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Abstract

Hydrodynamic equations for a binary mixture of inelas-

tic Maxwell models described by the Boltzmann equation are de-

rived. The Navier-Stokes transport coefficients are exactly ob-

tained by solving the Boltzmann equation from the Chapman-

Enskog method for states close to the (local) homogeneous cooling

state (HCS). The knowledge of the transport coefficients allows

one to analyze two different problems. First, we solve the lin-

earized hydrodynamic equations around the homogeneous (cool-

ing) state and identify the conditions for stability as functions of

the wave vector, the dissipation, and the parameters of the mix-

ture. As happens for monocomponent systems, the analysis shows

that the HCS is unstable to long enough wavelength perturbation.

As a second problem, we explore the validity of Onsager’s recip-

rocal relations of a granular binary mixture. As expected, since

a granular system is not time reversal invariant, Onsager’s recip-

rocal relations do not apply for inelastic collisions. The results

show that the absence of the Gibbs state (non-Maxwellian behav-

ior of the velocity distribution functions describing the HCS), the

collisional cooling, and the occurrence of different kinetic temper-

atures for both species (breakdown of energy equipartition) are

responsible for a violation of Onsager’s relations.
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1. Introduction

Granular fluids are usually modeled as systems composed by smooth

hard spheres with inelastic collisions. The collisions are specified in terms of

the change in relative velocity at contact but with a decrease of the magni-

tude of the normal component measured by a (positive) coefficient of resti-

tution smaller than or equal to 1. For this interaction model, the Boltzmann

equation (BE) has been conveniently modified to account for the inelasticity

of binary collisions and the transport coefficients have been determined for a

single gas [1] as well as for multicomponent systems [2]. However, the eval-

uation of those coefficients for inelastic hard spheres (IHS) is quite involved

since they are given in terms of the solutions of linearized integral equations

which can be approximately solved by considering the leading order in a

Sonine polynomial expansion of the velocity distribution function. For this

reason, other interaction models that simplify the mathematical structure

of the Boltzmann collision integrals for IHS have been considered in the

past few years. As for ordinary gases, the BE for inelastic Maxwell models

(IMM) has been also introduced [3]. The IMM share with elastic Maxwell

molecules the property that the collision rate is velocity independent but,

on the other hand, their collision rules are the same as for IHS. Although

these IMM do not correspond to any microscopic interaction potential, the

cost of sacrificing physical realism is in part compensated by the amount of

exact analytical results that can be derived from this simple model.

Most of the studies performed for IMM have been devoted to homo-

geneous states, especially in the analysis of high-energy asymptotics of the

velocity distributions. On the other hand, much less is known on the depen-

dence of the transport coefficients on dissipation, especially for mixtures.

In the case of a binary mixture subjected to simple shear flow, the rele-

vant rheological properties of the system (shear and normal stresses) have

been exactly obtained [4]. These results show an excellent agreement with

those obtained analytically for IHS in the first Sonine approximation and by

means of Monte Carlo simulations [5]. More recently, the BE for inelastic

Maxwell mixtures has been solved [6] from the Chapman-Enskog method for

states close to the (local) homogeneous cooling state. Explicit expressions of

the Navier-Stokes transport coefficients of IMM in d dimensions have been

derived in terms of the coefficients of restitution and the ratios of mass, con-

centration, and particle sizes. Comparison with known results for IHS [2]
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shows a reasonably good agreement, especially for the transport coefficients

associated with the mass flux.

The knowledge of the transport coefficients of IMM for mixtures allows

quantitative application of the nonlinear hydrodynamic equations to a num-

ber of interesting problems. Here, we consider two different applications.

First, we study small perturbations of a spatially homogeneous state and

determine the dispersion relations for the hydrodynamic modes. This anal-

ysis allow us to identify the conditions for stability as functions of the wave

vector, the dissipation, and the parameters of the mixture. As in the mono-

component case [1], linear stability analysis shows two transversal (shear)

modes and a longitudinal (heat) mode to be unstable with respect to long

wavelength excitations. As a second application, we explore the validity of

Onsager’s reciprocal relations [7] among the different transport coefficients

associated with the mass and heat fluxes. For ordinary gases these relations

are a consequence of time reversal invariance of the equations of motion

of the individual particles. Since a granular fluid is inherently time irre-

versible (there is a irreversible loss of kinetic energy in collisions), violation

of Onsager’s relations is expected with increasing dissipation. The interest-

ing point here is to assess the influence of inelasticity on the failure of these

reciprocal relations as well as to identify the origin of such a violation.

The plan of the paper is as follows. In Section 2, we give a brief summary

of the Boltzmann equation for IMM and their corresponding balance hydro-

dynamic equations. The form of the Navier-Stokes hydrodynamic equations

for the mixture is given in Section 3. Sections 4 and 5 contain the main

results of this paper. In Section 4 we perform a stability analysis of the

linearized hydrodynamic equations while Section 5 deals with the study of

Onsager’s relations in granular systems. We close the paper with some con-

cluding remarks in Section 6

2. Inelastic Maxwell Models for a Granular Mixture

Let us consider a mixture of inelastic Maxwell gases at low density [3].

