
J.S
tat.M

ech.
(2007)

P
02012

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Mass transport of an impurity in a
strongly sheared granular gas

Vicente Garzó
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Abstract. Transport coefficients associated with the mass flux of an impurity
immersed in a granular gas under simple shear flow are determined from the
inelastic Boltzmann equation. A normal solution is obtained via a Chapman–
Enskog-like expansion around a local shear flow distribution that retains all
the hydrodynamic orders in the shear rate. Due to the anisotropy induced by
the shear flow, tensorial quantities are required to describe the diffusion process
instead of the conventional scalar coefficients. The mass flux is determined to
first order in the deviations of the hydrodynamic fields from their values in the
reference state. The corresponding transport coefficients are given in terms of the
solutions of a set of coupled linear integral equations, which are approximately
solved by considering the leading terms in a Sonine polynomial expansion. The
results show that the deviation of these generalized coefficients from their elastic
forms is in general quite important, even for moderate dissipation.
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1. Introduction

The study of transport properties of an impurity or intruder immersed in a granular
gas described by the inelastic Boltzmann equation is quite an interesting problem. In
particular, when the gas is in homogeneous cooling state (HCS), the mass flux j0 for the
impurity can be obtained by solving the Boltzmann equation by means of the Chapman–
Enskog expansion [1] around the local version of the HCS. In the first order of the
expansion, the mass flux j0 is linear in the gradients of mole fraction, pressure and
temperature and in the external applied force. The corresponding transport coefficients
are the diffusion coefficient D, the pressure diffusion coefficient Dp, the thermal diffusion
coefficient DT and the mobility χ. As in the elastic case, these coefficients are the
solutions of a set of coupled integral equations [2, 3] which can be approximately solved
by considering the leading terms in a Sonine polynomial expansion. Explicit expressions
for these transport coefficients have been obtained [2, 3] in terms of the coefficients of
restitution and the parameters of the mixture (masses and sizes). These analytical results
show in general a good agreement with those obtained from computer simulations [4]–[7],
even for strong dissipation.

However, the above HCS is not accessible experimentally. In order to keep a granular
system fluidized, an external energy supply is required. In some experimental situations,
the gas is driven into rapid flow by the presence of a shear field. In this case, a steady
state is reached when viscous heating is exactly balanced by the energy dissipation in
collisions. This unbounded shear flow problem is usually referred to as the simple or
uniform shear flow (USF) and its study has received a great deal of attention in the
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past years, especially in the case of monocomponent systems [8, 9]. Nevertheless, much
less is known on transport in sheared granular mixtures [10]–[13]. In particular, the
understanding of mass transport in granular shear flows is of practical interest, since,
for instance, powders must frequently be mixed together before any sort of process can
begin. Due to the complexity of the general problem (binary sheared granular mixture),
to gain some insight one can first consider the special case of impurity or tracer particles,
namely, a binary mixture where the mole fraction of one of the components is negligible.
The tracer or impurity problem is more amenable to analytical treatment since tracer
particles are directly enslaved to the granular gas and there are fewer parameters than
in a general binary mixture problem. Even in this limit case, the analysis of mass
transport in a strongly shearing granular gas is an intricate problem basically due to the
anisotropy induced in the system by the shear flow. For this reason, tensorial quantities
{Dij , Dp,ij, DT,ij, χij} are required to describe the mass transport process instead of scalar
coefficients {D, Dp, DT , χ}. The aim of this paper is to get the above tensors in the
framework of the inelastic Boltzmann equation.

Some previous attempts have been carried out earlier in the case of the diffusion
tensor Dij, especially in the self-diffusion problem [14]. However, in all these studies
the diffusion was observed in only one direction, usually the direction parallel to the
velocity gradient. The full diffusion tensor has been obtained in granular gases using
kinetic theory [15], measured in simulations of rapid granular shear [16], and even in some
experiments of dense, granular shear flows in a two-dimensional Couette geometry [17].
Substantial work on granular diffusivity has been carried out by Hsiau and co-workers [18],
who have measured self-diffusion coefficients in a variety of granular systems. All these
results clearly show that diffusion is anisotropic and is significantly affected by inelasticity.

At a kinetic level, in the tracer limit one can assume that the velocity distribution
function f(r,v, t) of the granular gas (excess component) obeys a closed (non-linear)
Boltzmann equation, while the velocity distribution function f0(r,v, t) of the impurity
satisfies a (linear) Boltzmann–Lorentz equation. Both kinetic equations have been solved
in the (pure) USF problem to get the rheological properties of the mixture in the steady
state [12, 15]. Let us assume now that the system (granular gas plus impurity) is in a state
that deviates from the USF by small spatial gradients. In addition, we also assume that
the impurity and gas particles are subjected to the action of external forces. Since the gas
is slightly perturbed from the USF, the Boltzmann equation can be solved by expanding
in small gradients around the (local) shear flow distribution instead of the (local) HCS.
This Chapman–Enskog-like expansion has been very recently used [19, 20] to determine
the heat and momentum fluxes to first order in the deviations of the hydrodynamic field
gradients from their values in the reference shear flow state. Once the state of the excess
component is well characterized, the goal here is to determine the mass transport of
impurity by solving the Boltzmann–Lorentz equation by means of a similar perturbation
scheme, namely, a gradient expansion around the corresponding shear flow distribution

f
(0)
0 which applies for arbitrary values of the shear rate. In the first order of the expansion,

the tensors Dij , Dp,ij, DT,ij, and χij are identified from the mass flux j0. As was already
pointed out in [19, 20], an important point is that, for general small deviations from the

shear flow state, the zeroth-order distribution f
(0)
0 is not a stationary distribution since

the collisional cooling cannot be compensated locally for viscous heating. This fact gives
rise to new conceptual and practical difficulties not present in the results based on the

doi:10.1088/1742-5468/2007/02/P02012 3

http://dx.doi.org/10.1088/1742-5468/2007/02/P02012


J.S
tat.M

ech.
(2007)

P
02012

Mass transport of an impurity in a strongly sheared granular gas

conventional Chapman–Enskog expansion. Due to these difficulties, the results will be
restricted here to particular perturbations for which steady state conditions apply and so
the (reduced) shear rate (which is the relevant non-equilibrium parameter of the problem)
is coupled to dissipation.

The plan of the paper is as follows. In section 2 we describe the problem we are
interested in. The USF state is analysed and the non-zero elements of the pressure tensor
for the gas and the impurity are obtained by means of Grad’s method [12, 15, 21]. Section 3
deals with the perturbation scheme used to solve the Boltzmann–Lorentz equation for the
impurity to first order in the spatial gradients. The results show that the generalized
transport coefficients Dij, Dp,ij, DT,ij, and χij are the solutions of a set of coupled linear
integral equations. A Sonine polynomial approximation taking the shear flow distribution

f
(0)
0 as the weight function is applied in section 4 to solve these integral equations and

get explicit expressions for these transport coefficients. The details of the calculations are
displayed along several appendices. The dependence of some of these transport coefficients
on dissipation is illustrated in the three-dimensional case, showing again that the influence
of inelasticity on mass transport is quite significant. Finally, the paper is closed in section 5
with some concluding remarks.

2. Description of the problem

As already said, the aim of this work is to analyse mass transport of a dilute granular
mixture subjected to uniform shear flow (USF) in the tracer limit, i.e., when the mole
fraction of one of the species is negligible. In this case, the state of the granular gas
(excess component) is not affected by the presence of the tracer particles. At a kinetic
theory level, this implies that the velocity distribution function of the excess component
obeys a closed non-linear Boltzmann equation. Moreover, the mole fraction of the tracer
particles is so small that their mutual interactions can be neglected as compared with their
interactions with the particles of the excess component. As a consequence, the velocity
distribution function of the tracer particles satisfies a linear Boltzmann–Lorentz equation.
This is formally equivalent to study an impurity or intruder in a dilute granular gas, and
this will be the terminology used here. Let us start by offering a short review on some
basic aspects of the inelastic Boltzmann equation and its solution in the USF state.

