Too— 3(EO+ ) |\ 75/n,T5 Ty —Au—Ap
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where 6,=1/uq4,, andc;=c,=0. In this case, the shear viscosity
coefficient of an unforced4=0) mixture can be written as

_ (1) 2
nT =2 |1+ —= > o Xii Ny o
= 5=
2
4 27mm; T\ 2
1 . — i b B nioty.
mi= | MM D, @ +B;L;«nwmj X, (52
[
where now the kinetic contribution#‘ verify the set of
L equations46) with ((9=¢9=0 and
Tx”:—T dVmV, VA [ £O£(0]. (49
nI I

Integrals(49) are evaluated in Appendix C, while the colli-
sion integrals(47) and (48) were already evaluated in the
Boltzmann limit (except for the factory;;). The explicit X (5m; 6jj +3my 6 — 2m; 5y ), (53
forms of these integrals are also quoted in Appendix C. The

solution of Eq.(46) with the matrix elements known is el-

ementary and so the kinetic contributiafi to the shear vis- ~ _ 877 n; cru (54)
cosity can be easily calculated from Egl). Finally, use of T T 15 T Mk

Eq. (43) in Eq. (42) determines the collisional transfer con- ) ) ] ] )
tribution to the shear viscosity. The result(isee Appendix ~Eduations(52)—(54) agree with the first Sonine approxima-
C) tion to the coefficient of shear viscosity of a molecular gas

mixture of hard sphereB37]. In the case of mechanically
equivalent (inelastig particles, vj=1, {;={,=¢, and c;
=c,=cC, Where

16 & Neolixic (2ﬂm€)1’2

,om
VIS & (m4my)3¥2L m,

4r 2 2
3
_5 Z Z’l o Xij (1+ aij) nj i

mT+mT;\ 2 A L T, 3
x| e men | T (= 3o\ (- 1+ 5
i
x|1 C‘( mT, )2“ (50) 32(1 1-2a?
8 miTj+iji ' c= 2( a)( a) (56)

81-17a+30a3(1—a)

Equationg41), (46), and(50) provide the explicit expres-
sion for the shear viscosityy of a dense granular binary In this case, Eqs41), (46), and(50) yield

mixture under driven USF in the first Sonine approximation.

This coefficient is given in terms of the restitution coeffi- 46 (1+a)

cientsaq, ay,, anday,, the temperatur@, and the param- n=n [1+ X , / ¢nXU(1+a )
eters of the mixture, namely, the massgs the sizesr;, the

mole fractionsx;, and the solid volume fractiorb= ¢, (57
+ ¢,. Here, ;= (77/6)ni0'i3 is the species volume fraction of

the component. To get the explicit dependence gfon ¢,

the form of the pair correlation functio;a,J at contact must

and the kinetic part)® is

be chosen. A good approximation fgt; for a mixture of nT 2
hard spheres is given by the generalized Carnahan-Starling 7= T oo s @)(1-3a)dx|,
form [36] v,— 2 (&7 + )
(58
_ 1 +3 ,8 O'iO'J' 1 ,82 (0’in)2 Where
MT1-¢ " 2(1-¢)2 oy 2(1-¢)°| 0y

(51) :16 , 7T _E B . c
, , Vo= g no \/—m)( 1 4(1 a)?|| 1 ik (59
where 8= m(n,o7+n,05)/6.

Before studying the general dependencepodn the pa- Expression57) coincides with the one recently obtained for
rameter space, let us consider some special limit cases. In tleegranular monocomponent gi&8]. Finally, when¢—0 it
elastic limit, a11=ax=a,=1, (=0, y;=1, 6;=1u,, is easy to check that the results derived here reduce to those
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T briefly describe the method employed in the simulation in the
case of the USF state.

For a granular fluid under USF and in the absence of a
thermostating force4=0), the energy balandd 8) leads to
a steady state when the viscous heating effect is exactly bal-
anced by the collisional coolinf38]. However, when the
granular mixture is excited by the Gaussian force

Fi=3miéV, (62)

070 0.75 0.80 085 090 095 1.00

a which exactly compensates for the collisional energy loss

FIG. 1. Plot of the reduced shear viscosiy as a function of (§=¢), the viscous heating dominates and the temperature
the restitution coefficient for a binary mixture with parameters Obeys the equation
$»=0,x,=1/2, 01 /0,=1, andm;/m,=4 in (a) the unforced case
(£9=0) and(b) the forced cased?= ¢(?).

oT 2
previously found in Ref[18] for a dilute gas. This shows the gt 3n
self-consistency of the present description.