At this level of description, all the relevant information on the system is

given through the velocity distribution functions fr(r,v; t) (r = 1, 2, . . .) of
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each species. In the absence of any external force, the distribution functions

fr obey the following set of nonlinear Boltzmann kinetic equations [4]:

(∂t + v · ∇) fr(r,v; t) =
∑

s

Jrs [v|fr(t), fs(t)] , (1)

where the Boltzmann collision operator Jrs [v|fr, fs] is

Jrs [v1|fr, fs] =
ωrs(r, t;αrs)

ns(r, t)Ωd

∫
dv2

∫
dσ̂

×
[
α−1

rs fr(r,v
′
1, t)fs(r,v

′
2, t) − fr(r,v1, t)fs(r,v2, t)

]
. (2)

Here, mr is the mass of a particle of species r, nr is the number density of

species r, ωrs 6= ωsr is an effective collision frequency (to be chosen later)

for collisions of type r-s, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d

dimensions, and αrs = αsr ≤ 1 refers to the constant coefficient of restitution

for collisions between particles of species r and s. In addition, the primes on

the velocities denote the initial values {v′
1,v

′
2} that lead to {v1,v2} following

a binary collision:

v′
1 = v1−µsr

(
1 + α−1

rs

)
(σ̂ ·g12)σ̂, v′

2 = v2 +µrs

(
1 + α−1

rs

)
(σ̂ ·g12)σ̂, (3)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit

vector directed along the centers of the two colliding spheres, and µrs =

mr/(mr + ms). The collision frequencies ωrs can be seen as free parameters

in the model. Their dependence on the coefficients of restitution αrs can

be chosen to optimize the agreement with the results obtained from the

Boltzmann equation for IHS.

The relevant hydrodynamic fields in a mixture are the number densities

nr, the flow velocity u, and the granular temperature T . They are defined

in terms of the distributions fr as

nr =

∫
dvfr(v), (4)

ρu =
∑

r

ρrur =
∑

r

∫
dvmrvfr(v), (5)

nT = p =
∑

r

nrTr =
∑

r

mr

d

∫
dvV 2fr(v), (6)

where ρr = mrnr is the mass density of species r, n =
∑

r nr is the total

number density, ρ =
∑

r ρr is the total mass density, V = v − u is the
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peculiar velocity, and p is the hydrostatic pressure. Furthermore, the third

equality of Eq. (6) defines the kinetic temperatures Tr of each species, which

measure their mean kinetic energies. For inelastic systems, in general Tr 6= T

so that the energy equipartition theorem does not apply.

The collision operators conserve the particle number of each species and

the total momentum, but the total energy is not conserved:
∫

dvJrs[v|fr, fs] = 0, (7)

∑

r,s

∫
dvmrvJrs[v|fr, fs] = 0, (8)

∑

r,s

∫
dv

1

2
mrV

2Jrs[v|fr, fs] = −d

2
nTζ. (9)

Here ζ is identified as the “cooling rate” due to inelastic collisions among

all species. At a kinetic level, it is also convenient to introduce the “cooling

rates” ζr for the partial temperatures Tr. They are defined as

ζr =
∑

s

ζrs = −
∑

s

1

dnrTr

∫
dvmrV

2Jrs[v|fr, fs], (10)

where the second equality defines the quantities ζrs. The total cooling rate

ζ can be written in terms of the partial cooling rates ζr as

ζ =
∑

r

xrγrζr, (11)

where xr = nr/n is the mole fraction of species r and γr ≡ Tr/T .

The macroscopic balance equations for the mixture follow from the con-

ditions (7)–(9). They are given by

Dtnr + nr∇ · u +
∇ · jr
mr

= 0, (12)

Dtu + ρ−1∇ · P = 0, (13)

DtT − T

n

∑

r

∇ · jr
mr

+
2

dn
(∇ · q + P : ∇u) = −ζT. (14)

In the above equations, Dt = ∂t + u · ∇ is the material derivative,

jr = mr

∫
dvV fr(v) (15)
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is the mass flux for species r relative to the local flow,

P =
∑

r

∫
dv mrVV fr(v) (16)

is the total pressure tensor, and

q =
∑

r

∫
dv

1

2
mrV

2V fr(v) (17)

is the total heat flux. The balance equations (12)–(14) apply regardless of the

details of the model considered for inelastic collisions. However, the influence

of the collision model appears through the dependence of the cooling rate

and the hydrodynamic fluxes on the coefficients of restitution.

As happens for elastic collisions [8], the main advantage of using IMM

is that a velocity moment of order k of the Boltzmann collision operator

only involves moments of order less than or equal to k [9]. This allows

one to determine the Boltzmann collisional moments without the explicit

knowledge of the velocity distribution functions. The first few moments of

the Boltzmann collision operator Jrs[fr, fs] have been explicitly evaluated in

Ref. [4]. In particular, the cooling rates ζrs are given by

ζrs =
2ωrs

d
µsr(1 + αrs)

[
1 − µsr

2
(1 + αrs)

θr + θs

θs
+

µsr(1 + αrs) − 1

dρspr
jr · js

]
,

(18)

where pr = nrTr and

θr =
mr

γr

∑

s

m−1
s . (19)

Equation (18) can be used to fix the parameters ωrs. The most natural choice

to optimize the agreement with the IHS results is to adjust the cooling rates

ζrs for IMM, Eq. (18), to be the same as the ones found for IHS. Given that

the cooling rates are not exactly known for IHS, one can estimate them by

considering their local equilibrium approximation [10]. With this choice, the

collision frequencies ωrs are given by

ωrs =
Ωd√

π
nsσ

d−1
rs

(
θr + θs

θrθs

)1/2

v0, (20)

where σrs = (σr + σs)/2, σr being the diameter of particles of species r. In

addition, v0 = (2T
∑

r m−1
r )1/2 is a thermal velocity defined in terms of the
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global temperature T . Upon deriving (20) use has been made of the fact

that the mass flux jr vanishes in the local equilibrium approximation. In the

remainder of this paper, we will take the choice (20) for ωrs.

