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Summary.- The conditions under which the macroscopic models described by equations· of -
the type ~ = ljl(x) may be treated by Gibbs ensemble theory are studied, following the -
scheme proposed by Kerner. The general theory is applied to several well-known models -
existing in the literature. 

1.- Introduction.-

There exist in nature ensembles (populations 
containing several interacting species, political par 
ties, chemical components reacting in a coupled torm~ 
the nervous system, ... ) whose elements influence each. 
other by means of competition and cooperation proces­
ses. Starting from fundamental principles or us.ing Tn 
tuitive ideas, we can construct theoretical models -
describing the properties of a certain number of tho-
se natural ensembles. -

In the present paper we will consider macrosco­
pic models whose equations of motion are of the type 

x = l)J(x) 

where x = (x1, x2, .. ,xi, ... ) and x = dx/dt. The role 
of this equation in our problem is analogous to the -
role of Hamilton's equations in Classical Mechanics. 

The x's are macrocopic variables in the sense -
that they can be controlled in the experiments and, -
therefore, macroscopic information about them is avai 
lable. If we want to introduce in our model a descri:Q: 
tion of the fluctuations, we have two possibilities.­
First, we can consider that the equations of motion -
are valid for certain stochastic variables by just ad 
ding a fluctuating term whose avarage value is zero-:­
(Langevin type description). Or, second, we can consi 
der that the macroscopic variables (which define a ma 
crostate of the system) correspond to average value$""" 
of microscopic variables (which define a microstate -
of the system) and introduce an ensemble of microsta­
tes compatible with a given macrostate. This ensemble 
is characterized by the macroscopic information about 
the system and each microstate evolves in time accor­
ding to the equations of motion for the model. This -
second method is the one that will be followed in 
this paper. 

We are interested in the fluctuations appearing 
in a ~acroscopic system at equilibrium. We, thus, 
construct an appropiate ensemble to describe a static 
nary state. To parallel classical Statistical Mecha-=­
nics with the introduction of an equal a priori proba 
bilities postulate, we need to define a phase space,-:­
a Liouville theorem in this phase space (ax./ax. = 0) 
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and a constant of motion playing the role of a Hamil­
ton function. 

We then, admit that the macroscopic values co -
rrespond to the average values over the ensemble of -
the microscopic variables. 

This scheme was propos:e~?~~~:i~rKe? "(1957) and 
applied to Volterra's ecological model (Volterra, 
1931; Goel, Maitra and Montroll, 1971). 

The purpose of this paper is to investigate 
what kind of models (biological, biochemical, sociolo 
gical, ... ) allow a similar treatment, thus develo£_ -:­
ping Kerner's theory in a more general form .. 

The paper is planned as follows. Kerner's work 
is briefly described for reference purpose in Section 
II. In Section III the general theory is developped -
iand the conditions for the applicability of a stati~­
itical description are established~ Finally,in Section 
IV the theory is applied to several models and some -
conclusions are presented. 

II. Statical Mechanical Formulation of Volterra's mo-

del .-

Volterra's ecological model for two interacting 
species is described by the equations 

(la) 

(lb) 

where N
1 

represents the number of individuals of the 
prey specie~ and N2 the number of predators. The cons 
tants a1, a2, b1, b2 are assumed to be positive. 

Kerner (1957) showed the existence of a time in 
dependent function 

G(N1,N2) = (b2N1 - a2logN1) + (b1N2 - a1logN2) 

(2) 

This G is a constant of the motion described by Eq; -
(1). Furthermore, if we write the equations of motion 
in terms of a new set of variables xi = log Ni we can 
prove a Liouville's theorem in the x-space )phase sp~ 
ce). 

Kerner's (1957, 1971) idea consists in associa­
ting with each equilibrium macroscopic state (macros­
tate), an ensemble of accesible microstates, all of-­
them with the same probability (equal a priori proba­
bilities principle). Each microstate corresponds to-­
one of the possible sets of values {xi} compatible -
with the given value of G and is represented by a 
point in the phase space {x1, ... xn}. The ensemble is 
thus represented by a cloud of points in phase space. 
The density of· ~9i.l)~s_;:,i,_9,p~as_e space p(x1, ... ,xn) 
obeys a continuity equation, following from L iouvil -
le's theorem. If we now assume that time averages· of 
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a macroscopic system are identical with average va 
lues taken over the ensemble (ergodic hypothesis)-we 
can construct a "Statistical Mechanics" of the system 
and obtain a "thermodynamical" description of it. 