We consider a granular gas composed by smooth inelastic disks (d = 2) or spheres
(d = 3) of mass m and diameter σ. The inelasticity of collisions among all pairs is
accounted for by a constant coefficient of restitution α (0 ≤ α ≤ 1) that only affects
the translational degrees of freedom of grains. We also assume that the particles feel the
presence of an external conservative force F (such as a gravity field). At low density,
the time evolution of the one-particle velocity distribution function of the gas f(r,v, t) is
given by the inelastic Boltzmann equation [22, 23](

∂

∂t
+ v · ∇ +

F

m
· ∂

∂v

)
f(r,v, t) = J [v|f(t), f(t)], (1)

where the Boltzmann collision operator J [v|f, f ] is

J [v1|f, f ] = σd−1

∫
dv2

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

×
[
α−2f(r,v′

1)f(r,v′
2, t) − f(r,v1, t)f(r,v2, t)

]
. (2)
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Here, σ̂ is a unit vector along their line of centres, Θ is the Heaviside step function, and
g = v1 − v2 is the relative velocity. The primes on the velocities denote the initial values
{v′

1,v
′
2} that lead to {v1,v2} following a binary collision:

v′
1 = v1 − 1

2

(
1 + α−1

)
(σ̂ · g)σ̂, v′

2 = v2 + 1
2

(
1 + α−1

)
(σ̂ · g)σ̂. (3)

The first five velocity moments of f define the number density

n(r, t) =

∫
dv f(r,v, t), (4)

the flow velocity

u(r, t) =
1

n(r, t)

∫
dv vf(r,v, t), (5)

and the granular temperature

T (r, t) =
m

dn (r, t)

∫
dv V 2f(r,v, t), (6)

where V(r, t) ≡ v − u(r, t) is the peculiar velocity. The macroscopic balance equations
for density n, momentum mu, and energy (d/2)nT follow directly from equation (1) by
multiplying with 1, mv, and 1

2
mv2 and integrating over v:

Dtn + n∇ · u = 0, (7)

Dtu + (mn)−1 (∇ · P − nF) = 0, (8)

DtT +
2

dn
(∇ · q + Pij∇jui) = −ζT, (9)

where Dt = ∂t + u · ∇ is the material time derivative. The microscopic expressions for
the pressure tensor P, the heat flux q, and the cooling rate ζ are given, respectively, by

P(r, t) =

∫
dv mVV f(r,v, t), (10)

q(r, t) =

∫
dv 1

2
mV 2V f(r,v, t), (11)

ζ(r, t) = − 1

dn (r, t)T (r, t)

∫
dv mV 2J [r,v|f(t)]. (12)

Let us suppose now that an impurity or intruder of mass m0 and diameter σ0 is
added to the gas. As said before, the presence of the intruder does not perturb the state
of the gas, so that its velocity distribution function is still determined by the Boltzmann
equation (1). In addition, the macroscopic flow velocity and temperature for the mixture
composed by the gas plus the impurity are the same as those for the gas, namely they are
given by equations (5) and (6), respectively. The velocity distribution function f0(r,v, t)
of the impurity satisfies the linear Boltzmann–Lorentz equation(

∂

∂t
+ v · ∇ +

F0

m0
· ∂

∂v

)
f0(r,v, t) = J0[v|f0(t), f(t)], (13)
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where the collision operator J0[v|f0, f ] is now

J0 [v1|f0, f ] = σd−1

∫
dv2

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

×
[
α−2

0 f0(r,v
′
1)f(r,v′

2, t) − f0(r,v1, t)f(r,v2, t)
]
. (14)

Here, F0 denotes an external force acting on impurity, σ = (σ+σ0)/2 and α0 (0 ≤ α0 ≤ 1)
is the coefficient of restitution for impurity–gas collisions. The precollisional velocities are
given by

v′
1 = v1 −

m

m + m0

(
1 + α−1

0

)
(σ̂ · g12)σ̂,

v′
2 = v2 +

m0

m + m0

(
1 + α−1

0

)
(σ̂ · g12)σ̂.

(15)

As shown in [24], the operator J0 [v|f0, f ] is the same as that of an elastic impurity
(α0 = 1) with an effective mass m∗

0 = m0 + (m0 + m)(1 − α0)/(1 + α0).
The number density for the impurity is

n0(r, t) =

∫
dvf0(r,v, t). (16)

The impurity may freely exchange momentum and energy with the particles of the gas and,
therefore, these are not invariants of the collision operator J0[v|f0, f ]. Only the number
density n0 is conserved, whose continuity equation is directly obtained from equation (13)

Dtn0 + n0∇ · u +
∇ · j0
m0

= 0, (17)

where j0 is the mass flux for the impurity, relative to the local flow u,

j0 = m0

∫
dvV f0(r,v, t). (18)

At a kinetic level, an interesting quantity is the local temperature of the impurity defined
as

T0(r, t) =
m0

dn0(r, t)

∫
dv V 2f0(r,v, t). (19)

This quantity measures the mean kinetic energy of the impurity. As will be shown
later, the global temperature T and the temperature of the impurity T0 are in general
different, so that the granular energy per particle is not equally distributed between the
two components of the system [10, 12].

Let us start by describing the state of the system (gas plus impurity) in the (pure)
USF. This idealized macroscopic state is characterized by the absence of external forces
(F = F0 = 0), constant densities n and n0, a uniform temperature, and a linear velocity
profile u = a · r, where the elements of the tensor a are aij = aδixδjy, a being the constant
shear rate. This linear velocity profile assumes no boundary layer near the walls and
is generated by the Lee–Edwards boundary conditions [25], which are simply periodic
boundary conditions in the local Lagrangian frame moving with the flow velocity. For
elastic gases, the temperature grows in time due to viscous heating and so a steady
state is not possible unless an external (artificial) force is introduced [26]. However, for
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inelastic gases, the temperature changes in time due to the competition between two
(opposite) mechanisms: on the one hand, viscous (shear) heating and, on the other hand,
energy dissipation in collisions. A steady state is achieved when the two mechanisms
cancel each other and the fluid autonomously seeks the temperature at which the above
balance occurs. Under these conditions, in the steady state the balance equation (9)
becomes

aPxy = −d

2
ζp, (20)

where p = nT is the hydrostatic pressure. The balance equation (20) shows the intrinsic
connection between the shear field and dissipation in the system. As a consequence, the
shear flow state associated with (20) is inherently beyond the scope of the Navier–Stokes
or Newtonian hydrodynamic equations [21] since the collisional cooling (which is fixed
by the mechanical properties of the particles) sets the strength of the velocity gradient
in the steady state. Furthermore, note that for given values of the shear rate a and the
coefficient of restitution α, the relation (20) gives the temperature T in the steady state
as a unique function of the density n. In fact, the reduced shear rate a∗ = a/ν(n, T ) is
only a function of the coefficient of restitution α in the steady state. Here, ν(n, T ) is a
characteristic collision frequency given by

ν =
π(d−1)/2

Γ(d/2)

8

d + 2
nσd−1

√
T

m
. (21)

The relevant transport properties of the system in the steady USF are related to the
pressure tensor P since q = j0 = 0. Furthermore, one can introduce the partial pressure
tensor P0 defined as

P0 =

∫
dv m0VV f0(V). (22)

Explicit expressions for the non-zero elements of P and P0 have been recently obtained
from the Boltzmann equation by means of Grad’s method [15]. A brief summary of these
results is given in appendix A. The accuracy of this Grad’s solution has been confirmed
by comparison with Monte Carlo simulations of the Boltzmann equation [12, 27, 28], even
for strong dissipation.

3. Chapman–Enskog-like expansion: transport properties around USF

The main goal of this paper is to determine the mass flux for the impurity in the
presence of USF. In that case, let us assume that the USF state is disturbed by small
spatial perturbations. The response of the system to those perturbations gives rise
to contributions to the mass flux, which can be characterized by generalized transport
coefficients. This section is devoted to the evaluation of these coefficients.

In order to analyse this problem we have to start from the Boltzmann–Lorentz
equation (13) with a general time and space dependence. Let us = a · r be the flow
velocity of the undisturbed USF state. In the disturbed state, however the true velocity u
is in general different from us since u = us + δu, δu being a small perturbation to us. As
a consequence, the true peculiar velocity is now c ≡ v− u = V− δu, where V = v − us.
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In the Lagrangian frame moving with us, the Boltzmann–Lorentz equation can be written
as

∂

∂t
f0 − aVy

∂

∂Vx

f0 + (V + us) · ∇f0 +
F0

m0

· ∂

∂V
f0 = J0[V|f0, f ], (23)

where here the derivative ∇f0 is taken at constant V. The macroscopic balance equations
associated with this disturbed USF state follows from the general equations (8), (9),
and (17) when one takes into account that u = us + δu. The result is

∂tn0 + us · ∇n0 = −∇ · (n0δu) − ∇ · j0
m0

, (24)

∂tδu + a · δu + (us + δu) · ∇δu = −(mn)−1 (∇ · P − nF) , (25)

d

2
n∂tT +

d

2
n(us + δu) · ∇T + aPxy + ∇ · q + P : ∇δu = −d

2
pζ, (26)

where the pressure tensor P, the heat flux q, the cooling rate ζ , and the mass flux j0 are
defined by equations (10), (11), (12), and (18), respectively, with the replacement V → c.

