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Effect of energy nonequipartition on the transport properties

in a granular mixture

Vicente Garzé, José Maria Montanero

Abstract The Boltzmann kinetic theory is used to ana-
lyze the effect of energy nonequipartition on the pressure
and the shear viscosity of a granular binary mixture under
simple shear flow. Theory and Monte Carlo simulations
show that both quantities exhibit a non-monotonic behav-
iour with the mass ratio in contrast to the predictions
made from previous theories based on the equipartition
assumption. Our results agree qualitatively well with re-
cent molecular dynamics simulations performed by Alam
and Luding [Granular Matter 4, 139 (2002)].
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In a recent paper, Alam and Luding [1] have performed
molecular dynamics simulations of a granular binary
mixture under simple shear flow to assess the effect of
energy nonequipartition on the transport coefficients
(pressure and viscosity). Their main finding is that the
pressure and viscosity exhibit a non-monotonic behaviour
with the mass ratio whereas the theoretical predictions
with the equipartition assumption suggest a momnotonic
dependence. They also propose a simplified model which
takes as input parameters the expression of the shear vis-
cosity n derived by Willits and Arnarson [2] for nearly elas-
tic particles and the expression of the temperature ratio
~ obtained by Barrat and Trizac [4] for a driven granular
gas. In spite of these approximations, the model captures
qualitatively well the main trends observed in the simula-
tions. However, given that the expressions of 17 and  cho-
sen by Alam and Luding [1] do not coincide with those ob-
tained in the simple shear flow problem, it would be inter-
esting to reexamine the conclusions found by Alam and
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Luding [1] when the correct expressions for the tempera-
ture ratio and the shear viscosity are taken into account.

In this communication we revisit the issue studied by
Alam and Luding [1] by using a recent multitemperature
kinetic theory [5] for a granular binary mixture engaged in
simple shear flow. Due to the complexity of the problem,
the kinetic theory is restricted to the low-density regime
in which case the velocity distribution functions f; for the
two species verify a set of two coupled nonlinear Boltz-
mann equations. This is the price to be paid for offering a
quite refined theory. Although the Boltzmann equation is
analytically solved by the moment method in the leading
Sonine approximation, the corresponding theoretical pre-
dictions compare quite well with Monte Carlo simulations
[5,6].

Let us consider a granular binary mixture composed
by smooth inelastic disks or spheres of masses m; and
ms and diameters o7 and oy. Collisions between particles
are inelastic and characterized by three constant (inde-
pendent) restitution coefficients aq1, aog, and o = as1,
where a;; < 1 refers to the restitution coefficient for col-
lisions between particles of species ¢ and j. The mixture
is under simple shear flow, namely, a macroscopic state
with a constant linear velocity profile U = a - r, where
are = adry0¢y, a being the constant shear rate. In addition,
the partial densities n; and the (global) granular tempera-
ture T are uniform. The time evolution of the temperature
T arises from the balance of two competing effects: viscous
heating and collisional cooling. When both mechanisms
cancel each other, the system reaches a steady state and
the temperature achieves a constant value. This steady
state is what we want to analyze here.

From a microscopic point of view, the simple shear flow
problem becomes spatially uniform in the local Lagrang-
ian frame moving with the flow velocity U. In this frame,
fi(r,v) — fi(V), where V = v — U is the peculiar veloc-
ity. Under these conditions, the set of Boltzmann kinetic
equations read

0
_aVyT%fi(V) = Xj:‘]ij[vlfi’fj] ) (1)

where the Boltzmann collision operator J;; [V|fi, f;] is
Ty Vilfu sl = o [ ava [ 4506 £2)(6 1)

x [ai? fi(VD £ (V5) = fi(V) £5(V2)] -
(2)
Here, d is the dimensionality of the system, o;; = (0, +
0j)/2, @ is a unit vector along their line of centers, ®