3. Navier-Stokes Hydrodynamic Equations

Needless to say, the usefulness of the balance equations (12)–(14) is lim-

ited without further specification of the fluxes and the cooling rate on space

and time. However, for sufficiently large space and time scales, one expects

that the system achieves a hydrodynamic regime in which all the space and

time dependence of the distribution function occurs through a functional de-

pendence on the hydrodynamic fields. This functional dependence is made

local in space and time by writing fr(v) as a series expansion in powers

of the gradients of the hydrodynamic fields. This special solution is called

a normal solution and can be obtained by applying the Chapman-Enskog

method [11] to the BE. One important difference with respect to the con-

ventional Chapman-Enskog method for ordinary gases is that the reference

state (zeroth-order approximation) of the expansion is not the local equilib-

rium state but the so-called (local) homogeneous cooling state, whose explicit

form is not known [10]. Very recently, the Chapman-Enskog solution to the

BE (1) has been worked out to first order in gradients of the fields. The

corresponding constitutive equations found up to this order for the binary

mixture are [6]

j1 = −m1m2n

ρ
D∇x1 −

ρ

p
Dp∇p − ρ

T
D′∇T, j2 = −j1, (21)

q = −T 2D′′∇x1 − κ∇p − λ∇T, (22)

Pkℓ = pδkℓ − η

(
∇ℓuk + ∇kuℓ −

2

d
δkℓ∇ · u

)
. (23)

The transport coefficients are the diffusion coefficient D, the thermal diffu-

sion coefficient D′, the pressure diffusion coefficient Dp, the Dufour coeffi-

cient D′′, the thermal conductivity λ, the pressure energy coefficient κ and

the shear viscosity coefficient η. In contrast to the results previously derived

for IHS [2], all the above transport coefficients have been exactly obtained

in terms of the coefficients of restitution and the parameters of the mixture

(masses, sizes, and composition). Technical details of the Chapman-Enskog
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solution to the BE (1) can be found in Ref. [6]. Here, for the sake of com-

pleteness, the explicit expressions of the Navier-Stokes transport coefficients

as well as the cooling rate ζ are displayed in the Appendix.

The expressions for the mass flux (21), the heat flux (22), the pressure

tensor (23), and the cooling rate (A.6) provide the necessary constitutive

equations to convert the balance equations (12)–(14) into a closed set of six

independent equations for the hydrodynamic fields. Since the irreversible

fluxes have been represented in terms of the gradients of the mole fraction

x1, the pressure p, the temperature T , and the flow velocity u, it is convenient

to use these as the independent hydrodynamic variables. This means that,

apart from the balance equations (13) and (14) for u and T , respectively, we

also need the corresponding balance equations for x1 and p. These equations

can be easily obtained from (12) and (14) and are given by

Dtx1 +
ρ

n2m1m2
∇ · j1 = 0, (24)

Dtp + p∇ · u +
2

nd
(∇ · q + P : ∇u) = −ζp. (25)

Therefore, when the expressions of the fluxes and the cooling rate ζ are

substituted into the balance equations (13), (14), (24) and (25) one gets a

closed set of hydrodynamic equations for x1, u, T and p. These are the

Navier-Stokes equations for the granular binary mixture. They are given by

Dtx1 =
ρ

n2m1m2
∇ ·

(
m1m2n

ρ
D∇x1 +

ρ

p
Dp∇p +

ρ

T
D′∇T

)
, (26)

(Dt + ζ) p +
d + 2

d
p∇ · u =

2

d
∇ ·

(
T 2D′′∇x1 + κ∇p + λ∇T

)

+
2

d
η

(
∇ℓuk + ∇kuℓ −

2

d
δkℓ∇ · u

)
∇ℓuk, (27)

(Dt + ζ)T +
2

dn
p∇ · u

= −T

n

m2 − m1

m1m2
∇ ·

(
m1m2n

ρ
D∇x1 +

ρ

p
Dp∇p +

ρ

T
D′∇T

)

+
2

dn
∇ ·

(
T 2D′′∇x1 + κ∇p + λ∇T

)

+
2

dn
η

(
∇ℓuk + ∇kuℓ −

2

d
δkℓ∇ · u

)
∇ℓuk, (28)
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Dtuℓ + ρ−1∇ℓp = ρ−1∇kη

(
∇ℓuk + ∇kuℓ −

2

d
δkℓ∇ · u

)
. (29)

Note that although both species have different mean flow velocities (j1 6= j2),

here we have adopted a one-fluid model for the hydrodynamic equations. The

derivation of a two-fluid model [12, 13] can be carried also out from a kinetic

theory description, but we have preferred here to adopt the conventional

macroscopic description for a binary mixture based on the balance equations

for the partial densities nr, the (common) mean flow velocity u, and the

temperature T .