We assume that the deviations from the USF state are small. This means that the
spatial gradients of the hydrodynamic fields A(r, t) are small. As noted in [2], there is
some flexibility in the case of granular mixtures in the representation of the heat and
mass fluxes since they can be defined in a variety of equivalent ways depending on the
choice of hydrodynamic gradients used. In fact, some care is required in comparing
transport coefficients in different representations using different independent gradients
for the driving forces. Here, as in previous works [2, 3], I take the concentration of
impurity x0 = n0/n, the pressure p, the temperature T , and the local flow velocity δu as
hydrodynamic fields, i.e.,

A(r, t) ≡ {x0(r, t), p(r, t), T (r, t), δu(r, t)}. (27)

Since the system is strongly sheared, a solution to the Boltzmann–Lorentz equation (23)
can be obtained by means of a generalization of the conventional Chapman–Enskog
method [1] where the velocity distribution function is expanded about a local shear flow
reference state in terms of the small spatial gradients of the hydrodynamic fields relative
to those of USF. This is the main new ingredient of the expansion. This type of Chapman–
Enskog-like expansion has been considered in the case of elastic gases to get the set of
shear rate dependent transport coefficients [26, 29] in a thermostated shear flow problem
and it has also been recently considered [19, 20] for inelastic gases.

In the context of the Chapman–Enskog method [1], we look for a normal solution of
the form

f0(r,V, t) ≡ f0(A(r, t),V). (28)

This special solution expresses the fact that the space dependence of the reference
shear flow is completely absorbed in the relative velocity V and all other space and
time dependence occurs entirely through a functional dependence on the fields A(r, t).
Moreover, in the presence of external forces it is necessary to characterize the magnitude
of these forces relative to the gradients as well. Here, it is assumed that the magnitude of
the external forces F and F0 is of first order in perturbation expansion. The functional
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dependence (28) can be made local by an expansion of the distribution function in powers
of the hydrodynamic gradients:

f0(A(r, t),V) = f
(0)
0 (V) + f

(1)
0 (V) + · · · , (29)

where the reference zeroth-order distribution function corresponds to the USF distribution
function but taking into account the local dependence of the concentration, pressure and
temperature and the change V → V − δu(r, t) = c. The successive approximations f (k)

are of order k in the strength of the external forces as well as in the gradients of x0,
p, T , and δu but retain all the orders in the shear rate a. Here, only the first-order
approximation will be considered.

When the expansion (29) is substituted into the definitions (10)–(12), and (18), one
gets the corresponding expansions for the fluxes and the cooling rate:

P = P(0) + P(1) + · · · , q = q(0) + q(1) + · · · , (30a)

ζ = ζ (0) + ζ (1) + · · · , j0 = j
(0)
0 + j

(1)
0 + · · · . (30b)

Finally, as in the usual Chapman–Enskog method, the time derivative is also expanded
as

∂t = ∂
(0)
t + ∂

(1)
t + ∂

(2)
t + · · · , (31)

where the action of each operator ∂
(k)
t is obtained from the hydrodynamic equations (24)–

(27). These results provide the basis for generating the Chapman–Enskog solution to the
inelastic Boltzmann–Lorentz equation (23).

3.1. Zeroth-order approximation

Substituting the expansions (29)–(31) into equation (23), the kinetic equation for f
(0)
0 is

given by

∂
(0)
t f

(0)
0 − aVy

∂

∂Vx
f

(0)
0 = J0[V|f (0)

0 , f (0], (32)

where use has been made of the fact that F0 is of first order in gradients. To lowest order
in the expansion the conservation laws give

∂
(0)
t x0 = 0, T−1∂

(0)
t T = p−1∂

(0)
t p = − 2

dp
aP (0)

xy − ζ (0), (33)

∂
(0)
t δui + aijδuj = 0. (34)

As shown in [19, 20], for given values of a and α, the steady state condition (20) establishes
a mapping between the pressure p and temperature T so that every pressure corresponds
to one and only one temperature. Since the pressure p(r, t) and temperature T (r, t) are

specified separately in the local USF state, the viscous heating term a|P (0)
xy | only partially

compensates for the collisional cooling and so, the pressure and temperature depend on
time. This implies that the zeroth-order distributions for the gas f (0) and the impurity

f
(0)
0 both depend on time through their dependence on the pressure and temperature.

Consequently, in general the reduced shear rate a∗ = a/ν(p, T ) depends on space and time
so that, a∗ and α must be considered as independent parameters for general infinitesimal
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perturbations around the USF state. This fact gives rise to conceptual and practical
difficulties not present in the case of elastic collisions [29].

Since f
(0)
0 is a normal solution, the time derivative in equation (32) can be represented

more usefully as

∂
(0)
t f

(0)
0 =

∂f
(0)
0

∂x0
∂

(0)
t x0 +

∂f
(0)
0

∂p
∂

(0)
t p +

∂f
(0)
0

∂T
∂

(0)
t T +

∂f
(0)
0

∂δui
∂

(0)
t δui

= −
(

2

dp
aP (0)

xy + ζ (0)

) (
p

∂

∂p
+ T

∂

∂T

)
f

(0)
0 − aijδuj

∂

∂δui
f

(0)
0

= −
(

2

dp
aP (0)

xy + ζ (0)

) (
p

∂

∂p
+ T

∂

∂T

)
f

(0)
0 + aijδuj

∂

∂ci

f
(0)
0 , (35)

where in the last step we have taken into account that f
(0)
0 depends on δu only through

the peculiar velocity c. Substituting (35) into (32) yields the following kinetic equation

for f
(0)
0 :

−
(

2

dp
aP (0)

xy + ζ (0)

) (
p

∂

∂p
+ T

∂

∂T

)
f

(0)
0 − acy

∂

∂cx
f

(0)
0 = J0[V|f (0)

0 , f (0]. (36)

To solve equation (36) one needs to know the dependence of the momentum flux P
(0)
xy on

the pressure p and temperature T . A detailed study of this problem has been carried out

in [21]. The first non-trivial velocity moment of the distribution f
(0)
0 corresponds to the

partial pressure tensor P
(0)
0 defined as

P
(0)
0 = m0

∫
dc cc f

(0)
0 (c). (37)

The temperature of the impurity T0(t) can be determined from the trace of P(0)
0 . From

equation (36), one gets

−
(

2

dp
aP (0)

xy + ζ (0)

) (
p

∂

∂p
+ T

∂

∂T

)
P

(0)
0,ij + ai�P

(0)
0,j� + aj�P

(0)
0,i� = Bij , (38)

where aij = aδixδjy and

Bij = m0

∫
dc cicj J0[f

(0)
0 , f (0)]. (39)

A good estimate of the collisional moment Bij can be made by considering Grads’s
approximation [15]. In this case, Bij is given by equation (B.6). The steady state solution
of equation (38) is also displayed in appendix A. However, in general the equations (38)
must be solved numerically to get the dependence of the zeroth-order pressure tensor

P
(0)
0,ij(p, T ) on pressure and temperature. The behaviour of the pressure tensors P

(0)
ij and

P
(0)
0,ij near the (steady) USF state is studied in appendix B. In what follows, P

(0)
ij and P

(0)
0,ij

will be considered as known functions of p and T .
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3.2. First-order approximation

The analysis to first order in the gradients is similar to the one carried out in [20] for
the one-component case. Some details of this derivation are given in appendix C. The

distribution function f
(1)
0 is of the form

f
(1)
0 = A0 · ∇x0 + B0 · ∇p + C0 · ∇T + D0 : ∇δu + E0 · F , (40)

where

F = F0 −
m0

m
F. (41)

The vectors {A0, B0, C0, E0}, and the tensor D0 are functions of the true peculiar velocity
c. They are the solutions of the following linear integral equations:

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T∂T ) A0 − acy

∂

∂cx
A0 − J0[A0, f

(0)] = A0, (42)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T∂T ) B0 −

(
2a

d
∂pP

(0)
xy + 2ζ (0) + acy

∂

∂cx

)
B0

− J0[B0, f
(0)] = B0 −

[
2aT

dp2
(1 − p∂p)P

(0)
xy − Tζ (0)

p

]
C0 + J0[f

(0)
0 , B], (43)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T∂T ) C0 −

[
2a

dp
(1 + T∂T ) P (0)

xy +
1

2
ζ (0)

+ acy
∂

∂cx

]
C0 − J0[C0, f

(0)] = C0 +

(
2a

d
∂T P (0)

xy − pζ (0)

2T

)
B0

+ J0[f
(0)
0 , C], (44)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T∂T )D0,�j − acy

∂

∂cx
D0,�j − aδ�yD0,xj

− J0[D0,�j , f
(0)] = D0,�j + ζu,�j (p∂p + T∂T ) f (0) + J0[f

(0)
0 ,D�j], (45)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T∂T ) E0 − acy

∂

∂cx
E0 − J0[E0, f

(0)] = E0. (46)

Here, A0(c), B0(c), C0(c), D0(c), and E0(c) are defined by equations (C.9), (C.10),
(C.11), (C.12), and (C.13), respectively. In addition, upon writing equations (42)–(46),
use has been made of the explicit form of f (1). It has been derived in [20] and reads

f (1) = B · ∇p + C · ∇T + D : ∇δu, (47)

where the coefficients B, C, and D are functions of the peculiar velocity c and the
hydrodynamic fields. In particular, the first-order contribution to the cooling rate, ζu,ij,
is given by

ζu,ij = − 1

dp

∫
dcmc2

(
J [f (0),Dij] + J [Dij, f

(0)]
)
. (48)
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The first-order contribution to the mass flux j
(1)
0 of the impurity is defined as

j
(1)
0 = m0

∫
dc c f

(1)
0 (c). (49)

Use of equation (40) into (49) gives the expression

j
(1)
0,i = −m0Dij

∂x0

∂rj
− m

T
Dp,ij

∂p

∂rj
− mn

T
DT,ij

∂T

∂rj
+ χijFj, (50)

where

Dij = −
∫

dc ci A0,j(c), (51)

Dp,ij = −Tm0

m

∫
dc ci B0,j(c), (52)

DT,ij = −Tm0

mn

∫
dc ci C0,j(c), (53)

χij = m0

∫
dc ci E0,j(c). (54)

Upon writing equations (51)–(54) use has been made of the symmetry properties of A0,
B0, C0, and E0. In general, the set of generalized transport coefficients Dij , Dp,ij, DT,ij,
and χij are non-linear functions of the shear rate and the coefficients of restitution α and
α0. It is apparent that the anisotropy induced by the presence of shear flow gives rise
to new transport coefficients for the mass flux, reflecting broken symmetry. According to
equation (50), the mass flux of the impurity is expressed in terms of a diffusion tensor Dij,
a pressure diffusion tensor Dp,ij, a thermal diffusion tensor DT,ij , and a mobility tensor χij .
Note that in the particular case of the gravitational force F = mg and F0 = m0g, where
g is the gravity acceleration. In this case, the combined force F defined in equation (41)
vanishes. Consequently, the external force F does not occur in equation (40) when the
system is only subjected to a gravity field.

3.3. Steady state conditions

The evaluation of the above transport coefficients requires to know the complete

dependence of P
(0)
ij and P

(0)
0,ij on the pressure p and the temperature T . This involves

the corresponding numerical integrations of the differential equations obeying the pressure

tensors P
(0)
ij and P

(0)
0,ij (see equation (38) for P

(0)
0,ij). Needless to say, this is quite an intricate

problem. However, some simplifications occur if attention is restricted to linear deviations
from the USF steady state described in section 2. In particular, since the contributions to
the mass flux (50) are already of first order in the deviations from the steady state, one
only needs to know the transport coefficients to zero order in the deviations. This means

that ∂
(0)
t T = ∂

(0)
t p = 0 and so the term (2/dp)aP

(0)
xy + ζ (0) = 0 in the left-hand side of

equations (42)–(46). The differential equations for the transport coefficients thus become
simple coupled algebraic equations.
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The dependence of P
(0)
ij on the pressure p and temperature T occurs explicitly and

through its dependence on the reduced shear rate a∗ ∝
√

T/p. Consequently,

p∂pP
(0)
ij = p∂ppP

∗
ij(a

∗) = p

(
1 − a∗ ∂

∂a∗

)
P ∗

ij(a
∗), (55)

T∂T P
(0)
ij = T∂T pP ∗

ij(a
∗) =

1

2
pa∗ ∂

∂a∗P ∗
ij(a

∗), (56)

where P ∗
ij = P

(0)
ij /p and a∗ = a/ν. The dependence of P ∗

ij on a∗ near the steady state
was determined in the one-component problem [20] so that all the terms appearing in the
integral equations are explicitly known in the steady state. Under the above conditions,
equations (42)–(46) become

−acy
∂

∂cx

A0 − J0[A0, f
(0)] = A0, (57)

−
[
2a

d
(1 − a∗∂a∗)P ∗

xy + 2ζ (0) + acy
∂

∂cx

]
B0 − J0[B0, f

(0)] = B0

−
(

2aT

dp
a∗∂a∗P ∗

xy −
Tζ (0)

p

)
C0 + J0[f

(0)
0 , B], (58)

−
[
2a

d

(
1 +

1

2
a∗∂a∗

)
P ∗

xy +
1

2
ζ (0) + acy

∂

∂cx

]
C0 − J0[C0, f

(0)] = C0

+
p

T

(
a

d
a∗∂a∗P ∗

xy −
ζ (0)

2

)
B0 + J0[f

(0)
0 , C], (59)

−acy
∂

∂cx

D0,�j − aδ�yD0,xj − J0[D0,�j, f
(0)] = D0,�j + ζu,�j (p∂p + T∂T ) f (0) + J0[f

(0)
0 ,D�j],

(60)

−acy
∂

∂cx
E0 − J0[E0, f

(0)] = E0. (61)

It must be recalled that in equations (57)–(61) all the quantities are evaluated in the steady
state, namely, P ∗

ij and a∗ are given by equations (A.3)–(A.5) and (A.6), respectively, while
∂P ∗

ij/∂a∗ is given by equations (B.1)–(B.3). Henceforth, the calculations will be restricted
to the particular condition (20).

4. Mass transport of the impurity

This section is devoted to the determination of the generalized transport coefficients
associated with the mass transport of the impurity. In order to get explicit expressions
for these coefficients, one has to know the quantities A0, B0, C0, and E0 which verify
the coupled integral equations (57), (58), (59), and (61), respectively. To determine the
explicit dependence of these quantities on the coefficients of restitution α and α0, one needs
to make use of certain approximations. The standard approach is to consider the leading
term in a Sonine polynomial expansion. In a previous work on diffusion in shear flow [15],
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the isotropic part of f
(1)
0 in this expansion was assumed for simplicity to be a Maxwellian

f0,M(c). However, given that the system is strongly sheared, it is reasonable to expect

that the isotropic part of f
(1)
0 is mainly governed by the shear flow distribution f

(0)
0 rather

than by the Maxwellian distribution. For this reason, here we keep the usual structure
of the standard Sonine approximation, except that the Maxwellian weight function f0,M

is replaced by f
(0)
0 . A similar type of modified Sonine approximation has been recently

considered [30] to estimate the Navier–Stokes transport coefficients of a single granular
gas.