If the system is described by a microcanonical 
ensemble, the distribution function is p = Co(G-G

0
),-

where C is the normalization constant. If a canonical 
ensemble is used, then the distribution function is -
p = z-1exp(-G/8) where Z is the normalization cons 
tant and 8 is a parameter characterizing the equili -
brium between two systems in contact,playing the same 
role than temperature in Classical Statical Mecnanics 
Notice that the separability property of G in Volte -
rra's model is an exact property, not being necessary 
to assume the existence of a small G' taking care of 
the interaction between species, unlike what happens 
with the hamiltonian of an ideal system of particles. 
In the Volterra model, the fact that G is of the form 
given by Eq. (2) does not mean that the species do 
not interact. ,-

The average value of the function f(x 1 , ... ,xn) 
can be found using the expression 

/dx1 ... dxnp(x 1, ... ,xn)f(x1, ... ,xn) 
/dx1 ... dxnp(x1, ... ,xn) 

(3) 

Within the canonical ensemble (used by Kerner) we ob­
tain 

e (4) 

This result is analogous to the equipartition theo 
rem in Classical Statistical Mechanics. It shows up -
the mg,aning of e for a biological association. For 
the two interacting species case and using the facts 
that G is a constant of motion and that the variables 
x1,x2 verify Liouville's theorem, it is easy to prove 

that ~l = aG/ax2 and x2 = -aG/ax1 (notice the formal 
analogy with Hamilton's equations). Hence 

(5) 

The meaning of e can be understood by evalu.!!_ 
ting the average value of (aG/axi) 2. The result shows 
that e measures the mean square deviation of each of 
the populations from their stationary values. For 
e = 0, the biological association is in a stationary 
state, completely "quite". The moments of order p of 
the variables N1 and N2 are given by 

where ql -

P r(p + a2;e) 
q 

1 r(a2;e) (a/e)P 

r(p +a
1

e) 
qP -
2 r(a1;e)(a1te)P 

(6a) 

(6b) 

. '-•. -· ' ; ~~ ~· ,', . ·.: . ~: 

a2/b2 and q2 - ai/b1" ,"are the 'stationary 

values of the system (1) and r represents Euler's gam 
ma function. For e + 0 we obtain <N~> = <N.>P which -
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ensures the non-existence of fluctuations in that li­
mit. 

Using this procedure, Kerner found several 
.equipartition theorems, suitable for experimental ve­
rification; a "heat" flux theorem (this quantity is-­
conserved for an isolated association) between two -
weakly coupled associations with different temperatu­
res; a Dulong and Petit's law for the heat capacity;­
a law similar to the second law of Thermodynamics (ex 
pressing the tendency of an association towards a ma::­
ximum entropy equilibrium state); an equation of sta­
te, etc ... Therefore, Kerner's theory leads to a ther 
modynamical formulation of the biological association 
although we do not have an adequate experimental refe 
rence frame (R.M. May, 1974). 

III. General theory.-

In this section we investigate under what condj_ 
tions a system of two coupled differential equations 
can be treated by Kerner's statistical mechanical me­
thod. As we mentioned above, the two requirements are 
the existence of a constant of the motion and the ve­
rification of a Liouville theorem in some phase sp.!!_-­
ce. 

Let us start with the most general form of the 
equations of motion 

(la) 

(7b) 

where ~l and ~2 are arbitrary functions of N1 and 
N?. Let us assume that a constant of motion G exists. 
Tnen G(N

1
,N

2
) = O, or more explicitly 

The constants of the motion are the solutions of this 
linear and homogeneous first order partial differen -
tial equation. According to the theorem for the exTs­
tence and the uniqueness of partial differential eq~.!!_ 
tions (Elsgoltz, 1969), we can find a solution of Eq. 
(8) if ~1 (N 1 ,N2 ) and ~2 (N 1 ,N2 ) are continuous fun~ -
tions such that they do not vanish simultaneously in 
any point of the region Q < N. < 00 and their partial 
derivatives exist in that reg~on. In this case, the 
solution of (8) is obtained irom the solution of 

(9) 

If the solution of Eq. (9) is given by the cnaracte -
ristic curves ¢(N

1
,N

2
) = C, the general solution of -

Eq. (8) is then G = <l> [¢(N1,N2)] where <l> is some ar 
bitrary function. 