166

is the Heaviside step function and g;5 = Vi — Va. In
addition, the primes on the velocities denote the initial
values {V7, V,} that lead to { V1, Va} following a binary
collision: Vi = Vi — pj; (1 + a;jl) (G- gy5)0 and V5, =
Vo + pij (1+ a;jl) (0-gy5)0. Here, pi; = m;/(m; +m;).
The most relevant transport properties in a shear flow
problem are obtained from the pressure tensor P = Py +
Ps, where P; is the partial pressure tensor of the species 4
given by
The trace of P; defines the partial temperatures T; as T; =
TrP;/dn;. These temperatures measure the mean kinetic
energy of each species. The global temperature of the mix-
ture (which is the relevant one at a hydrodynamic level) is
T = 21Ty +25T5, where x; = n;/(n1+ns) is the mole frac-
tion of species i. The elements of the pressure tensor P;
can be obtained by multiplying the Boltzmann equation
(1) by m;VV and integrating over V. The result is
WemPi me + Gom Py i = Z Aijre (4)
J

where we have introduced the collisional moments A;; as

Aij Zmz/dVVVJU[V|fZ,f]] . (5)

From Eq. (4), in particular, one gets the balance equation
for the partial temperature T;

d
aPi,:vy - —5101@ 5 (6)

where p; = n;T; is the partial pressure of species ¢ and
Gi=> j (i; is the cooling rate for the partial temperature
T;, with

1

Cij - _dnzTZ

/deiVZJij[V|fi,fj] . (7)

According to Eq. (6), the (steady) partial temperature in
the simple sear flow problem can be obtained by equating
the viscous heating term aP; 5, with the collisional cooling
term (d/2)p;(;.

The determination of (;; and A;; requires the knowl-
edge of the velocity distribution functions f;. This is a
quite formidable task even in the one-component case.
However, as in the elastic case, one expects to get a good
estimate of A;; and (;; by taking the leading term in
an expansion of f; in Sonine polynomials. Thus, we take
the approximation f;(V) — fi.m(V)[1+ C; : Dy(V)/2T3],
where C; = (P;/p;)—1 and D;(V) =m,; [VV — (V2/d)1].
Here, 1 is the d x d unit tensor and f; »s is a Maxwellian
distribution at the temperature of the species i, i.e.,

mg

d/2 2
Fim(V) = ns <27rTi> exp (_ 2, >

With this approximation, the collisional moments A;; and
the cooling rates (;; can be explicitly evaluated. The

(8)

details of these calculations have been published elsewhere
[5,7] so only the results are quoted here. The results are

op(d—1)/2 C/or oT\ 2
? J
T = T 1 — oy
x( +aj){uj [(mj/mi)Ti+Tj T
. | [ GG
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(9)

“%i = ) T

m; m;
|: Ti—Tj ].—Oéij:| (10)
(mg/mi)T; + T 2 ’
where
T, —T; L
Nij = 21 7 2 (2d + 3 — 3ay;) . (11
j 1221 (mj/mi)TiJrTj +d+3< + Oéj) ( )

Substitution of (9) into the set of equations (4) allows
one to get the partial pressure tensor P; in terms of the
temperature ratio v = 71 /7T and the parameters of the
mixture. The temperature ratio can be obtained from Eq.
(6) as
y = 292G P1 ay ) (12)

211 P 2y

When the expressions of P; and ¢; are used in Eq. (12),
one gets a closed equation for the temperature ratio -,
that can be solved numerically. In Fig. 1 we plot v ver-
sus the diameter ratio o1 /o9 for a two-dimensional gran-
ular gas with z; = 1/2 and two different values of «.
The symbols refer to the simulation data obtained from
the Direct Simulation Monte Carlo (DSMC) method [6].
Here, we have assumed a;; = o and equal mass densi-
ties [my/ma = (01/02)?]. The predictions due to Barrat
and Trizac [4] for the homogeneous steady state driven
by a white noise thermostat have been also included. As
said before, this expression was used by Alam and Luding
[1] to obtain the pressure and the shear viscosity coeffi-
cients in the simple shear flow problem. It is clearly seen
that while our theoretical results agree quite well with
simulation data, Barrat and Trizac’s theory overestimates
them especially for large mass ratio. This disagreement is
not surprising since the situation analized by Barrat and
Trizac (homogeneous driven state) is different from the
one studied here.