According to the above arguments, in the case of the mass flux j
(1)
0 , a good estimate

of {A0, B0, C0, E0} is given by the first Sonine approximation:

A0,i → −cjDji f
(0)
0 (c), B0,i → −cjDp,ji f

(0)
0 (c), (62a)

C0,i → −cjDT,ji f
(0)
0 (c), E0,i → cjχji f

(0)
0 (c), (62b)

where f
(0)
0 (c) is the solution of equation (36). The relationship between the tensors

{Dij, Dp,ij, DT,ij, χij} and their corresponding counterparts {Dij , Dp,ij, DT,ij, χij} is
consistently obtained from equations (51)–(54). A simple calculation yields

Dij = m0QikDkj, Dp,ij =
m

T
QikDp,kj, (63)

DT,ij =
mn

T
QikDT,kj, χij = Qikχkj, (64)

where Q = P−1
0 . When one takes f0,M instead of f

(0)
0 in the Sonine expansion, then

Qij = (n0T0)
−1δij and one recovers previous results [15]. Consistently, the quantities B

and C corresponding to the distribution f (1) of the granular gas (see equation (47)) must
be similarly approximated. However, as shown in [20], these quantities vanish in the
first Sonine approximation and so there is no contribution to the mass flux coming from

the terms of the form J0[f
(0)
0 , B] and J0[f

(0)
0 , C]. Substitution of the expressions (62a)

and (62b) into equations (57), (58), (59), and (61) gives a closed set of integral equations
for Dij , Dp,ij, DT,ij , and χij . Multiplication of these equations by m0ci and integration
over c yields

(aik + Ωik)Dkj =
p

m0

P ∗
0,ij, (65)

[
2a

d
(1 − a∗∂a∗)P ∗

xy + 2ζ (0)

]
Dp,ij − (aik + Ωik) Dp,kj =

Tx0

m
(1 − a∗∂a∗)

(m0

m
P ∗

ij − P ∗
0,ij

)

+

(
2a

d
a∗∂a∗P ∗

xy − ζ (0)

)
DT,ij, (66)

[
2a

d

(
1 +

1

2
a∗∂a∗

)
P ∗

xy +
1

2
ζ (0)

]
DT,ij − (aik + Ωik) DT,kj =

1

2

Tx0

m
a∗∂a∗

(m0

m
P ∗

ij − P ∗
0,ij

)

−
(

a

d
a∗∂a∗P ∗

xy −
1

2
ζ (0)

)
Dp,ij, (67)

(aik + Ωik)χkj = n0δij . (68)
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In the above equations, P ∗
0,ij = P

(0)
0,ij/x0p and Ωij = n0T0ΛikQkj, where

Λij = − m0

n0T0

∫
dc ci J0[cjf

(0)
0 , f (0)]. (69)

This quantity can be evaluated by using standard integration techniques with the result

Λij =

√
2

4d

(
σ

σ

)d−1

νμ(1 + α0) [(1 + θ)θ]−1/2 {(d + 2)(1 + θ)δij

+ θ
(
P ∗

ij − δij

)
+ [d + 3 + (d + 2)θ]

(
γ−1P ∗

0,ij − δij

)}
, (70)

where ν is defined by equation (21), μ = m/(m + m0), γ = T0/T is the temperature
ratio and θ = m0T/mT0 is the mean square velocity of the gas particles relative to
that of the impurity. Upon deriving equation (70), use has been made of the Sonine

approximations (A.1) and (A.8) for the distributions f (0) and f
(0)
0 , respectively, and the

non-linear term proportional to
(
P ∗

ij − δij

) (
γ−1P ∗

0,ij − δij

)
has been neglected.

The coefficients Dij and χij decouple from the other ones and hence can be obtained
more easily. By using matrix notation, they are given by

D =
p

m0
(a + Ω)−1 · P∗

0, (71)

χ = n0 (a + Ω)−1 · I. (72)

The remaining coefficients Dp,ij and DT,ij are coupled and they obey the set of simple
algebraic equations (66) and (67).

In the elastic limit (α = α0 = 1, which implies a∗ = 0 in the steady state conditions),
T = T0, P ∗

ij = P ∗
0,ij = δij , and Ωij = Ω0δij, so that equations (65)–(68) have the solutions

Dij = D0δij , Dp,ij = Dp0δij, DT,ij = 0, and χij = χ0δij , where D0, Dp0 and χ0 are the
conventional Navier–Stokes transport coefficients for ordinary gases [1]. Their expressions
are

D0 =
p

m0Ω0
, Dp0 =

Tx0

mΩ0

(
1 − m0

m

)
, χ0 =

n0

Ω0
, (73)

where

Ω0 =
4

d

π(d−1)/2

Γ(d/2)
nσd−1

√
2Tm

m0(m + m0)
. (74)

To illustrate the dependence of the tensors Tij ≡ {Dij, Dp,ij, DT,ij, χij} on dissipation, let
us consider a three-dimensional system. In this case, according to equations (65)–(68),
Txz = Tzx = Tyz = Tzy = 0, in agreement with the symmetry of the problem. As a
consequence, there are five relevant elements: the three diagonal (Txx, Tyy, and Tzz) and
two off-diagonal elements (Txy, and Tyx). The integral equations (65)–(68) also show that
Txx �= Tyy �= Tzz and Txy �= Tyx. In figures 1–4, we plot the relevant reduced elements
of tensors D∗

ij, D∗
p,ij, D∗

T,ij and χ∗
ij as functions of the (common) coefficient of restitution

α = α0 when σ = σ and m0/m = 0.5. Here, the tensors have been reduced with respect to
their values in the elastic case, namely, D∗

ij = Dij/D0, D∗
p,ij = Dp,ij/Dp0, and χ∗

ij = χij/χ0,
while D∗

T,ij = DT,ij/(x0T/mν). We observe that in general the influence of dissipation
on the transport coefficients is quite significant. This means that the deviation of the
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Figure 1. Plot of the reduced elements (a) D∗
xx, (b) D∗

zz, (c) D∗
yy, (d) D∗

yx,
and (e) D∗

xy as functions of the (common) coefficient of restitution α = α0 for a
three-dimensional system in the case σ = σ and m0/m = 0.5.

Figure 2. Plot of the reduced elements (a) D∗
p,zz, (b) D∗

p,yy, (c) D∗
p,xx, (d) D∗

p,yx,
and (e) D∗

p,xy as functions of the (common) coefficient of restitution α = α0 for
a three-dimensional system in the case σ = σ and m0/m = 0.5.

elements Tij from their functional forms for elastic collisions is important for moderate
dissipation. It is also apparent that the anisotropy of the system, as measured by the
differences |Txx−Tyy| and |Tyy −Tzz|, grows with the inelasticity. This anisotropy is much
more important in the plane of shear flow (|Txx − Tyy|) than in the plane perpendicular
to the flow velocity (|Tyy − Tzz|).

As expected, the usual Einstein relation between the diffusion and mobility coefficients
for ordinary fluids [31] is no longer valid in this non-equilibrium situation for granular
gases. A similar conclusion has been found when the gas is under HCS [32]–[34]. There
are basically two independent reasons for this violation: the occurrence of different kinetic
temperatures between the impurity and gas particles and the inherent non-Newtonian
properties of the reference state. The deviation of the ratio D∗

ij/χ
∗
ij from unity is a

measure of the violation of Einstein’s relation in the USF state. This ratio is plotted in
figure 5 for the diagonal elements in the case σ = σ and m0/m = 0.5. As figure 5 clearly
shows, the ratio D∗

ij/χ
∗
ij �= 1 and quickly decays in this situation (when the impurity is

lighter than the gas particles) for the yy and zz elements, while the opposite happens
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Figure 3. Plot of the reduced elements (a) D∗
T,xy, (b) D∗

T,xx, (c) D∗
T,yx, (d) D∗

T,yy,
and (e) D∗

T,zz as functions of the (common) coefficient of restitution α = α0 for
a three-dimensional system in the case σ = σ and m0/m = 0.5.

Figure 4. Plot of the reduced elements (a) χ∗
zz, (b) χ∗

yy, (c) χ∗
xx, (d) χ∗

yx, and
(e) χ∗

xy as functions of the (common) coefficient of restitution α = α0 for a three-
dimensional system in the case σ = σ and m0/m = 0.5.

for the xx elements. The violation of the Einstein relation obtained here contrasts with
some numerical experiments performed by Makse and Kurchan [35] who applied uniform
shear to measure diffusivity and mobility in bidisperse mixtures. Their results show that
Einstein’s relation is verified so that a temperature can be defined in the system by analogy
with ordinary fluids. However, this conclusion also disagrees with the lack of equipartition
in a granular sheared gas when different particles are present [10].