4. Linear Stability Analysis of the Hydrodynamic Equations

As said in the Introduction, one of the simplest application of the hy-

drodynamic equations is a stability analysis of the nonlinear hydrodynamic

equations (26)–(29) with respect to the homogeneous state for small initial

perturbations. The linearization about the homogeneous solution yields par-

tial differential equations with coefficients that are independent of space but

depend on time since the reference (homogeneous) state is cooling. As in the

monocomponent case [1], this time dependence can be eliminated through a

change in the time and space variables, and a scaling of the hydrodynamic

fields.

Let us assume that the deviations δyα(r, t) = yα(r, t)−yHα(t) are small.

Here, δyα(r, t) denotes the deviation of {x1,u, T, p} from their values in the

homogeneous state, which is indicated by the subscript H. We introduce

the following dimensionless space and time variables:

τ =

∫ t

0
dt′νH(t′), r′ =

νH(t)

v0H(t)
r, (30)

where νH(t) = (Ωd/4
√

π)nHσ2
12v0H is an effective collision frequency and

v0H =
√

2TH(m1 + m2)/m1m2. Since {x1H ,uH , TH , pH} are evaluated in

the homogeneous cooling state, then

∂tx1H = 0, uH = 0, ∂t ln TH = ∂t ln pH = −ζH . (31)
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A set of Fourier transformed dimensionless variables are then introduced as

ρk(τ) =
δx1k(τ)

x1H
, wk(τ) =

δuk(τ)

v0H(τ)
, θk(τ) =

δTk(τ)

TH(τ)
, Πk(τ) =

δpk(τ)

pH(τ)
,

(32)

where δykα ≡ {δx1k, δuk, δTk, δpk} is defined as

δykα(k, τ) =

∫
dr′ e−ik·r′δyα(r′, τ). (33)

Note that here the wave vector k is dimensionless. In terms of the above

variables, the transverse velocity components wk⊥ = wk−(wk ·k̂)k̂ (orthog-

onal to the wave vector k) decouple from the other four modes and hence

can be obtained more easily. They obey the equation
(

∂

∂τ
− ζ∗

2
+ η∗k2

)
wk⊥ = 0, (34)

where ζ∗ = ζH/νH is given by Eq. (A.6) and

η∗ =
νHη

ρHv2
0H

. (35)

The solution for wk⊥(k, τ) reads

wk⊥(k, τ) = wk⊥(0) exp[s⊥(k)τ ], (36)

where

s⊥(k) =
1

2
ζ∗ − η∗k2. (37)

This identifies two shear (transversal) modes. We see from Eq. (37) that

there exists a critical wave number kc
⊥ given by

kc
⊥ =

(
ζ∗

2η∗

)1/2

. (38)

This critical value separates two regimes: shear modes with k ≥ kc
⊥ always

decay while those with k < kc
⊥ grow exponentially.

The remaining modes are called longitudinal modes. They correspond

to the set {ρk, θk,Πk} along with the longitudinal velocity component wk|| =

wk · k̂ (parallel to k). These modes are the solutions of the linear equation

∂δykα(τ)

∂τ
=

(
M

(0)
αβ + ikM

(1)
αβ + k2M

(2)
αβ

)
δykβ(τ), (39)
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where δykα(τ) denotes now the four variables
{
ρk, θk,Πk, wk||

}
. The matri-

ces in Eq. (39) are given by

M
(0) =





0 0 0 0

−x1 (∂ζ∗/∂x1)T,p
1
2ζ∗ −ζ∗ 0

−x1 (∂ζ∗/∂x1)T,p
1
2ζ∗ −ζ∗ 0

0 0 0 1
2ζ∗



 , (40)

M
(1) =





0 0 0 0

0 0 0 −2
d

0 0 0 −d+2
d

0 0 −1
2

µ/(1+µ)
x1µ+x2

0




, (41)

M
(2) =



−D∗ −x−1
1 D′∗ −x−1

1 D∗
p 0

−x1

(
2
dD′′∗− 1−µ

x1µ+x2
D∗

)
1−µ

x1µ+x2
D′∗−2

dλ∗ −2
dκ∗+ 1−µ

x1µ+x2
D∗

p 0

−2
dx1D

′′∗ −2
dλ∗ −2

dκ∗ 0

0 0 0 −2
d(d−1)η∗




.(42)

In these equations, µ = m1/m2, xr ≡ xrH , and we have introduced the

reduced Navier-Stokes transport coefficients

D∗ =
νHD

nHv2
0H

, D∗
p =

ρ2
HνHDp

m1m2n2
Hv2

0H

, D′∗ =
ρ2

HνHD′

m1m2n2
Hv2

0H

, (43)

D′′∗ =
νHTHD′′

nHv2
0H

, κ∗ =
νHκ

v2
0H

, λ∗ =
νHλ

nHv2
0H

. (44)

The longitudinal modes have the form exp[sn(k)τ ] for n = 1, 2, 3, 4,

where sn(k) are the eigenvalues of the matrix M = M
(0) + ikM

(1) + k2
M

(2),

namely, they are the solutions of the quartic equation

det |M − s11| = 0. (45)

The solution to (45) for arbitrary values of k is quite complex. Interestingly,

the expression of M through first order in k does not depend on the assumed

forms of the mass flux, the pressure tensor, and the heat flux. As a conse-

quence, the corresponding eigenvalues can be considered as known exactly

up through this order. They are found to be the eigenvalues of the matrix
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of M
(0):

sn(0) =

(
0, 0,−1

2
ζ∗,

1

2
ζ∗

)
. (46)