Before comparing the kinetic theory predictions with nu- Since the granular temperatufeincreases in time, so does
merical simulation data, it is instructive to compare the re+he collision frequency(t)eT(t), and hence the reduced
sults obtained in the unforcec?)=0) and driven € ghear ratea* (t)=a/w(t) (which is the relevant uniformity
={®) cases. In Fig. 1 we plot the reduced shear viscosity,arameter monotonically decreases in time. Under these
7" as a function of the(common restitution coefficient  conditions, the system asymptotically reaches a regime de-
ajj=aforoy/oy;=1, m/my,=4,x,=1/2, andp=0 inthe  scribed by linear hydrodynamics and ttreduced Navier-
above two cases. Here, the reduced shear ViSCOﬁ\ity.S Stokes shear Viscosit}y* can be measured @4]
defined as

aPyy. (63

14  —

. Xy
. 7 =—lim =, (64)
nt =T (60) *

where where P}, =P,,/nT. Recently, this idea has been used to

identify the shear viscosity of @eated granular binary mix-
(61) ture in the low-density regimgl8]. The comparison with
kinetic theory showed an excellent agreement over a wide

is an effective collision frequency. We see that the Navierfange of values of the restitution coefficient and the rest of
Stokes shear viscosity of tHenforced gas differs from the ~Parameters characterizing the system.

shear viscosity of the gas when the latterigitedby the We have numerically solved Eq20) by means of an
(Gaussian external force, the discrepancy increasing as thextension of the well-known DSMC methdd9] to dense
restitution coefficient decreases. This shows again that thg@ases. The method is usually referred to as the ESMC
driving force does not play a neutral role in the problem andnethod. This method was devised to mimic the dynamics
the transport property is affected by this type of externa|inV0|Ved in the Enskog collision term and it has been previ-
forcing mechanisnfi6]. However, for practical purposes, the ously used to analyze rheological properties of a elastic
introduction of these driving forces has the advantage of thalense gag23] and the shock-wave structuf@9]. In the
they can be incorporated into the kinetic theory very easilyPresent work, the ESMC algorithm has been modified to
and they allow, for instance, to test the validity of some ofstudy the dynamics of a granular binary mixture of a finite

the underlying assumptions made in the theory through &ensity. Since the USF is spatially homogeneous in the local
direct comparison with computer simulations. Lagrangian frame, the simulation method becomes especially

easy to implement and efficient from a computational point
of view. This is an important advantage with respect to mo-
lecular dynamics simulations. Nevertheless, the restriction to
this homogeneous state prevents us from analyzing the pos-
The expression obtained in the preceding section for thsible instability of USF or the formation of clusters or mi-
shear viscosity requires the truncation of an expansion of therostructures.
integral equations in Sonine polynomials. To assess the de- The ESMC method as applied to a granular binary mix-
gree of accuracy of this approximation, one has to resort téure under USF is as follows. The velocity distribution func-
numerical solutions of the Enskog equation, such as thoston of the species is represented by the peculiar velocities
obtained from Monte Carlo simulations. In this section, we{V,} of N; “simulated” particles,

v= \/;n(rizvo

V. MONTE CARLO SIMULATION FOR UNIFORM
SHEAR FLOW
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N; 2 N;
LV O—n 3 SV Vy(0). (65) = TS v, (69
Ni =1 -1 Ny &1
Note that the number of particléy is arbitrary, but must be n + .
taken according to the relatidd, /N,=n, /n,. At the initial PCIM > Mo (1+ i) (Ge - Oice) Ok e
state, one assigns velocities to the particles drawn from the ke
Maxwell-Boltzmann probability distribution, (70

where the dagger means that the summation is restricted to
f,(V,00=n;7 ¥, 3(0)exd —V¥V2(0)], (66) the accepted collisions. The shear viscosifyis obtained

from Eqg. (64). To improve the statistics, the results are aver-
where \/gi(o):z-r(o)/mi and T(0) is the initial tempera- aged over a numbek” of independent realizations or repli-
ture. To enforce a vanishing initial total momentum, the ve-cas. In our simulations we have typically taken a total num-
locity of every particle is subsequently subtracted by theber of particlesN=N;+N,=10°, a number of replicas\’
amountN. 1=,V (0). In theESMC method, the free motion =10, and a time stept=3X10"°\1,/Vy(0), whereXy,
and the collisions are uncoupled over a time stépvhichis = (vV27n;0%) " is the mean free path for collisions 1-1.
small compared with both the mean free time and the inverse The ESMC method is based on and extends Bird’s DSMC
shear rate. Aa* decreases monotonica”y in time, the value method to solve the Boltzmann equation for molecular fluids.
of At must be updated in the course of the simulation. In thefwo trivial differences between both methods are the in-