5. Concluding remarks

In this paper, mass transport of an impurity or intruder immersed in a strongly sheared
granular gas at low density has been analysed. We have been interested in a situation
where weak spatial gradients of concentration, temperature and pressure coexist with
a strong shear rate. In addition, we have also assumed that the system (gas plus
impurity) feels the action of external forces which are considered to be at least of first
order in the spatial gradients. Under these conditions, the resulting mass transport
process is anisotropic and thus it cannot be described by scalar transport coefficients.
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Figure 5. Plot of the ratios (a) D∗
xx/χ∗

xx, (b) D∗
zz/χ

∗
zz, and (c) D∗

yy/χ
∗
yy as

functions of the (common) coefficient of restitution α = α0 for a three-dimensional
system in the case σ = σ and m0/m = 0.5.

Instead, it must be described by shear rate dependent tensorial quantities whose explicit
determination has been the main objective of this paper.

In the tracer limit, the inelastic Boltzmann and Boltzmann–Lorentz kinetic equations
describe the state of the gas and the impurity, respectively. Since the state of the gas
slightly deviates from the USF by small spatial gradients, a generalized Chapman–Enskog
method has been recently proposed [19, 20] to analyse transport around non-equilibrium
states. Here, a similar perturbative scheme has been used to solve the Boltzmann–
Lorentz equation to first order in the deviations of the hydrodynamic field gradients from

their values in the reference shear flow state f
(0)
0 . As noted in previous works [19, 20],

the zeroth-order distribution f
(0)
0 is not in general stationary and only in very special

conditions has a simple relation with the (steady) USF distribution. Since we are mainly

interested in determining mass transport of the impurity j
(1)
0 in the USF state, for practical

purposes the results have been specialized to the steady state conditions, namely, when
the hydrodynamic variables satisfy the relation (20). This implies that the reduced shear
rate a∗ is coupled with the coefficient of restitution α, so that the latter is the relevant

parameter of the problem. Under these conditions, j
(1)
0 is given by equation (50) where

the corresponding set of generalized transport coefficients {Dij , Dp,ij, DT,ij, χij} are the
solutions of the linear integral equations (65)–(68). To get explicit results, a first Sonine
polynomial approximation has been considered to estimate some collisional integrals. The
reliability of this approach has been assessed in the USF problem, where it has been shown
to agree very well with Monte Carlo simulations [12, 28].

The results show that the coefficients {Dij , Dp,ij, DT,ij, χij} present a complex
dependence on the coefficients of restitution α and α0 and on the masses and sizes of the
system. This is clearly illustrated in figures 1–4. The deviations of {Dij , Dp,ij, DT,ij, χij}
from their elastic counterparts are basically due to three different reasons. First, the
presence of shear flow modifies the collision frequency of the elastic diffusion problem Ω0

(defined by equation (74)) by the tensorial term aij + Ωij . Second, given that in general
the impurity and gas particles are mechanically different, the reference shear flow state

of the impurity f
(0)
0 is completely different from that of the gas particles f (0). This effect

gives rise to terms proportional to (m0/m)P ∗
ij − P ∗

0,ij . Third, there is a coupling between
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Figure 6. Plot of the ratios (a) Dp/((1/d)Dp,kk), (b) D/((1/d)Dkk), and (c)
χ/((1/d)χkk) as functions of the (common) coefficient of restitution α = α0 for a
three-dimensional system in the case σ = σ and m0/m = 0.5.

the coefficients Dp,ij and DT,ij due to the inherent non-Newtonian features of the USF
state of the gas. Each one of the three effects is a different reflection of the dissipation
present in the system.

Most of the works [36] on granular mixtures have been based on the CE expansion
around an elastic (local) equilibrium state up to the Navier–Stokes order, and therefore
they are limited to nearly elastic systems in the USF. A more recent CE expansion [2, 37]
around the (local) HCS takes into account energy non-equipartition and provides
expressions for the Navier–Stokes transport coefficients of the mixture without any
restriction on the level of inelasticity. In particular, the mass transport of impurity is
characterized by the single scalar coefficients D, Dp, DT , and χ. Although the base state
considered in [2] and [37] is different from the one chosen here, it is still worthwhile to
carry out some comparison between the two descriptions. To that end, let us define the
scalars (1/d)Dkk, (1/d)Dp,kk, and (1/d)χkk. These coefficients can be understood as the
generalized diffusion coefficient, pressure diffusion coefficient, and mobility coefficient in
a strongly sheared mixture. In figure 6, the ratios D/((1/d)Dkk), Dp/((1/d)Dp,kk), and
χ/((1/d)χkk) are plotted versus the (common) coefficient of restitution α = α0 for a three-
dimensional system in the case σ = σ and m0/m = 0.5. Here, D, Dp and χ refer to the
coefficients obtained in [2] and [32]. As expected, we observe that in general the transport
coefficients of the perturbed USF state differ from the usual Navier–Stokes coefficients as
the collisions become more inelastic. These discrepancies are specially significant in the
cases of the diffusion and the pressure diffusion coefficients.

It is apparent that the results presented here are relevant to make a comparison with
numerical simulations. In the self-diffusion problem (when the impurity and gas particles
are mechanically equivalent), previous results obtained for the diffusion tensor [15] have
shown good qualitative agreement with molecular dynamics simulations [16]. Beyond this
particular case, to my knowledge no previous studies on the tensors {Dij , Dp,ij, DT,ij, χij}
have been performed. I hope that this paper stimulates the performance of such computer
studies to check the relevance of kinetic theory to describe mass transport under shear
flow.
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A possible application of the results reported in this paper is to study segregation
induced by a thermal gradient. Thermal diffusion is caused by the relative motion
of the components of a mixture due to the presence of a temperature gradient. Due
to this motion, concentration gradients subsequently appear in the mixture producing

diffusion that tends to oppose those gradients. In the steady state, j
(1)
0 = 0 and

the thermal diffusion factor provides a segregation criterion. Recent kinetic theory
results [38] based on the Navier–Stokes transport coefficients have been able to explain
some experimental and/or molecular dynamics segregation results obtained in agitated
granular mixtures at large shaking amplitudes [39]. Another possible direction of study
is the extension of the present approach to mixtures with finite composition. Given the
mathematical difficulties associated with the description of multicomponent systems in
far from equilibrium situations, one could perhaps use a kinetic model of the Boltzmann
equation. Once the transport coefficients of the mixture are known, a linear stability
analysis of the hydrodynamic equations could be carried out to identify the conditions
for instabilities at long wavelengths [20]. Finally, it must be noted that the results
reported here have been made in the context of a very simple collision model where the
coefficients of restitution α and α0 are constant. However, experiments and simulations
show that the coefficients of restitution depend in general on the relative velocity of
colliding particles [40]. Recent results [41, 42] derived for these viscoelastic models in the
case of the Navier–Stokes transport coefficients show qualitative differences from the ones
obtained with the simplifying assumption of a constant coefficient of restitution. For this
reason, it would be interesting to extend the present description to this kind of models
(where collisions are described by an impact velocity dependent coefficient of restitution)
in order to check whether the behaviour predicted here for the generalized transport
coefficients also occurs (at least from a qualitative level) in the case of granular gases of
viscoelastic particles. As in the Navier–Stokes description [41], explicit results for this
more realistic model could be obtained only for small enough dissipation. This contrasts
with the results reported here since they are not restricted to any level of inelasticity.
Work along the above lines will be done in the near future.
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Appendix A. Rheological properties in the steady USF

The explicit expressions for the pressure tensors P ∗
ij ≡ Pij/p and P ∗

0,ij ≡ P0,ij/x0p of the
gas and the impurity in the steady USF are provided in this appendix. To get the explicit
expressions of the elements of P ∗

ij, one takes the following Sonine approximation for f :

f(V) → fM(V)

[
1 +

m

2T

(
Pk�

nT
− δk�

) (
VkV� −

1

d
V 2δk�

)]
, (A.1)

where

fM(V) = n
( m

2πT

)d/2

exp

(
−mV 2

2T

)
. (A.2)
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By using this approximation, the non-zero elements of P ∗
ij are given by [21]

P ∗
yy = P ∗

zz = · · · = P ∗
dd =

d + 1 + (d − 1)α

2d + 3 − 3α
, (A.3)

P ∗
xy = −4d

d + 1 + (d − 1)α

(1 + α)(2d + 3 − 3α)2
a∗, (A.4)

P ∗
xx = d − (d − 1)P ∗

yy. (A.5)

The relationship between the reduced shear rate a∗ = a/ν (where ν is defined by
equation (21)) and the coefficient of restitution α is

a∗2 =
d + 2

32d

(1 + α)(2d + 3 − 3α)2(1 − α2)

d + 1 + (d − 1)α
. (A.6)