Hence, at asymptotically long wavelengths (k = 0) the spectrum of the lin-

earized hydrodynamic equations is comprised of a decaying mode at −ζ∗/2,

a two-fold degenerate mode at 0, and a three-fold degenerate unstable mode

at ζ∗/2. For finite k, the longitudinal modes can be calculated for small k

by a perturbation expansion:

sn(k) = s(0)
n + ks(1)

n + k2s(2)
n + · · · , (47)

where s
(0)
n is given by Eq. (46). Through order k2, the coefficients (for

n = 1, 2, 3, 4) are

s(1)
n = 0, n = 1, 2, 3, 4, (48)

s
(2)
1 = s

(2)
2 =

(
∂ ln ζ∗

∂x1

)

T,p

(D′∗ + D∗
p) −

1

2ζ∗
µ

(x1µ + x2)(1 + µ)

+
1

2

1 − µ

x1µ + x2
(2D′∗ + D∗

p) −
1

2
D∗, (49)

s
(2)
3 = −

[

2

(
∂ ln ζ∗

∂x1

)

T,p

+
1 − µ

x1µ + x2

]

(D′∗ + D∗
p)

+
d + 1

dζ∗
µ

(x1µ + x2)(1 + µ)
− 2

d
(λ∗ + κ∗), (50)

s
(2)
4 = −2

d − 1

d
η∗ − 1

dζ∗
µ

(x1µ + x2)(1 + µ)
. (51)

Since the Navier-Stokes order only applies through order k2, the solutions

(46) and (48)–(51) are relevant to the same order.

To illustrate the general dependence of the hydrodynamic modes on the

reduced wavenumber k, in Figure 1 we show the dispersion relations for the

case α11 = α22 = α12 ≡ α = 0.9, σ1/σ2 = 1, x1 = 0.2 and m1/m2 = 4. From

top to bottom the curves correspond to the shear modes, given by (37), and

the remaining four longitudinal modes. We only represent the real parts of

the hydrodynamic modes. Furthermore, we have also included the results

obtained in the case of IHS by using the leading Sonine approximation for

the transport coefficients [2]. It is seen that the shear mode and one of

the longitudinal modes (“heat” mode) are positive for k < kc
⊥ and k < kc

h,

respectively. Here, kc
⊥ is given by Eq. (38) while the critical value kc

h for the



i

i

i

i

] HYDRODYNAMICS FOR INELASTIC MAXWELL MIXTURES 167

heat mode may be found from the condition det |M| = 0. Therefore, initial

long wavelength perturbations of the homogeneous cooling state that excite

shear and heat modes will grow exponentially, representing an instability of

the reference state. In addition, we also observe that the results for IMM

compare quite well with those given for IHS showing again the reliability of

IMM as a toy model to capture the main trends observed for granular fluids.

Figure 1. Dispersion relations in the three-dimensional case for α11 =

α22 = α12 ≡ α = 0.9, σ1 = σ2, x1 = 0.2 and m1/m2 = 4. From top to

bottom the curves correspond to the shear modes and the remaining four

longitudinal modes. The solid lines are the results derived for IMM while

the dashed lines refer to the results for IHS.

5. Onsager’s Reciprocal Relations

As a second application of the explicit knowledge of the Navier-Stokes

transport coefficients, in this Section we explore the validity of Onsager’s

reciprocal relations for inelastic Maxwell mixtures. In the case of elastic

collisions, Onsager’s relations [7] establish symmetry properties between the

Onsager phenomenological coefficients Lsr, Lsq, Lqq and Lqs associated with

the mass and heat fluxes of a gas mixture. These coefficients are defined

through the (linear) constitutive equations [7]

js = −
2∑

r=1

Lsr

(∇µr

T

)

T

− Lsq
∇T

T 2
, (52)
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Jq ≡ q− d + 2

2
T

2∑

s=1

js

ms

= −Lqq∇T −
2∑

s=1

Lqs

(∇µs

T

)

T

. (53)

Here, we have introduced the gradient of chemical potential per unit mass

(µs) given by
(∇µs

T

)

T

=
1

ms
∇ ln(xsp). (54)

Onsager’s relations state [7]

Lsr = Lrs, Lsq = Lqs. (55)

Relations (55) are a consequence of time reversal invariance of the equations

of motion of the individual particles. Since the main feature of a granular gas

is the irreversible loss of kinetic energy in collisions, one expects relations (55)

not to apply when αrs 6= 1. Now we want to assess the effect of dissipation

on the violation of Onsager’s theorem.

To identify the Onsager phenomenological coefficients from the consti-

tutive equations (52) and (53), Eqs. (21) and (22) must be rewritten in terms

of the gradients of chemical potential µr and temperature T . To do that,

first note that Eq. (54) leads to the relation

∇x1 =
ρ1ρ2

nρ

(∇µ1)T − (∇µ2)T
T

− n1n2

nρ
(m2 − m1)∇ ln p, (56)

where use has been made of the identity ∇x1 = −∇x2. When Eq. (56) is

substituted into Eqs. (21) and (22), one gets the following expressions for

the mass flux j1 and the heat flux Jq defined in Eq. (53):

j1 = −m1m2ρ1ρ2

ρ2
D

(∇µ1)T − (∇µ2)T
T

− Cp∇ ln p − ρ

T
D′∇T, (57)