local Lagrangian frame, partic'es of each Speciesj(,Z) are crease of the collision rate by a factor and the Change of the
subjected to the action of a nonconservative inertial forcescattering rules to account for spatial correlations and inelas-
F,=—ma-V. Thus, the free motion stage consists of mak-ticity in collisions, respectively. The main novelty of the
ing Vi— V—a- ViAt. In the collision stage, binary interac- ESMC method with respect to the DSMC technique is that,
tions between particles of specieandj must be considered. N general, in the ESMC method the two particles of a colli-
To simulate the collisions between particles of spetigith ~ Sion pair must be taken from cells separated a distance equal
j a sample of%Niwﬂ{g)At pairs is chosen at random with to the diameter of the two colliding spheres._ Nevertheless,
given that the USF becomes homogeneous in the local La-
grangian frame, this latter modification is not carried out.
Instead, the use of theeculiar velocities leads to modifica-
tions in both the probability of a binary collision and the
corresponding scattering rules, as described above. From the

equiprobability. Herewg]‘gx is an upper bound estimate of the
probability that a particle of the speciéscollides with a
particle of the species Let us consider a paik(€) belong-

ing to this sample. Hereaftdt,denotes a particle of species

222(2\2 ,Fi?gl,(:l'[igffiﬁgv(\:lliiz Fs?er;sa ;frlep;:rklé,rf ) with veloci c_hange of the peculiar veIo_citiQ@?) anq (68) due to colli- _
: T . sions one consistently obtains the collisional transfer contri-
(1) A given direction oy, is chosen at random with | tions to the pressure tensor.
equiprobability.
(2) The collision between particlels and ¢ is accepted VI. RESULTS
with a probability equal t00 (gy- o) w0l , where . . n s obtained from th
(i) — 2 ~ ; L n this section we compare the results obtained from the
@kt __47Tcrijnj|g‘f€' ok and the relative velocity in the La- Chapman-Enskog methodpfor the shear viscosity coefficient
grangian frame gy =V¢—V,—oya- o . . of aheatedgranular mixturei.e., with &®= z(%) with those
3 If _the collision is acc.epted, postc_olhsmnal velocme_s obtained from the ESMC method. For the sake of simplicity,
are aSS|gne_d to both partlcle§ according to the scattering,s assume thatr;;= apy= ay=a SO that we reduce the
rules (3), which in the Lagrangian frame are parameter set of the problem to five quantities:
{a,p,mIm,,0¢/0,,X,}. For concreteness, henceforth we
(67) will assume tham;=m, ando;=0,. To compare and con-
trast the results of a binary mixture with that of its mono-
component counterpart, we first show some results for a
(69) monodisperse system over a range of solid fractions and res-
titution coefficients.

Vi— V= wji(1+ @) (Ge - Oice) e

V=Vt wij(1+ aij) (e Oe) Ot -

If in a collision w({})>wl),, the estimate ob{), is updated
asol) =oll). The procedure described above is performed
fori=1,2 andj=1,2. The granular temperature is calculated Figure 2 shows the dependence of the ratio
before and after the collision stage, and thus the instantan* (a,¢)/ n* (1,¢) on the solid fractionp for two values of
neous value of the cooling rateis obtained. After the col- the restitution coefficient. The symbols represent the simula-
lisions have been calculated, the thermostat fo8&eis con-  tion data while the lines refer to the theoretical results ob-
sidered by making/,— V,+ 1/2,V | At. tained from the Enskog equation, Eq&7)—(59). Both

In the course of the simulations, one evaluates the kinetitheory and simulation show that, for a given value of the
and collisional transfer contributions to the pressure tensodensity, the shear viscosity increases with decreasifige.,
They are given as greater dissipationif the solid fraction is smaller than a

A. Monocomponent dense gas
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= 1.2
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¢ ¢
FIG. 2. Plot of the ratiop* («, )/ 7* (1,¢) for a monocompo- FIG. 4. Plot of the kinetic pary** of the reduced shear viscos-
nent gas as a function of the solid fractigh for two different ity as a function of the solid fractios for my/m,=4, o/,
values of the restitution coefficient: (a) «=0.9 (circles and (b) =1, x;=1/2 and three different values of the restitution coefficient

«=0.8 (squares The lines are the theoretical predictions and thea: (&8 «=0.9 (circles, (b) @=0.8 (squares and(c) a=0.7 (tri-
symbols refer to the results obtained from Monte Carlo simulationsangleg. The lines are the theoretical predictions and the symbols

) ) ) refer to the results obtained from Monte Carlo simulations.
threshold valuegy(«), while the opposite happens b