Moreover, the (reduced) cooling rate ζ∗ = ζ (0)/ν is

ζ∗ =
d + 2

4d
(1 − α2). (A.7)

In the case of P ∗
0,ij, one considers the leading Sonine approximation for f

(0)
0 given by

f0(V) → f0,M(V)

[
1 +

m0

2T0

(
P0,k�

n0T0

− δk�

) (
VkV� −

1

d
V 2δk�

)]
, (A.8)

where

f0,M(V) = n0

(
m0

2πT0

)d/2

exp

(
−m0V

2

2T0

)
. (A.9)

Another different approach based on an anisotropic Gaussian distribution has been
considered by Lutsko [13]. This latter approximation has the additional advantage of
being positive definite. However, the algebraic equations defining the pressure tensor P ∗

0,ij

cannot be solved explicitly since it requires to numerically solve some collision integrals.
Here, for the sake of simplicity, we have preferred to estimate the rheological properties of
the system by means of Grad’s solution (A.8). This allows us to get explicit expressions
for P ∗

0,ij. It has been shown, by comparison to DSMC simulations [12, 13], that the results
derived from the two approaches compare very well with computer simulations, even for
strong dissipation. Using (A.8), the non-zero elements of P ∗

0,ij can be written as [15]

P ∗
0,yy = P ∗

0,zz = · · · = P ∗
0,dd = −

F + HP ∗
yy

G
, (A.10)

P ∗
0,xy =

a∗P ∗
0,yy − HP ∗

xy

G
, (A.11)

P ∗
0,xx = dγ − (d − 1)P ∗

0,yy, (A.12)
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where γ = T0/T is the temperature ratio and

F =

√
2

2d

(
σ

σ

)d−1

μ0

(
1 + θ

θ3

)1/2

(1 + α0)
[
1 +

μ

2
(d − 1)(1 + θ)(1 + α0)

]
, (A.13)

G = −
√

2

4d

(
σ

σ

)d−1

μ

(
1

θ(1 + θ)

)1/2

(1 + α0)

× {2[(d + 2)θ + d + 3] − 3μ(1 + θ)(1 + α0)} , (A.14)

H =

√
2

4d

(
σ

σ

)d−1

μ0

(
1

θ(1 + θ)

)1/2

(1 + α0) [3μ(1 + θ)(1 + α0) − 2] . (A.15)

Here, θ = m0/mγ, μ = m/(m + m0), and μ0 = 1 − μ = m0/(m + m0). The temperature
ratio γ is determined from the condition

γ =
ζ∗P ∗

0,xy

ζ∗
0P

∗
xy

, (A.16)

where the ‘cooling rate’ ζ∗
0 = ζ0/ν for the impurity is given by

ζ∗
0 =

(d + 2)
√

2

2d

(
σ

σ

)d−1

μ

(
1 + θ

θ

)1/2

(1 + α0)
[
1 − μ

2
(1 + θ)(1 + α0)

]
. (A.17)

For elastic collisions (α = α0 = 1), equations (A.3)–(A.5) and (A.10)–(A.15) lead to
P ∗

ij = P ∗
0,ij = δij . In this case, as expected, the solution to equation (A.16) is γ = 1.

In addition, if we assume that particles of the gas and the impurity are mechanically
equivalent (i.e., m = m0, σ = σ0, and α = α0), then P ∗

ij = P ∗
0,ij, ζ∗ = ζ∗

0 and so γ = 1.
Beyond these two limit cases, the temperatures T and T0 are different so that there is a
violation of energy equipartition.

Appendix B. Behaviour of the zeroth-order pressure tensors near the steady state

This appendix addresses the behaviour of the pressure tensors P ∗
ij and P ∗

0,ij of the gas
particles and the impurity, respectively, near the steady state. The behaviour of the
second-degree moment P ∗

ij was studied in [20] in the three-dimensional case (d = 3). The
extension to an arbitrary number of dimensions is straightforward and here only the final
expressions are displayed. The behaviour of the yy element is given by(

∂P ∗
yy

∂a∗

)
s

= 4P ∗
yy

a∗
sΔ + P ∗

xy

2a∗2
s Δ + d(2β + ζ∗)

, (B.1)

where a∗
s(α) is the steady state value of a∗(p, T ) given by equation (A.6),

β =
1 + α

2

[
1 − d − 1

2d
(1 − α)

]
, (B.2)

and Δ ≡
(
∂P ∗

xy/∂a∗)
s

is the real root of the cubic equation

2a∗4
s Δ3 + 4da∗2

s (ζ∗ + β)Δ2 +
d2

2
(7ζ∗2 + 14ζ∗β + 4β2)Δ

+ d2β(ζ∗ + β)−2(2β2 − 2ζ∗2 − βζ∗). (B.3)
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In the above equations, it is understood that all the quantities are computed in the steady
state.

Let us consider now the elements of P ∗
0,ij. In dimensionless form, they verify the

equation

−
(

2

d
a∗P ∗

xy + ζ∗
) (

1 − 1

2
a∗ ∂

∂a∗

)
P ∗

0,ij + a∗
i�P

∗
0,j� + a∗

j�P
∗
0,i� = B∗

ij , (B.4)

where

B∗
ij =

m0

x0νp

∫
dc cicj J0[f

(0)
0 , f (0)]. (B.5)

Upon deriving equation (B.4), use has been made of the fact that in the hydrodynamic
regime the dimensionless pressure tensor depends on p and T only through its dependence
on the reduced shear rate a∗ = a/ν(p, T ) (see equations (55) and (56)). The collisional
moment B∗

ij can be estimated by using Grad’s approximation (A.8) with the result [15]

B∗
ij = Y δij + X0P

∗
0,ij + XP ∗

ij, (B.6)

where

Y =
d + 2

2
√

2d

(
σ

σ

)d−1

μ0(1 + α0)

(
1 + θ

θ

)3/2 [
λ0

d + 2
+

d

d + 3
μ(1 + α0)

]
, (B.7)

X0 = −d + 2√
2d

(
σ

σ

)d−1

μ0(1 + α0) [θ(1 + θ)]−1/2

[
1 +

(d + 3)

2(d + 2)

1 + θ

θ
λ0

]
γ−1, (B.8)

X =
d + 2√

2d

(
σ

σ

)d−1

μ0(1 + α0) [θ(1 + θ)]−1/2

[
1 − (d + 3)

2(d + 2)
(1 + θ)λ0

]
, (B.9)

with

λ0 =
2

1 + θ
− 3

d + 3
μ0(1 + α0). (B.10)

Let us consider the elements P ∗
0,xy and P ∗

0,yy. From equation (B.4), one gets

−
(

2

d
a∗P ∗

xy + ζ∗
) (

1 − 1

2
a∗ ∂

∂a∗

)
P ∗

0,xy + a∗P ∗
0,yy − X0P

∗
0,xy = XP ∗

xy, (B.11)

−
(

2

d
a∗P ∗

xy + ζ∗
) (

1 − 1

2
a∗ ∂

∂a∗

)
P ∗

0,yy − X0P
∗
0,yy = Y + XP ∗

yy. (B.12)

This set of equations can be written as

∂P ∗
0,xy

∂a∗ = 2
(ζ∗ + (2/d)a∗P ∗

xy + X0)P
∗
0,xy − a∗P ∗

0,yy + XP ∗
xy

a∗
(
ζ∗ + (2/d)a∗P ∗

xy

) , (B.13)

∂P ∗
0,yy

∂a∗ = 2
(ζ∗ + (2/d)a∗P ∗

xy + X0)P
∗
0,yy + Y + XP ∗

yy

a∗
(
ζ∗ + (2/d)a∗P ∗

xy

) . (B.14)
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It must be remarked that the temperature ratio γ = T0/T is also a function of a∗ in the
hydrodynamic solution. Since P ∗

0,xx + (d − 1)P ∗
0,yy = dγ, the corresponding equation for

the derivative (∂γ/∂a∗) can be obtained from equation (B.4) as

γ − a∗

2

∂γ

∂a∗ =
γζ∗

0 + (2/d)a∗P ∗
0,xy

ζ∗ + (2/d)a∗P ∗
xy

, (B.15)

where ζ∗
0 is given by equation (A.17). The set of three coupled equations (B.13)–(B.15) has

a singular point corresponding to the steady state solution, i.e., when a∗(p, T ) = a∗
s(α). In

this limit (a∗ → a∗
s), the numerators and denominators of equations (B.13)–(B.15) vanish.