Jq = −
(

ρ1ρ2T
2

nρ
D′′ − d + 2

2
T

m2 − m1

ρ2
ρ1ρ2D

)
(∇µ1)T − (∇µ2)T

T

−C ′
p∇ ln p −

(
λ − d + 2

2

m2 − m1

m1m2
ρD′

)
∇T, (58)
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where

Cp = ρDp −
ρ1ρ2

ρ2
(m2 − m1)D, (59)

and

C ′
p = pκ − d + 2

2
T

m2 − m1

m1m2
Cp −

n1n2

nρ
T 2(m2 − m1)D

′′. (60)

The Onsager phenomenological coefficients can be easily identified from

Eqs. (57) and (58) when one takes into account the constitutive equations

(52) and (53). They are given by

L11 = −L12 =
m1m2ρ1ρ2

ρ2
D, L1q = ρTD′, (61)

Lq1 = −Lq2 =
T 2ρ1ρ2

nρ
D′′ − d + 2

2

Tρ1ρ2

ρ2
(m2 − m1)D,

Lqq = λ − d + 2

2
ρ
m2 − m1

m1m2
D′. (62)

The first Onsager relation L12 = L21 is trivially verified since, according to

Eq. (A.3), the diffusion coefficient is symmetric under the exchange 1 ↔ 2.

The second Onsager relation requires that L1q = Lq1. In addition, according

to Eqs. (57) and (58), there are two new contributions proportional to ∇p

not present in the structure given by Eqs. (52) and (53) for the fluxes j1

and Jq, respectively. Consequently, Onsager’s relations would require that

these contributions should vanish for any value of αrs, i.e., Cp = C ′
p = 0.

In terms of the reduced coefficients {D∗,D∗
p,D

′∗,D′′∗, κ∗, λ∗} defined in the

Appendix, the conditions L1q = Lq1, Cp = 0 and C ′
p = 0 lead, respectively,

to the following conditions

P ({αrs}) = 0, Q({αrs}) = 0, R({αrs}) = 0, (63)

where

P ({αrs}) ≡ D′′∗ − d + 2

2

1 − µ2

µ
D∗ − 1 + µ

µ

x2 + µx1

x1x2
D′∗, (64)

Q({αrs}) ≡ D∗
p − x1x2

1 − µ

x2 + µx1
D∗, (65)

R({αrs}) ≡ κ∗ − d + 2

2

1 − µ2

µ
Q − x1x2

1 − µ

x2 + µx1
D′′∗. (66)

In summary, if Onsager’s relations held, then the reduced functions P ,
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Q and R would vanish for any value of the parameters of the mixture. In

the elastic limit (αrs = 1), our results actually show that P (1) = Q(1) =

R(1) = 0, so that, Onsager’s relations are exactly verified. Nevertheless,

for inelastic collisions, the functions P , Q and R are different from zero,

as expected. There are mainly three independent sources of discrepancy:

(i) non-Gaussianity of the distribution functions of the homogeneous cool-

ing state, which is measured through the cumulants cr and are given by

Eq. (A.20); (ii) energy nonequipartition as measured by the deviation of γ

from unity, and (iii) time evolution of the granular temperature, which is

accounted for by the cooling rate ζ. To illustrate the influence of dissipation

on the breakdown of Onsager’s symmetry relations, the functions P , Q and

R are plotted in Figures 2, 3 and 4, respectively, as functions of the coef-

ficient of restitution α. Here, for the sake of simplicity, we have assumed

again a common coefficient of restitution (αrs ≡ α) for d = 3 with x1 = 0.2,

σ1 = σ2 and different values of the mass ratio m1/m2. As might be expected,

the deviation of P , Q and R from zero increases with decreasing α, and in

general is more significant as the mass disparity increases. In addition, while

the magnitude of Q(α) is quite small, the function R(α) grows very fast with

dissipation. The validity of the pure Onsager’s relation L1q = Lq1 is tested

by the function P (α). Except for very weak dissipation, the violation of this

reciprocal relation is quite important, especially in the case m1/m2 = 4.

Figure 2. Plot of the reduced function P (α) as a function of the coefficient

of restitution α in the three-dimensional case for σ1 = σ2, x1 = 0.2, and

three different values of the mass ratio: (a) m1/m2 = 0.5, (b) m1/m2 = 2

and (c) m1/m2 = 4.
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Figure 3. Same as in Figure 2, but for the reduced function Q(α).

Figure 4. Same as in Figure 3, but for the reduced function R(α).

6. Concluding Remarks

In this paper we have derived the hydrodynamic equations for a granu-

lar binary mixture from the Boltzmann kinetic theory for inelastic Maxwell

models (IMM). In the Boltzmann equation for IMM the collision rate of in-

elastic hard spheres (IHS) is replaced by an effective collision rate indepen-

dent of the relative velocity of the two colliding particles. This simplification

allows one to compute the velocity moments of the Boltzmann collision in-

tegrals without the explicit knowledge of the distribution functions. Thanks

to this property, the Navier-Stokes transport coefficients of the mixture and

the cooling rate have been exactly obtained in terms of dissipation and the

parameters of the mixture (masses, sizes, composition) [6]. These results

contrast with the ones previously derived for IHS, where the transport co-
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efficients were approximately determined by using the leading terms in a

Sonine polynomial expansion of the distribution functions.