Let us now consider the transport coefficients. As in
Ref. [1], for a low-density gas we introduce the reduced
pressure p* and the reduced shear viscosity n* as

2

* pv
= 13
b Pl”gaQ ’ (13)

2

* nv
_ , 14
p1vga (14)
where p = nT, p1 = miny, n = _ny/av Pry = P1ay +
P34y and v = [r@D/2/T(d/2)nofy vy is an effective
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Fig. 1. Plot of the temperature ratio 71 /7> as a function of the
size ratio o1 /02 = (m1/m2)*/? for a two-dimensional system
in the case 1 = 1/2 and two different values of the restitution
coefficient a: @« = 0.9 and o = 0.8. The solid lines are our
theoretical predictions while the symbols refer to the DSMC
results. The dashed lines correspond to the results obtained
from the theory of Barrat and Trizac [4] for a granular mix-
ture driven by a white noise thermostat

collision frequency. In Figs. 2 and 3, we plot p* and n*,
respectively, as a function of the mass ratio p = mq/mo
for an equal-size (01 = o2) binary mixture of disks (d = 2)
with 23 = 1/2 and a = 0.9. This was the case considered
in Ref. [1]. We have also included the predictions for p* and
1™ given by our theory but taking the expression of y pro-
vided by Barrat and Trizac [4]. We observe again in both
figures an excellent agreement between our theory and the
DSMC results even for very disparate values of the mass
ratio. With respect to the influence of energy nonequi-
partition, Fig. 2 shows that p* presents a non-monotonic
behaviour with the mass ratio whereas the theoretical pre-
dictions with the equipartition assumption monotonically
increase with p. In the case of the shear viscosity, the
above trends are not completely followed as seen in Fig.
3, since both theories (with and without energy nonequi-
partition) suggest a non-monotonic dependence of n* on
. However, at a quantitative level, the influence of energy
nonequipartition is quite significant over the whole range
of mass ratios considered. Although the solid fraction ® =
0.1 considered in the simulations of Ref. [1] prevent us to
make a quantitative comparison (since our results apply
strictly only for ® = 0), we observe that the non-mono-
tonic dependence of p* and n* on p found in the molec-
ular dynamics simulations agrees qualitatively well with
the one obtained here from the Boltzmann kinetic theory.
Thus, for instance, the minimum values of p* and n* are
close to ¢ = 10 in both dilute and dense cases. On the
other hand, the predictions for the transport properties
given from our theory by taking the Barrat and Trizac
expression of v are quite close to those obtained from the
actual value of 7, especially for large mass ratios.

It must be noted that the expression of the viscosity
chosen by Alam and Luding [1] differs from the one used
here for the simple shear flow, even if one assumes in our
theory the equipartition of energy (i.e., v = 1). While
the former has been derived from the Chapman-Enskog
expansion around the local equilibrium distribution, our
description holds for a situation where the (reduced) shear
rate a/v is coupled to the restitution coefficients «;;. This
is the reason for which the conventional theories (which
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Fig. 2. Plot of the reduced pressure p* = pv?/p1via® versus
the mass ratio u = mi/mo for a two-dimensional system with
01 =02, x1 = 1/2 and o = 0.9. The solid line corresponds to
our theoretical predictions, the dotted line refers to our the-
ory but using the expression of Barrat and Trizac [4] for the
temperature ratio v = T1 /7%, and the dashed line is the result
obtained from our model by assuming the equality of the par-
tial temperatures v = 1. The symbols are the DSMC results
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Fig. 3. Plot of the reduced shear viscosity n* = nv?/p1via ver-
sus the mass ratio p = mi/me for a two-dimensional system
with 01 = 02, 1 = 1/2 and o = 0.9. The solid line corre-
sponds to our theoretical predictions, the dotted line refers to
our theory but using the expression of Barrat and Trizac [4]
for the temperature ratio v = T1 /7T, and the dashed line is the
result obtained from our model by assuming the equality of the
partial temperatures v = 1. The symbols are the DSMC results

are based on energy equipartition) [2] give a monotonic
behavior of n* with p in contrast to the result obtained
here (cf. Fig. 3) when one takes v =1 [8].

In conclusion, the Boltzmann kinetic theory applied
to a granular binary mixture under simple shear flow pre-
dicts a non-monotonic behaviour of the pressure and the
viscosity on the mass ratio. This conclusion agrees quali-
tatively well with recent molecular dynamics simulations
performed by Alam and Luding [1]. In addition, although
the Boltzmann solution has been obtained by considering
only the leading Sonine approximation to the distribution
function, its accuracy has been widely confirmed by Monte
Carlo simulations. Given that the main limitation of the
results presented here is their restriction to the low-den-
sity regime, we plan to extend the above calculations to
higher densities by using the revised Enskog theory. This
would allow us to make a more quantitative comparison
with the simulation data found by Alam and Luding [1].
Work along this line is in progress.
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