> ¢o(). Similar threshold values exist for the kinetic and effects on the shear viscosity, in Figs. 4 and 5 the parameters
collisional parts of the shear viscosity. We observe that in the the mixture arem;/m,=4, o,/o,=1, and x;=1/2.
range 0.8&<a<1, the kinetic theory calculations show that Three different values of are studieda=0.9, 0.8, and 0.7.
these threshold values are practically independent of the reghe symbols are the same as in the previous figures. Figure 4
titution coefficient. Specificallypo(a)=0.16, while the cor-  shows the dependence of the kinetic paft = »7¥/nT on
responding values for the kinetic and collisional parts areihe solid fractions, while the total shear viscosity* is
respectively, 0.23 and 0.05. It is apparent that the comparisofistted in Fig. 5. The good agreement between theory and
between Monte Carlo simulation data and theoretical resultgjmy|ation indicates that both kinetic and collisional transfer
shows an excellent agreement over the entire range of degyntributions are given accurately by the first Sonine ap-
sities considered. The dependencesdf(«,¢) on dissipa-  proximation. As in the monocomponent cdsé Fig. 2], the

tion is plotted in Fig. 3 for three different values of the solid ghear viscosity of a granular mixture decreagesreasesas
fraction. We see that, in general, the influence of dissipationhe inelasticity increases if the solid fraction is larger
on the shear viscosity* () is quite significant, except for (smajlej than a given threshold valug,. The value ofé,
¢=0.2 which is very close to the threshold valig. As in depends on the parameters of the mixture although it is prac-
Fig. 2, the theory compares quite well with simulation datajically independent of dissipation. For the mixture consid-

except perhaps ab=0.4 for strong dissipationd=0.6). ered in Fig. 5,¢o(a)=0.22.
Next, we explore the influence of dissipation on the re-
B. Binary dense mixture duced shear viscosityy* for different values of the mass

Now, we consider granular binary mixtures whose par_ratio, the size ratio, and the mole fraction. We consider a
ticles can differ in size and mass. First, to analyze density

3.0
35 1 M 1 M 1 T L] T L] T T
sl ] 2.5
BE - n 20
| ]
20:5 ==
[ ] 1.5
a4k ]
b
e
b @ ] 1.0
1 - - ° ° ° N L L 1 L 1 L 1 L 1 L 1 L 1
of . . . . . 0.00 005 010 015 020 025 030
05 06 07 08 09 10 4

FIG. 5. Plot of the reduced shear viscosify as a function of
FIG. 3. Plot of the reduced shear viscos#y of a monocom- the solid fraction¢ for m;/my,=4, o,/0,=1, andx,;=1/2 and
ponent gas as a function of the restitution coefficianfor three  three different values of the restitution coefficient «=0.9 (solid
different values of the solid fractiog: (@) $=0 (circles, (b) ¢ line and circley «=0.8 (dashed line and squajesand a=0.7
=0.2 (squares and(c) ¢=0.4 (triangles. The lines are the theo- (dotted line and trianglg¢sThe lines are the theoretical predictions
retical predictions and the symbols refer to the results obtained fromand the symbols refer to the results obtained from Monte Carlo
Monte Carlo simulations. simulations.
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FIG. 6. Plot of the reduced shear viscosi§ as a function of
the mass ration; /m,, for ¢=0.2, oy/0,=1, x;=1/2 and three
different values of the restitution coefficieat «=0.9 (solid line
and circle$, «=0.8 (dashed line and squajesind «=0.7 (dotted
line and triangles The lines are the theoretical predictions and the
symbols refer to the results obtained from Monte Carlo simulations

FIG. 8. Plot of the reduced shear viscosify as a function of
the concentration ratix, /x, for ¢$=0.2, m;/m,=4, o,/0,=1
and two different values of the restitution coefficiemt «=0.9
(solid line and circlesand «=0.7 (dashed line and trianglesThe
lines are the theoretical predictions and the symbols refer to the
results obtained from Monte Carlo simulations.

solid fraction #=0.2 and different values of the restitution sidered. It is worth noting that the trends observed in Figs.
coefficient. In Fig. 6 we ploty* versus the mass ratio 6-—8 for finite density are similar to those previously reported
m,/m, for o,/0,=1 andx;=1/2. As in the low-density in the low-density limit[18].

case[18], we see that the influence of dissipation @f

becomes important as the mass disparity increases. At a VIl. DISCUSSION
given value of the mass ratia;* decreasegincreaseswith . ) ]
dissipation if the mass ratio is small@arge) than a certain The main goal of this paper has been to determine the

threshold value, the value of which seems to be again prac@hear viscosity of a binary mixture of smooth inelastic
tically independent of the restitution coefficient. Regardingh@rd spheres described by the Enskog equation. To get the
the comparison between kinetic theory and simulation, wélependence of on the parameters of the mixture, the spe-
see that the agreement between both approaches is similar§t! state of USF has been considered. The USF is character-
the one previously obtained, although the discrepancies teriged by constant partial densities, uniform temperature, and
to increase a& decreases. Figure 7 shows the results;for by @ linear profile of thex component of the flow velocity

as a function of the size ratio fon, /m,=4 andx,=1/2. We along they dlre_c_tlo_n. The(constank shear rate is the rel-
observe that the influence of on 7* is less significant as €vant nonequilibrium parameter of the problem. Two
the one found before in Fig. 6 for the mass ratio. Finally, incomplementary approaches have been used. First, a normal
Fig. 8, 7* is plotted as a function of the concentration ratio solu.tlon to the Enskog equation is obtained through f|r§t or-
X, /X, for my /m,=4 ando, /o,=1. As in Fig. 7, theory and der ina by means of the Chapmgn—Enskpg mt_etho_d. Asin the
simulation predict a weak influence of dissipation on the€lastic case, the shear viscosity coefficientis given in

shear viscosity over the range of values of composition contems of the solution of a set of coupled linear integral equa-
tions, which are solved approximately by taking the leading