The explicit knowledge of the transport coefficients and the cooling rate

allows one to study two different problems. As a first application, we have

performed an analysis of the linearized hydrodynamic equations around the

homogeneous cooling state. As in the monocomponent case for IHS [1],

our stability analysis shows that the homogeneous cooling state is unstable

to long enough wavelength perturbations and consequently becomes inho-

mogeneous for long times. Specifically, there are two shear modes and a

longitudinal mode which become unstable for small values of the wavenum-

ber. Therefore, small perturbations or fluctuations around the homogeneous

state that excite the above modes will grow exponentially. As a second ap-

plication of a hydrodynamic description, we have explored the breakdown

of the Onsager relations between transport coefficients associated with the

mass and heat fluxes of a granular mixture. For elastic systems, Onsager’s

reciprocity relations are a consequence of the fact that the mechanical equa-

tions of motion (classical as well as quantum mechanical) are symmetric with

respect to time inversion. This microscopic property leads to Onsager’s the-

orem. Given that the above time reversal invariance is broken in dissipative

systems, violation of Onsager’s theorem is expected for inelastic collisions.

Here, we have analyzed the effect of the dissipation on such a violation. Our

analysis shows that violation of Onsager’s relations in granular gases has ba-

sically three distinct origins. First, the deviation of the homogeneous cooling

state from the Gibbs state is responsible for the coefficients c1 and c2 [de-

fined by Eq. (A.20)] being different from zero. At a quantitative level, this

effect is relatively quite small. Second, the effect of collisional cooling occurs

through the presence of the cooling rate ζ. Finally, the effect of different

partial temperatures is expressed by the factors γr and θr in the different

terms involved in the calculation of the transport coefficients. Each one of

these effects is a different reflection of dissipation in collisions.

In summary, there is growing theoretical support for the usefulness of a

hydrodynamic description for granular systems under rapid flow conditions.

However, in spite of the similarities between granular and normal fluids, the

extension of properties of ordinary fluids to those with inelastic collisions

must be carried out with caution. As shown here, the homogeneous (cooling)

state is unstable to long wavelength perturbations and the familiar Onsager

relations do not apply. These are some examples which makes these systems

quite different from gases of elastic particles, like molecular gases.
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Appendix. Explicit Expressions of the Transport Coefficients

In this Appendix we display the expressions of the transport coefficients

{D,Dp,D
′,D′′, κ, λ, η} defining the mass flux (21), the heat flux (22), and

the pressure tensor (23). Let us consider first the coefficients associated with

the mass flux. The expressions of the coefficients D′, Dp and D are given,

respectively, by [6]

D′ = − ζ∗

2ν∗
Dp, (A.1)

Dp =
n1T

ρν0

(
γ1 −

µ

x2 + x1µ

)(
ν∗ − 3

2
ζ∗ +

ζ∗2

2ν∗

)−1

, (A.2)

D =
ρT

m1m2ν0

[(
∂

∂x1
x1γ1

)

p,T

+

(
∂ζ∗

∂x1

)

p,T

(
1− ζ∗

2ν∗

)
ρν0

p
Dp

](
ν∗− 1

2
ζ∗

)−1

,

(A.3)

where

ν0 =
Ωd

4
√

π
nσd−1

12 v0, v0 =

√
2T

m1 + m2

m1m2
. (A.4)

In these equations, µ = m1/m2 is the mass ratio, ζ∗ ≡ ζ/ν0, and we have

introduced the (reduced) collision frequency

ν∗ =
4

d
(x2µ21 + x1µ12)

(
θ1 + θ2

θ1θ2

)1/2

(1 + α12), (A.5)

where θ1 = 1/(µ21γ1) and θ2 = 1/(µ12γ2). The temperature ratio γ ≡ T1/T2

is determined from the condition ζ1 = ζ2 = ζ. In reduced units, the cooling

rate ζ∗1 ≡ ζ1/ν0 is given by

ζ∗1 =
2
√

2

d
x1

(
σ1

σ12

)d−1

θ
−1/2
1 (1 − α2

11)
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+
8

d
x2µ21

(
θ1 + θ2

θ1θ2

)1/2

(1 + α12)

[
1 − µ21

2
(1 + α12)

θ1 + θ2

θ2

]
, (A.6)

while the expression of ζ∗2 ≡ ζ2/ν0 can be easily obtained from (A.6) by the

exchange 1 ↔ 2. It must be noted that ζ∗ depends explicitly on x1 and

also implicitly through its dependence on the temperature ratio γ. Since

j1 = −j2 and ∇x1 = −∇x2, it is expected that D is symmetric with respect

to exchange of particles 1 and 2 while Dp and D′ are antisymmetric. This

can be easily verified by noting that x1γ1 + x2γ2 = 1.

The case of the heat flux is more involved. The transport coefficients

D′′, κ and λ are given by

D′′ = D′′
1 + D′′

2 , κ = κ1 + κ2, λ = λ1 + λ2, (A.7)

where

D′′
r =

n

(m1 + m2)ν0
D′′∗

r , κr =
T

(m1 + m2)ν0
κ∗

r , λr =
nT

(m1 + m2)ν0
λ∗

r .

