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ON THE INSTABILITY OF UNIFORM SHEAR FLOW UNDER
LONG WAVELENGTH PERTURBATIONS*

JOSE M. MONTANERO! AND ANDRES SANTOS!

1. Introduction. Uniform shear flow is considered as a prototype non-equilibrium
state used to analyze fluid properties outside the domain of linear response. In this
state, the only non-zero hydrodynamic gradient is OU, /0y = a, where U(r) is the flow
velocity and a is the constant shear rate. This is an idealized version of shear flow
between parallel plates; in a realistic shear flow (Couette flow), the velocity profile is
also linear but with density n and temperature T fields not uniform. The uniform
shear flow is generated by periodic boundary conditions in the local Lagrangian frame
(Lees-Edwards boundary conditions) [6], which do work on the system and lead to
a monotonous increase of temperature in time (viscous heating). This effect can be
accounted for by the introduction of a thermostat, so that a steady state is achieved.
These boundary conditions present important advantages from both theoretical and
simulation points of view; more specifically, the absence of a hydrodynamic boundary
layer and the possibility of emulating bulk effects for small real systems. The uniform
shear flow has been studied by many different methods during the past fifteen years.
Rheology and transport far from equilibrium have been analyzed at a fundamental
level [3]. In addition, molecular dynamics simulations at finite densities have revealed
a transition from fluid symmetry to an ordered state at sufficiently high shear rates
[2]. Although its physical mechanism is still not well understood, this transition has
been attributed to a short wavelength hydrodynamic instability.

Our objective here is to review recent work showing that uniform shear flow is also
unstable at sufficiently long wavelengths for any finite value of the shear rate. First, a
hydrodynamic linear analysis of the Navier—Stokes equations demonstrates that there
is a critical wavevector, k.(a), such that for k < k.(a) perturbations around uniform
shear flow grow exponentially in time [4]. This qualitative result applies without
restriction to the atomic force law, density, or temperature. On the other hand, the
hydrodynamic equations derived from a low density kinetic model confirm this result
for states far from equilibrium [5]. And finally, numerical solution of this kinetic model
obtained via Monte Carlo simulation shows a transition from uniform shear flow to a
non-steady spatially inhomogeneous state [8].

2. Stability analysis. The Navier-Stokes equations are obtained from the ex-
act conservation laws for the average mass, energy, and momentum densities, together
with the linear (approximate) constitutive equations for the associated fluxes, namely,
Fourier’s law and Newton’s viscosity law for the heat and momentum fluxes, respec-
tively. These equations correctly describe the dynamics of a fluid close to equilibrium
and on sufficiently large space and time scales. In particular, the Navier—Stokes equa-
tions linearized about the reference macroscopic state of uniform shear flow describe
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how small perturbations of the velocity, temperature, and densities fields evolve for
small values of the shear rate a. To simplify the analysis and to focus on the instability,
the following is restricted to the special case k, = k, = 0, i.e., spatial perturbations
only along the velocity gradient. Moreover, the detailed form of the thermostat is not
required at this level. Direct calculation demonstrate that for any fixed and finite a
and for sufficiently small k& (k < k.(a)) there exist unstable modes which monoton-
ically grows in time [4]. This statement holds for any atomic interaction potential,
density, or temperature. The details of the calculation can be found in [8].

The above results apply only for small values of the shear rate a. The stabil-
ity analysis can be extended to larger shear rates using the hydrodynamic equations
derived from a more fundamental kinetic theory. In this context, the Boltzmann
equation for the one-particle velocity distribution function f(r,v,t) provides the ad-
equate framework for studying nonequilibrium phenomena in dilute gases, but the
intricacy of its collision term has made the search for explicit solutions a formidable
task. In particular, the full velocity distribution function is not known for uniform
shear flow. On the other hand, the nonlinear BGK model is a good approximation of
the Boltzmann equation, even far from equilibrium. In addition, the exact stationary
solution for uniform shear flow in presence of a thermostat has been obtained [9], and
a variant of the Chapman-Enskog method can be used to study normal solutions for
states near uniform shear flow. For this state the BGK equation reads

(2.1) (i?at - aVy% - oz(a)aiv -V) flr,v,t) = —v[f(r,v,t) — fo(r,v,t)] .

Here V is the peculiar velocity, V = v — U, «a(a) is a constant (Gaussian) thermostat
parameter, f; is the local equilibrium distribution, and v is an average collision rate.
In reference [5], the generalized hydrodynamic equations linearized about the reference
state are derived for the case of Maxwell molecules (¢(r) ~ r~%). The results are now
valid to order k2. A long wavelength instability for any value of a is found again.

3. Monte Carlo simulation. To confirm the stability analysis based on the
BGK equation, a Monte Carlo simulation can be used to numerically solve the kinetic
model. The simulation will also allow us to investigate the asymptotic state of the
system. This technique is a variant of Bird’s direct simulation method [1], and its
reliability to reproduce the exact time evolution of the velocity distribution has been
clearly assessed. In fact, there have been several accurate tests of this method for
uniform shear flow far from equilibrium [7]. In the simulation, the volume of the
system is divided into cells of a typical size much smaller than the mean free path. At
t = 0, N particles are introduced with positions and velocities sampled statistically
from a specified initial distribution function. Time is advanced in discrete steps
At much smaller than the mean free time. The free motion and the collisions are
uncoupled over the interval At. In the streaming stage, all the particles are displaced
according to their velocity components. Those particles crossing the boundaries are
reentered according to the boundary conditions. Before proceeding to the next free
displacement, a representative set of collisions is computed in each cell. The velocity
of each particle p is replaced with a probability v(n,, T,) At by a new velocity sampled
from the local equilibrium distribution f;({np,T,, Up};v). Here, ny, Tp,, and U, are
the density, temperature, and flow velocity in the cell containing particle p. The whole
process is iterated for many time steps and the computed quantities are averaged over
an ensemble of different replicas.
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Fic. 3.1. Plot of U, (t) and 5(7y (t). The solid lines are simulation results and the dashed lines
correspond to the hydrodynamic analysis.