T B S — terms in a Sonine polynomial expansion. The explicit form
of 5 is given by Eqs(46)—(50) as a function of the restitu-
tion coefficients, the temperature, the total solid fraction, and
the masses, sizes, and concentrations of the constituents of
the granular mixture. Second, the Enskog equation has been
numerically solved in the USF by using an extension of the
well-known DSMC[19] of the Boltzmann equation. The
simulation has been performed by introducing an external
(Gaussian force which heats the system to compensate for
the energy lost in collisions. Due to the action of this external
driving force, the shearing work still heats the mixture and so
the reduced shear ragé (t) goes to zero for long times. As
a consequence, the system reaches a regime described by
FIG. 7. Plot of the reduced shear viscosij as a function of  linear hydrodynamics and the shear viscosity coefficient can
the size ratioo; /o, for $=0.2, m;/m,=4, x,=1/2 and two dif- be measured in the simulations.
ferent values of the restitution coefficiemt «=0.9 (solid line and The analysis made here extends previous regL@kob-
circles and «=0.7 (dashed line and trianglesThe lines are the tained by the authors for a binary mixture at low density. As
theoretical predictions and the symbols refer to the results obtaineith the latter case, the comparison between the Chapman-
from Monte Carlo simulations. Enskog results in the first Sonine approximation and simula-

o/c,

041302-11



V. GARZO AND J. M. MONTANERO PHYSICAL REVIEW E68, 041302 (2003

tion data shows, in general, an excellent agreement for 8718. J.M.M. also acknowledges partial support from the
wide range of values of densities, dissipation, and parameteiinisterio de Ciencia y Tecnologi(Spain through Grant

of the mixture. Discrepancies with simulation results are dueNo. ESP2003-02859.

mainly to the approximations carried out in the Chapman-

Enskog scheme, and more specifically in taking only the first

Sonine correction. However, apart from this source of slight APPENDIX A: COLLISIONAL

discrepancy, the good agreement obtained here is a further TRANSFER CONTRIBUTIONS

testimony to the validity of a hydrodynamic description for ) ) . o

granular media beyond the weak dissipation limit. Moreover, In this appendix some details of the derivation of the col-
a test of the utility of the Enskog theory at high densities islisional transfer contributions to the heat and momentum
possible using molecular dynamics simulations. Previoudluxes are given. First, we consider the collisional momen-
comparisons at the level of partial temperatuf@é§] and  tum transfer

self-diffusion coefficien{25] indicate that the range of den-

sities for which the RET applies decreases with increasing

2 2
dissipation. We hope that the present results stimulate the , _ f v 1E Cf
performance of such simulations in the case of the shear =2 ,21 dvampvaJitr vl fi. ]
viscosity. .
As in the low-density case, theory and simulation show 2 A -
that the dependence gfon dissipation increases as the mass :Zl 121 ajj | dvi | dvz | de®(o-g)(o-gimivy
differences increase. The dependence of the shear viscosity
on inelasticity is not significantly affected when composition X [agzxij(r,r— o) fi(r,vi;Of(r—aoy ,vat)
and diameters are changed. With respect to the dependence _ _
on density, the results indicate that the shear viscosity of the —Xxij(rr+ o) fi(r, v O f(r+ oy, vz )], (A1)

granular fluid is larger than the one corresponding to a mo-
lecular fluid if the solid fractionp is smaller than a threshold . . L.
value ¢,, while the opposite happens whef> . The Now, we changg varlablgs to integrate ov@rr?mdv2 mstea_d
value of ¢, depends on the mechanical parameters of th(—?'c v, and v, in the f|r§t term of the rlght—hgnd 'S|de
mixture, but is practically independent of the restitution co-°f Ed- (Al). The Jacobian of the transformation is;
efficients. and o-g=—a;j(0-9'). Also, vi(vy,vo)=Vi=v;—pu;i(1

Recently, a seemingly similar analysis on rheology of bid-+ «;;) (o~ g) and in addition, we make the change—
isperse granular mixtures has been carried out via event- g Thys, integralAl) becomes
driven simulationg40]. However, this study is addressed to
the steady sheared state achieved when viscous heating and
collisional cooling exactly cancel each other. Under these 2 2
conditions, due to the coupling between dissipation and the Ip=z 2 Uisz' dvlJ’ dVZJ’ do®(o-g)(o-gm,
shear rate, the granular fluid is far away from the Navier- i=1j=1
Stokes regimegnon-Newtonian fluigl except whena—1.
This precludes the possibility of making a comparison be-
tween the molecular dynamics results found in RRé€] for (A2)
the shear viscosity with the predictions of the Enskog equa-
tion.