The limit can be evaluated by means of l’Hopital’s rule. Thus, when one differentiates
with respect to a∗ the numerators and denominators of equations (B.13)–(B.15) and then
takes the limit a → a∗

s, one gets the relations(
∂P ∗

0,xy

∂a∗

)
s

=

(
1

2
a∗

sχs − X0

)−1 {
χsP

∗
0,xy +

(
X ′

0P
∗
0,xy + X ′P ∗

xy

)
(∂γ/∂a∗)s

−
[
P ∗

0,yy + a∗
s(∂P ∗

0,yy/∂a∗)s

]
+ X(∂P ∗

xy/∂a∗)s

}
, (B.16)

(
∂P ∗

0,yy

∂a∗

)
s

=
χsP

∗
0,yy +

(
Y ′ + X ′

0P
∗
0,yy + X ′P ∗

yy

)
(∂γ/∂a∗)s + X(∂P ∗

yy/∂a∗)s

(1/2)a∗
sχs − X0

, (B.17)

(
∂γ

∂a∗

)
s

=
χsγ − (2/d)

[
P ∗

0,xy + a∗
s(∂P ∗

0,xy/∂a∗)s

]
(1/2)a∗

sχs + ζ∗
0 + γζ ′

0

, (B.18)

where the subscript s means that the derivatives are computed in the steady state. In
addition, we have introduced the quantities

χs =
2

d

[
P ∗

xy + a∗
s(∂P ∗

xy/∂a∗)s

]
, (B.19)

and Y ′ ≡ (∂Y/∂γ), X ′ ≡ (∂X/∂γ), X ′
0 ≡ (∂Y/∂γ), and ζ ′

0 ≡ (∂ζ∗
0/∂γ). Note that all

the quantities appearing on the right-hand side of equations (B.16)–(B.18) are evaluated
in the steady state. This set of equations can be easily solved to give the corresponding
derivatives. The result is(

∂γ

∂a∗

)
s

=
Λ1

Λ2
, (B.20)

where

Λ1 = d

(
1

2
a∗

sχs − X0

) {(
1

2
a∗

sχs − X0

) (
χsγ − 2

d
P ∗

0,xy

)

− 2

d
a∗

s

[
χsP

∗
0,xy − P ∗

0,yy + X(∂P ∗
xy/∂a∗)s

]}

+ 2a∗2
s

[
χsP

∗
0,yy + X(∂P ∗

yy/∂a∗)s

]
, (B.21)

Λ2 = d

(
1

2
a∗

sχs − X0

) [(
1

2
a∗

sχs − X0

) (
ζ∗
0 +

1

2
χs + γζ ′

0

)

+
2

d
a∗

s

(
X ′

0P
∗
0,xy + X ′P ∗

yy

)]
− 2a∗2

s

(
Y ′ + X ′

0P
∗
0,yy + X ′P ∗

yy

)
. (B.22)
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Substitution of equation (B.20) into equations (B.16) and (B.17) gives the derivatives
(∂a∗P ∗

0,xy)s and (∂a∗P ∗
0,yy)s, respectively.

Appendix C. Chapman–Enskog-like expansion

In this appendix, we provide some technical details on the determination of the first-

order approximation f
(1)
0 by means of the Chapman–Enskog-like expansion. Inserting the

expansions (29) and (31) into equation (23), one gets the kinetic equation for f
(1)
0(

∂
(0)
t − aVy

∂

∂Vx

)
f

(1)
0 − J0[f

(1)
0 , f (0)] = −

[
∂

(1)
t + (V + us) · ∇ +

F0

m0
· ∂

∂V

]
f (0). (C.1)

The velocity dependence on the right side of equation (C.1) can be obtained from the
macroscopic balance equations (24)–(26) to first order in the gradients. They are given
by

∂
(1)
t x0 = −(us + δu) · ∇x0, (C.2)

∂
(1)
t δu = −(us + δu) · ∇δu− 1

ρ

(
∇ · P(0) − nF

)
, (C.3)

∂
(1)
t p = −(us + δu) · ∇p − p(∇ · δu + ζ (1)) − 2

d

(
aP (1)

xy + P(0) : ∇δu
)
, (C.4)

∂
(1)
t T = −(us + δu) · ∇T − 2

dn

(
aP (1)

xy + P(0) : ∇δu
)
− pζ (1), (C.5)

where ρ = mn is the mass density,

P
(1)
ij =

∫
dcmcicjf

(1)(c), (C.6)

and

ζ (1) = − 1

dp

∫
dcmc2

(
J [f (0), f (1)] + J [f (1), f (0)]

)
. (C.7)

Use of equations (C.2)–(C.5) in equation (C.1) yields(
∂

(0)
t − aVy

∂

∂Vx

)
f

(1)
0 − J0[f

(1)
0 , f (0)] = A0 · ∇x0 + B0 · ∇p

+ C0 · ∇T + D0 : ∇δu + E0 · F

+ ζ (1)(p∂p + T∂T )f
(0)
0 + J0[f

(0)
0 , f (1)], (C.8)

where we have introduced the force F = F0 − (m0/m)F. The coefficients of the field
gradients on the right-hand side of (C.8) are functions of c and the hydrodynamic fields.
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They are given by

A0,i(c) = −∂f
(0)
0

∂x0
ci, (C.9)

B0,i(c) = −∂f
(0)
0

∂p
ci +

1

ρ

∂f
(0)
0

∂δuj

∂P
(0)
ij

∂p
, (C.10)

C0,i(c) = −∂f
(0)
0

∂T
ci +

1

ρ

∂f
(0)
0

∂δuj

∂P
(0)
ij

∂T
, (C.11)

D0,ij(c) = p
∂f

(0)
0

∂p
δij −

∂f
(0)
0

∂δui

cj +
2

dp

(
P

(0)
ij − aηxyij

)(
p

∂

∂p
+ T

∂

∂T

)
f

(0)
0 , (C.12)

E0,i(c) = − 1

m0

∂f
(0)
0

∂ci
. (C.13)

Upon writing equation (C.12) use has been made of the expression of the pressure tensor

P
(1)
ij of the gas [20]

P
(1)
ij = −ηijk�

∂δuk

∂r�
, (C.14)

where ηijk� is the viscosity tensor. Moreover, the expression for the distribution f (1)

derived in [20] is given by equation (47).
The solution to equation (C.8) has the form

f
(1)
0 = A0 · ∇x0 + B0 · ∇p + C0 · ∇T + D0 : ∇δu + E0 · F . (C.15)

The coefficients A0, B0, C0, D0, and E0 are functions of the peculiar velocity and the
hydrodynamic fields x0, p, T , and δu. The cooling rate ζ (0) depends on space through

its dependence on p and T . Moreover, there are contributions from ∂
(0)
t acting on the

pressure, temperature, and velocity gradients given by

∂
(0)
t ∇p = −∇

(
2

d
aP (0)

xy + pζ (0)

)

= −
(

2a

d

∂P
(0)
xy

∂p
+ 2ζ (0)

)
∇p −

(
2a

d

∂P
(0)
xy

∂T
− 1

2

pζ (0)

T

)
∇T, (C.16)

∂
(0)
t ∇T = −∇

(
2T

dp
aP (0)

xy + ζ (0)

)

=

[
2aT

dp2

(
1 − p

∂

∂p

)
P (0)

xy − Tζ (0)

p

]
∇p

−
[
2a

dp

(
1 + T

∂

∂T

)
P (0)

xy +
1

2
ζ (0)

]
∇T, (C.17)

∂
(0)
t ∇iδuj = ∇i∂

(0)
t δuj = −ajk∇iδuk. (C.18)
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The corresponding integral equations (42)–(46) can be obtained when one identifies
coefficients of independent gradients in (C.8) and takes into account equations (C.16)–
(C.18) and the mathematical property

∂
(0)
t X =

∂X

∂p
∂

(0)
t p +

∂X

∂T
∂

(0)
t T +

∂X

∂δui
∂

(0)
t δui

= −
(

2

dp
aP (0)

xy + ζ (0)

) (
p

∂

∂p
+ T

∂

∂T

)
X + aijδuj

∂X

∂ci

, (C.19)

where in the last step we have taken into account that X depends on δu through
c = V − δu.
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