On the other ha"nd~·: Eqs. (7) must satisfy Li ouvi 
lle's theorem. This leads us to define new variables-:-
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In fact, it is easy to see that in the phase space de 
fined by N1 and N2, Liouville's theorem is verified~ 
just if N1 depends only on N2, and N

2 
depends only on 

N1, and that is a very particular situation. We, thus 
cnange to a new set of variables 

(lOa) 

(lOb) 

We want a~i/axi = 0 to be satisfied. Taking the time 
derivative of x1 and using Eqs. (7) we find 

On the other hand, we can write 

+ 

(13a) 

+ 

(13b) 

Then using the identity 

(14) 

we obtain 

Therefore, if we want Liouville's theorem 
d~l d~2 

(ax-= al("= 0) to be satisfied, the functions f 1 and 
1 2 

f2 must verify the following system of second order -
coupled partial differential equations 

Solving (16) is not an easy task. Furthermore, even -
if we are able to find a solution in some particular 
case, that solution might be not very useful, because 
it could lead to a very sophisticated change of varia 
bles and to a very difficult interpretation of the -:­
average values. Let us restrict ourselves, then, to a 
particularly simple case, although probably there are 
;ome other cases that could be analized in a simple -
fashion. Let us admit that f 1 and f 2 satisfy 

The system (16) takes the form 

2 d f 1 df1 aw1 
d N2 

W1 + -dN (-;;-N )N = O 
1 ° 1 2 1 

and from here we obtain 

d log fi 

~ ,Nl ••· 

( 18a) 

(18b) 

(19) 
; ,:, . 
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where fi ~ df1/dN 1. Taking the derivative with re~ -­
pect to N2, 

This last result indicates that ~l (and also ~2 ) must 
factorize in the form 

{20a) 

{20b) 

where the minus sign in (20a) has been introduced for 
convenience. Solving Eq. (19) we obtain the change of 
variables r· 

(21a) 

{21b) 

Table 1 

MODELS . Al (Nl) 

VOLTERRA Nl=Nl(al-blN2) Nl 

N2=-N2(a2-b2Nl) 

l'OWER • n 
Nl=Nl(al-blN2) Nl 

N2=-N2<a2-b2~> 

LOGARITHMIC N1=N1 (a1-b1 log N2 ) Nl 

N2=-N2 Ca2-b2 log N1 ) 

. N2 
SATURATION N1=N1<a1-b1 N +D> N, 2 .L 

N2=-N2<a2-b2N1) 

PLANT-HERBIVORE 
N1=a1-b1N2 1 

b2 N2 
N2=a2N

2
(1-

__ ) 
al 

COWAN N1=ca1 -b
1

N2 )N1 (1-N
1

) Nl (N1-l) 

N2=-(a2-b2N1 JN2 (1-N2 ) 

N =al-blN2 1 
GOODWIN 1 

Al+klN2 
N =-(a -b N.) 

2 2 2 1 

where c1 and c2 are some arbitrary co_nstants. 

Now, the constant of the motion can be easily -
obtained. Substitution of Eqs. (20) into Eqs. (7) -
leads to 

(22a) 

. 
[B2(N 2)/A2(N 2) J N2 = B2(N 2)B1(N1) (22b) 

and hence 

(23) 

The integration of Eq. (23) directly provides the 
constant of the motion 

We can also arrive to the same result by solving Eq. 
(9). 

B2(N2) A2 (N2) Bl (Nl) 

blN2-al N2 b2Nl-a2 

n 
blN2-al N2 b2~-a2 

b 1 log N2-a1 N2 b 2 log N1 -a 

N2 
b. N_, b_,N 1 -a_, -a, 

.L N2+D .L L L .L L 

N2 (1-
b2 N2 

a2 blN2-al --) 
al 

al-blN2 N2 (N
2
-l) a2-b2Nl 

blN2-al 1 b2Nl-a2 
Al+klN2 

... 
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MODELS 

1 VOLTERRA 

2 POWER 

.. 
3 LOGARITHMIC 

4 SATURATION 

5 PLANT-HERBIVORE 

6 COWAN 

7 GOODIHN 

J.J. BREY, A. ALVAREZ AND A. SANTOS 

<Np> 
1 

P r(p+a2;0) 
q 1 r(a2;e)(a2;0)P 

r(p/m+a2/m8) 
qP 
1 r(a2/m8)(a2/m8)p/m 

qi exp(8p2/2b2) 

qP 
p 

[l+(n-1)8/a2 J II 1 n=l 

P! (8/a2JP 

P p a2+(p-n)e 

ql n~l a2+(p-n)qle 

qP~-1/2 ~ (P)( 281q a )n/2r(n+l) 
1 n=O n 1 2 2 

TABLE 2: 