The main limitation of the result derived here is its restric- Sincem;(vi—vy) =m;(v,— V), Eq.(A2) can be rewritten as
tion to the uniform shear flow state. The extension of this
study to moregeneral hydrodynamic states for a dense bi- s 2
nary mixture, e.g., those with gradients of concentrations and , > A -
temperature as well, is somewhat complex due to the techni- IP_iZl ;1 Uiif dvlf dvzj doO(a-g)(a-g)m,
cal difficulties of the Chapman-Enskog method associated

X(VI= V) xij (r,r + o) fi(r, v ) fi(r+ o5, va5t).

with the spatial dependence of the pair correlation functions X (Vo= Vo) xij (1,1 + o) Fi(r, vy O F(r+ oy ,v5t)
considered in the RET. We plan to extend the results derived 2 2

years ago from the RET by lpez de Harcet al. [32] for a _ 2 A A ~

mixture of smooth elastic particles to the caseiraflastic _21 ,Zl U”f dvlf dvzf do®(o-g)(o-g)m;
collisions. Once the complete hydrodynamic equations of the

mixture is known, some insight could be gained into the X (V= V) xij(r= o ;1) (r v, O i (r— o) ,vq5t),
understanding of phenomena very often observed in nature (A3)

and experiments, such as separation or segregation.

ACKNOWLEDGMENTS where in the last step we have exchanged the roles of the

V.G. acknowledges partial support from the Ministerio de speciesi and j, which implies the changes— — o and
Ciencia y Tecnolo@ (Spain through Grant No. BFM2001- v« V,. Combination of Eqs(A2) and(A3) yields
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2 2 2 1
Tii ~ ~ ~
=2 2 %f dvlf dvzf do®(o-g)(o-g)mi(Vy—V,) on dixij[r—(1-=N) oy ,r+Aoj]
1=
X[xij(r,r + o) fi(r,ve ;O f(r + o3, vz 1) Xfilr=(1=N) oy vy t](r + N oy V25 t). (A7)
~Xij (1= 01 D= 03 VD (1v2; 0] (Ad) According to the momentum balance equatié)) the diver-
Let Fij(r1,r2) be the function gence of the collisional transfer pa&f is
Fij(ri,ra)=xij(ra,ro) fi(ro)fi(ra). (AS5) é é .
dvm;(v—u)J:[v|f;,f]=—V-P% (A8
Next, we use the identity e f ISV LRUY (h8)

Fij(rr+ o) =Fi(r=oy.r) By taking into account EqA8), one directly gets expression
1 J (13) for the collisional part of the pressure tensor,
= JQ da RF”[I'_(]._)\)O'U ,r+)\0'ij]

§ i mim; 1+ aj;
.-V 1d Elr—(1—\)o . e ” mi+m, 2
Tij . AFji[r=(1—-N) oy ,r+ Moy j

(AB) xj dvlj dvzf doO®(o-9)(o-g)’co
Therefore, from EqsA5) and(A6), Eq. (A4) can be rewrit- 1
ten as a divergence xf d\xii[r—(1—N) oy ,r + N oy
0
2 2 0_3
_VE _'Jf dvlf def d&@((}g)((}g)& Xfi[r—(l—)\)()'ij ,Vl;t]fj(l'+)\0'ij,V2;t).
=1i=1 2
i (A9)
1
Xmi(vi— Vi) fo dhxii[r = (1=N)oyj ,r+ N ojj] The collisional transfer contribution to the energy balance
equation is
Xfi[r—=(1—=N) oy ,vo:t]f(r+hojj ,voit)
2 2
2 m;
mim;_ 1+ ay le=2, 2, f dv; 5 vE35rvalfi fil. (AL0)
Vizljz:lo-lm-i-m] 2 ==t 2 !
A a - ~n By following similar mathematical steps as in the case of
2
Xf dvlf dvzf do®(o-g)(0-g)"ox momentum, one gets

2 2
:2 2 ”j dvlf dvzj do®(o-g)(o- g)—(v”2 vo)Lxij(r.r+ o) fi(r, vy O f(r+ oy ,va5t)

&, mm (1-ad)
_Xij(r,r—(rij)fi(r—o'ij ,Vl f (r Vs, t) |:21 121 (]'IJ m +mJ T

devlf dVZI d(}@((}g)((}g)3X|J(r,r+(le)fl(r,vl,t)fj(r+(7”,Vz,t)