Henceforth, we take v; ! and /2kpTs/m as units of time and speed, respectively.
Here, m is the mass of the particle and the subscript s refers to quantities in the
reference state of uniform shear flow. In our simulations we have considered a system
of size L = 27/k, with k = 0.1, along the y-direction at a shear rate a = 0.5. This
corresponds to conditions for which the hydrodynamic equations are unstable [5]. At
y = +£L/2 the Lees-Edwards (periodic) boundary conditions [6] were used to drive the
shear flow. One local and two global (Gaussian) thermostats were implemented in the
simulations. The local thermostat was chosen such that all viscous heating propor-
tional to perturbations in the density and temperature fields also were compensated.
For the first global thermostat, the parameter o was defined as in the reference state,
ie., a = —aPs,,/2K,, where P; ,, and K, are the zy stress tensor element and
the kinetic energy density in the uniform shear flow, respectively. The second global
thermostat rescales the velocity of every particle in each time step, maintaining the
average temperature constant (as usually done in molecular dynamics). Both theory
and Monte Carlo simulations indicate that the details of the perturbed dynamics de-
pend on the thermostat used, but the mechanism of the instability is insensitive to its
choice. Consequently, only the results using global thermostats are presented here. At
t = 0, the particle velocities corresponding to the exact solution of (2.1) are modified
to introduce harmonic perturbations in the fields, §U(y,0), dn(y,0), 6T (y,0).

Figure 3.1 shows 0U,(t) = 6U,(—L/4,t) and 5ﬁy(t) = 0U,(—L/4,t) as functions
of time. The good agreement between the results obtained from the hydrodynamic
calculation and the Monte Carlo simulation demonstrates that the instability is not
a consequence of the assumptions behind the hydrodynamic analysis, and also that
these equations provide an accurate description of the initial stage of the instability.

Simulations performed for much longer times show that, after a transient period of
length ¢ ~ 100, a stable oscillatory state behavior of the hydrodynamic fields appears,
suggesting the wave character of the asymptotic state. The period of the velocity
oscillations is 7 ~ 54, twice that of the scalar fields. We have also analyzed the
profiles of these quantities at relevant times. Figure 3.2 shows the spatial variation
of the velocity field at ¢’ =t —tq = 0,0.147,0.257,0.367, and 0.57, where ty has been



148 J. M. MONTANERO, A. SANTOS

05
85 %Y,
05
)
05
05
.05
o5
0
05
5

o

U,

ROk b

Y=

RO ROR
L]

Lo v v T v 1 g 795

-04 -02 00 02 04 -04 -02 00 02 04
\ yiL

Fic. 3.2, Ug(y,t’) and 6Uy(y,t’) as a function of y for (from top to bottom) t' =
0,0.147,0.257,0.367, and 0.57.

chosen to assure the transient time is over and also with the criterion that 60U, (t)=0
at ' = 0. Inspection of the figure indicates that several invariance relations are
verified [8].

4. Conclusions. In summary, the results reported here and in [4, 5, 8] clearly
show that the uniform shear flow is unstable at sufficiently large wavelengths without
restriction to the molecular interaction potential, density, or temperature. Previous
studies via simulation have not seen this instability due to finite system sizes. On
the other hand, the Monte Carlo simulation has been used to test the theoretical
predictions of the hydrodynamic equations, showing that they are accurate on the time
scale for which the linear analysis is valid. At longer times an asymptotic spatially
non-uniform state is identified. The evolution of its spatial structure can be described
as a periodic standing wave represented by the superposition of two symmetrical waves
travelling in opposite directions.

REFERENCES

[1] G. A. BIRD, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press,
Oxford, 1994).

[2] J. ERPENBECK, Phys. Rev. Lett. 52, 1333 (1984).

[3] D. J. EvaNs AND W. HOOVER, Ann. Rev. Fluid Mech. 18, 243 (1986); W. LOOSE AND S. HEss
in Microscopic Simulation of Complex Flows, M. Mareschal ed. (Plenum Press, New York,
1990), pp. 267-278.

[4] M. LEE, J. W. DUFTY, J. M. MONTANERO, A. SANTOS, AND J. F. LUuTsko, Phys. Rev. Lett. 76,
2702 (1996).

5] M. LEE AND J. W. DUFTY, Phys. Rev. E 56, 1733 (1997).

6] A. W. LEes aAND S. F. EDWARDSs, J. Phys. C 5, 1921 (1972).

7] J. M. MONTANERO, A. SANTOS, AND V. GARZzO, Phys. Fluids 8, 1981 (1996).

8] J. M. MONTANERO, A. SANTOS, M. LEE, J. W. DUFTY, AND J. F. LUTSKO, Stability of uniform
shear flow, Phys. Rev E, to appear.

[9] A. SANTOS AND J. J. BREY, Physica A 174, 355 (1991).