(A.8)

By using matrix notation, the coupled set of six equations for the unknowns

{D′′∗
1 ,D′′∗

2 , κ∗
1, κ

∗
2, λ

∗
1, λ

∗
2} (A.9)

can be written as

Λσσ′Xσ′ = Yσ. (A.10)

Here, Xσ′ is the column matrix defined by the set (A.9) and Λσσ′ is the

matrix

Λ=





ν∗
11− 3

2ζ∗ ν∗
12 −

(
∂ζ∗

∂x1

)

p,T
0 −

(
∂ζ∗

∂x1

)

p,T
0

ν∗
21 ν∗

22− 3
2ζ∗ 0 −

(
∂ζ∗

∂x1

)

p,T
0 −

(
∂ζ∗

∂x1

)

p,T

0 0 ν∗
11 − 5

2ζ∗ ν∗
12 −ζ∗ 0

0 0 ν∗
21 ν∗

22 − 5
2ζ∗ 0 −ζ∗

0 0 ζ∗

2 0 ν∗
11 − ζ∗ ν∗

12

0 0 0 ζ∗

2 ν∗
21 ν∗

22 − ζ∗





,

(A.11)

where

ν∗
11 = −

√
2x1

(
σ1

σ12

)d−1

θ
−1/2
1

(1 + α11)

d(d + 2)
[α11(d + 8) − 5d − 4]



i

i

i

i

] HYDRODYNAMICS FOR INELASTIC MAXWELL MIXTURES 175

−4x2

(
θ1 + θ2

θ1θ2

)1/2

µ21
(1+α12)

d(d+2)
{µ21(1 + α12)[d+8−3µ21(1 + α12)]

−3(d + 2)}, (A.12)

ν∗
12 = −12x1

(
θ1 + θ2

θ1θ2

)1/2

µ12µ
2
21

(1 + α12)
3

d(d + 2)
. (A.13)

The elements of the column matrix Y are

Y1 = −m1m2ν0

ρT
D∆∗

12 +
d + 2

2
µ−1

12

∂

∂x1

[(
1 +

c1

2

)
x1γ

2
1

]

p,T
, (A.14)

Y2 =
m1m2ν0

ρT
D∆∗

21 +
d + 2

2
µ−1

21

∂

∂x1

[(
1 +

c2

2

)
x2γ

2
2

]

p,T
, (A.15)

Y3 = −ρν0

p
Dp∆

∗
12 +

d + 2

2

x1γ1

µ12

[
γ1

(
1 +

c1

2

)
− µ

x2 + µx1

]
, (A.16)

Y4 =
ρν0

p
Dp∆

∗
21 +

d + 2

2

x2γ2

µ21

[
γ2

(
1 +

c2

2

)
− 1

x2 + µx1

]
, (A.17)

Y5 = −ρν0

p
D′∆∗

12 +
d + 2

2

x1γ
2
1

µ12

(
1 +

c1

2

)
, (A.18)

Y6 =
ρν0

p
D′∆∗

21 +
d + 2

2

x2γ
2
2

µ21

(
1 +

c2

2

)
. (A.19)

Here, we have introduced the cumulants cr measuring the deviations of the

zeroth-order distribution functions f
(0)
r from a Maxwellian,

cr =
2

d(d + 2)

m2
r

nrT 2
r

∫
dvV 4f (0)

r − 2. (A.20)

The reduced quantities ∆∗
rs are given by

∆∗
12 = − 1√

2
x1

(
σ1

σ12

)d−1γ1

µ12
θ
− 1

2

1

(1 + α11)

d(d + 2)

[
α11(d

2−2d−8)+3d(d+2)
]

−2x2

(
θ1 + θ2

θ1θ2

) 1

2

µ21γ2
(1 + α12)

2

d
[d − 3µ21(1 + α12) + 2]

+2x1

(
θ1 + θ2

θ1θ2

) 1

2

γ1
(1+α12)

d

[
d+3µ2

21(1+α12)
2−6µ21(1+α12)+2

]
.

(A.21)

The corresponding expressions for ∆∗
21, ν∗

22 and ν∗
21 can be inferred from Eqs.

(A.12), (A.13) and (A.21) by exchanging 1 ↔ 2.
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The solution to Eq. (A.10) is

Xσ =
(
Λ−1

)
σσ′

Yσ′ . (A.22)

This relation provides an explicit expression for the coefficients D′′∗
r , κ∗

r

and λ∗
r in terms of the coefficients of restitution and the parameters of the

mixture.

Finally, the shear viscosity coefficient η can be written as

η =
nT

ν0
(η∗1 + η∗2) , (A.23)

where the expression of the (reduced) partial contributions η∗r is

η∗1 = 2
x1γ1(2τ

∗
22 − ζ∗) − 2x2γ2τ

∗
12

ζ∗2 − 2ζ∗(τ∗
11 + τ∗

22) + 4(τ∗
11τ

∗
22 − τ∗

12τ
∗
21)

. (A.24)

The quantities τ∗
11 and τ∗

12 are given by

τ∗
11 = 4

√
2x1

(
σ1

σ12

)d−1 (1 + α11)(d + 1 − α11)

d(d + 2)

+8x2
µ21(1 + α12)

d

(
θ1 + θ2

θ1θ2

)1/2 [
1 − µ21(1 + α12)

d + 2

]
, (A.25)

τ∗
12 = − 8x2

d(d + 2)

(
θ1 + θ2

θ1θ2

)1/2 ρ1

ρ2
µ2

21(1 + α12)
2. (A.26)

A similar expression can be obtained for η∗2 by just making the exchanges

1 ↔ 2.
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