:—V-%f dvlJ' dvzf d&@(&-g)(&-g)&—( —vgz)f dixiilr—(1-N ey ,r+ o]

2 2 2

mim; (1—af)

Tr=(1— vt f Vo) — i\ S
XALr=(1=N) oy vaitlfj(r+ N oy Vi) = 2 21 imm 4

xfdvlf dvzf do® (o g)(0-9) % (r,r+ ) fi(r,v ;O (r+ o3 ,Va3t). (A11)
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Here, we have used the identitf6) and the scattering law whereq® is the collisional contribution to the heat flux agd
is the cooling rate. To identify such quantities, we use the

m(v//Z_Vl) m](vz V//2 mm (1 a? )(0’ g)z relation
Al2 m;
( ) ?( ”2)_ qu(l a”)(a g)2+mllu’]|(1+alj)(a- 9)

The balance energy equati¢n) yields

2 2
> _2 Jdv— v—w2I5[vlf; f;]
i=1j=1

X[(6-Gyj)+(o-u)], (A14)
with Gj; = ui;V1+ ujiV,, V=v—u being the peculiar veloc-
3 ity. Comparing Eqs(A1l) and(A13) and taking into account
e VU.AC_pCv_ > Eqgs.(A7) and(A14), one can finally obtain expressio(i)

V-a-PEvu 2nT§, (AL3) and (15) for g° and{. They are given by

22 1+a;
@ 0=3 3 of S 2 [y, [y, [ dioige g)za[w Gy + 51— a6 g)}

=1 'lm+m
1

XJ d}\Xij[r_(l_)\)O'ij,r+)\0'ij]fi[r_(1—)\)0'ij,Vl;t]fj(r+)\0'ij,V2;t)
0

m;m; l+a”

2 2
21121 U"m+mj fdvlf dvzf d0®(0 9)( o g)zo[(a' Glj)+ (:“Jl wij) (1= “lJ)(U' g)}

X fld)\)(”[r_(l_)\)ﬂ'” ,r+)\0'ij]fi[r_(1_)\)0'ij ,Vl;t]fj(r-l—)\a'ij ,Vz;t), (A15)

(rH=¢

2 2
DO (1-a2) AGIV IO FO]= 8 J av, f 460(5-9)(o- )5,

=1 IJI'T‘I‘f’l'T]j

1
—
< [ v, [ dv, [ db0i015- 0%,

X(r,r+ o) fi(r,v; O f(r+ o5, vo50).
(A16) + f(o)(V ) (0)(\/ ).

f(O) V! N— f(O) V)
( v (Vs

(B2)

The second equality in EGA15) has been obtained by ex-
changing the roles of specieandj. In the case of mechani-
cally equivalent particles, Eq$A9), (A15), and (A16) re-
duce to those previously obtained for a monocomponent
dense ga$21].

Therefore, the distributioh(*) verifies the equation

a0+ = 5(0) FVRARRS B+ M f(Y

2

APPENDIX B: FIRST ORDER SOLUTION TO THE USF = (B3)

yav
In this appendix we apply the Chapman-Enskog method
to solve Eq.(20) to first order in the shear rat First, in ~ where it is understood that-j on the left hand side and the
order to get the kinetic equation fé", the Enskog colli- linear operatorsC; and M; are
sion operatof21) must be expanded as
Lif M= (I FO F D1+ 3, 0D, 1O+ 9 £, 1(0),
IGO0 1074 gO (1) (04 5O £(0) (1)) (B4)

+a[f(?,f], (BD) M= =[O 11]. (B5)

where the(Boltzmanrn) collision operator:](o)[Xl,Xz] isde- In these equations, use has been made of the fact that
fined in Eq.(31) and a§1>f§°>=o according to the second identity of E@8). Fur-
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thermore {(M)=0 by symmetry becaus@é-u=0 in the USF.  Using Eq.(C3), the_t last term on the right-hand side of Eq.
The action of the time derivative(® on f) can be easily (€2 can be explicitly computed as
obtained from Eq(28) as
"V =V V (1+ ;) (o Q[Gii yoy+Gii yo
1x 1x ly /-le i ij,xYy ij,yYx
HOM M= — (O ENTorf D, (B6)
+ i1 (Gyory+ Gyoy) — i (1+
and so, the integral equatigB3) finally becomes #3100y + Gy — gy (1 + ayp)
X(0-g)oyayl, (C4)

1 J
~((O=ENTor+ 5605 V+ L FB+ M f Y
where Gjj = uij Vit i Vox and Gij y= uijVay+ i Vay -

2 Substitution of Eq.(C4) into Eq. (C2) allows the angular
_aVVan(O)+aE A”[f(o) f(o)] (B7) integral to be performed with the result
This is the result38) used in the text. j do® (o g)(o- g)a-y(VZXVZy_leVly)