<Nl> s <N2> <N2> 

. 
ql 

5 
r(s+a1/8) 

q -2r(a1;0)(a1;e) 5 q2 

~----

r(l/m+a 2/m8) 
5 

-r(s/n+a1/n8) r(l/n+al/n8) 
ql · l/m q . - 12

r(a1/n8)(a 1/n8J 11" r ( a2/m8 )( a2/n8) 2 r(a1/n8)(a 1/n8) 5/n 

q1 exp (8/2b2) 

. ~-ql 

e/a2 

ql 

lr q1+(28/nb2) ~ 

q~ exp(es2;2b1) q2 exp ( 8/2b1) 

5 
s l+(n-1)8/a1 q2 q II·---·---

2n=l l-n8/(b1-a1J 
1-8/ ( b1 -a1) 

s 
q2 q2 

s a1+(s-n)8 
s II 

q2n=l a1+(s-n)q28 
q2 

s 
5 

s s-n (' l" q2 + 8k1fb1 q2 E (n)(-Al/klq2) .+Al/klq2 an 
n=O 

n m k1 e 
a = II [l ~ ] n m7J a1(1+A1;k1q2J 

by R.M. May (1976). 

The plant-herbivore model (G. Caughley, 1976) -
is used in ecological studies. N1 represents the veg~ 

tation and N2 the herbivorous population. The rate of 
renewal.of plants, a1 , is affected by the presence of 
animals whose population increase in counterbalanced 
by a term of self-regulation that depends inversely -
on a1. 

The last two models are not ecological ones, 
though they also admit a statistical mechanical trea! 
ment. Cowan's model (1968) describes the activity of 
the central nervous system due to interactions inside 
each nervous network and among them. Finally, Goo~ -
win's biochemical model (1963, 1970) describes co!!_ 
trol equations for the protein synthesis .. 

The results obtained for the different models -
are presented in Table 2 where qi represent the st~ -
tionary values of N .. In the plant-herbivore model, -

l 

N2, the number of herbivore~, has two stationary v~ -
lues: q2 (corresponding to N2 = -6'), and q2 (correspo!!_ 
~ing to N1 =/J), such that q2 > q2. Besides, the_re is 



i 

ON THE GIBBS ENSEMBLE DESCRIPTION 25 
not any stationary· value for N1. 

The moments of the distributions for each popu­
lation are also given in Table 2. From those values-;-­
we can find expressions for the average values of a.r.­
bitrary functions of Ni' using a series expansion. In 
the low temperature limit &+Owe find <Nip>=<Ni>P, n~ 
·mely, there are not fluctuations around the average -
values and the number of individuals is constant in -
all the syster.is forr:iino the·.ensemble. An exception of 
this result occurs in the plant-herbivore model where 

<NP1> = p\ <N1>P for any value of ·e. 'In particular for 
2 2 . : ·2 .· 

p=2 we have [ <Ni> - <N1> J /<.N 1> = 1. In other 
words, the fluctuations of the amount of vegetation -
around its average value is of the same order of ma_g_­
nitude as its average value. Therefore, in the l imH-
8+0 the fluctuations do not decrease relative to'the 
averages; both the average value and the fluctuations 
go to zero in the same way when 8+0. Furthermore, the 
herbivore population does not fluctuate for any value 
of 8. 

Let us also notice that the average value of -
each population dqes not in general coincide with the 
stationary value. This follows from the fact that the 
statistic31 variable is not always Ni' but a given -
function of Ni. 

The system of equations defining the plant-he.!:_­
bivore model has an exact solution N1(t) and N2(t). -
It is evident that a deterministic interpretation of 
this solution is neaningles·s·. In our treatment, where 
the equations represent the motion of microstates, e~ 
pressions for the fluctuations around average values 
are obtained. 

Due to the special form N2(N 2) of the equation 
of motion for the herbivore, the change of variables. 
suitable for the verification of Liouville''s theoreni 
is a linear function of time. Finally, let us notice 
that in Goodwin's model the new variable is N., ·becau 

1 -
se the equations of motion written in terms of Ni, al 
ready allow the verification of a Liouville theorem 
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