APPENDIX C: EVALUATION OF SOME

COLLISION INTEGRALS 2w
- E/’«ji(l+ a@ij) (29)2/4‘ 9%)Gij x+20x9,Gij y

In this appendix some collision integrals appearing along
the text are evaluated. First, let us consider inte@#8l,

2 , 1 ,
+7Mji(11_301ij)gxgy+7Mji(4_301ij)gxg
~ 1
Kij=—= | dVimVy Vi Ay[Vq| O, £(0]
n|T| (Ch)

m; ~ Using Eq.(C5), integral (C2) becomes
=n—T'2Xijaﬁfdvlf dvzf do®(o-g)
it

X 2T m (1+ ;)
- i1~ 7 15 , 12 Xii o i (1+ e
X(O' )O'ylevly n T

2HOV) -0V
« f av, f VR IATICIVA

+ f<°>(v1) f<°>(v2) (CY

Mi 4
3 (Ba— 1)(V§+V%>—§<m,-VE—ujiV§>}

As done in Appendix A, we change variables to integrate

overV; andV; instead ofV; andV, in the first term of the 27 min,
right-hand side of Eq(C1). Thus, the integral becomes T —2)(”» I],uj,(lJr a@ij)
T
~ m, 3J f j P T, T, T—T,
Ajj=——=xijo;; | dVy | dV, | doO(o- (Bai—1)| —+ 2| —4a—L
ij niT?X" i 1 2 (0-9) X| pji(3aij— 1) mi+mj 4mi+mj. (C6)

In the case of mechanically equivalent particles, EZ6)
coincides with the one previously obtained in the context of
determining the shear viscosity in a monocomponent granu-
(€2 lar gas[8]._ _ _ _ _
The collision frequencies;; defined by integral$47) and
where (48) are the same as those appearing in the Boltzmann limit
(except for the factorsg;;) [17,18. The details will not be
-~ A repeated here and only the results are displayed. They are
Vi=Vi—puji(1+ ajj)o(0o-g). (C3  given by

~ () I 0
><(0"9)0'yfi (Vl)ﬁv f (VZ)(V levly)
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Ty my nlalel{ (1 a’ll)z

+Cz 20(12u01+ 912~ 10) = 01(5— 6121 —
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(1__
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+ 15\/;"‘20%2#2%12110( 1+ agp) 6320, 1

_ i 3 _ _ _
X166, 21202~ p161) (01 + 6) 2+ E,U«2191 2(0,+ 0,) V43— agy) + 560, 101+ 6,) 12

S 21(3— 1)) (01 + 05)

16

2

2 21 312,0-1/2)
T1o= \/ Np02—— X120 (1+ ) 6760,
12— 15 2 12# X12Vo 12) 2

—50; 1 (01+ 0,) 2+

16

The corresponding expressions fey, and 7,; can be in-
ferred from Eqs(C7) and(C8) by exchanging +2.

Finally, the collision contribution to the shear viscosity is
given by Eq.(42). To get explicit results, we have to evaluate

integrals of the form
Aij= f dv, f dVofO(Vpf2(vag, (€Y

by using the leading Sonine approximati@#d). Let us con-
sider the integral\;,. Substitution of Eq(43) into Eq.(C9)
and neglecting nonlinear terms @, A;, can be written as

A= N1 3 0192)3/2[ 1(61,60)

_1 02_2 50, —+—11(64,60

4 ldgi ldﬁ]_ 4 ( L 2)
_2 02_2 560,—+—|1(6,0

4 2d0§ 2d02 4 ( 1 2) )

where the dimensionless integigld,, 6,) is

1(6,,0,) = f dv* f dvie Vi*=aVi®  (c1y)

1 (C7)
(01+ 6,)°"?
3
605 2(1202— p21601)( 01+ 05) 2+ 2#2192 201+ 0)Y4(3—ayy
Cq 26041(10— 1215~ up1) + 02(5— 6112 — 5 (3~ 1) ( 61+ 65) 8
(01+ 6,)%? .

with V* =V/v,. The integrall (6,,6,) can be performed by
the change of variables

x=V* - y= 0,V + 0,V5 (C12

*
2
with the Jacobian §; + 6,) ~3. The integral becomes

o (011 02"

[(6,,0,)=27 (C13

102

Use of this result in Eq(C10 gives
A 2 01+ 6,\ 1
=Ay=—=nNNovg| ———
12 21 \/; 1112v 0 0102
cif 6, \% ¢ 1 \?

X [ — [ —

! 16\ 6,+ 6, 16\ 6,+ 6, (€19

The corresponding expressions fof; andA,, can be easily
inferred from Eq.(C14) by exchanging +2:

4 , Ty Cq

A11: —\/; nl m—l — 3—2 , (Cla
4 T, Cy

A22:\/—;n§ m_z( - 3—2) . (C16)

Equations(C14)—(C16) lead directly to the result given by
Eg. (50) in the text.
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