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DIFFUSION COEFFICIENT ON STOCHASTIC CAYLEY TREES∗

LUIS ACEDO† AND ANDRÉS SANTOS†

Lorentz lattice gases have often been used as models to study diffusion phenomena
[4]. In these models, a particle moves ballistically in a d-dimensional regular lattice
until it collides with a fixed scatterer. If the particle is moving along the direction j
and hits a scatterer of type a, it has a probability Waij of being deflected along the
direction i. These scatterers, usually point-like, are placed randomly on the sites of the
lattice according to the set of densities ρa (

∑
a ρa = ρ). The statistical quantities of

interest are defined as an average over all trajectories in a given quenched configuration
of scatterers, followed by an average over all of these configurations. To fix ideas, let
us consider the rotator model on a square lattice, so that the particle velocity is a
vector taken from the set of four unit vectors connecting every site with its nearest-
neighbors. In it, a fraction xR of the scatterers are stochastic right rotators, a fraction
xL are stochastic left rotators, and a fraction xB = 1 − xR − xL are deterministic
backscatterers. When the particle collides with a right (left) rotator, it is deflected to
the right (left), transmitted, deflected to the left (right), or reflected with probabilities
α1, α2, α3, and β = 1− α1 − α2 − α3, respectively. If the collision takes place with a
pure backscatterer, the particle is reflected with a probability 1.

These models have usually been studied in the zero density limit, ρ → 0. In
this limit, all the trajectories are loopless structures called Cayley trees [1] but, in
spite of this simplification, a general analytical solution for the statistical quantities
of interest in this problem, such as the diffusion coefficient, remains unknown. The
main reason for such a mathematical difficulty is the existence of strong correlation
effects caused by the collisions of the moving particle with scatterers visited before.
These recollisions are unavoidable (even in the zero density limit) because any reflected
particle must collide with a previously visited scatterer as a consequence of the discrete
nature of the velocity space. The Boltzmann approximation, which ignores these
correlations, becomes very poor for these models and it is necessary to compute the
effect of these correlations if better predictions of the statistical quantities are required.

Nevertheless, some particular models have been exactly solved. One of these mod-
els is the Cayley tree with a single type of scatterers, whose diffusion coefficient was
analytically computed by van Beijeren and Ernst [7] by using an exact enumeration
of all returning trajectories. Very recently, van Beijeren [8] has also found an exact
expression for the diffusion coefficient on the Cayley tree with a mixture of determin-
istic rotators and pure backscatterers (the Cayley-tree version of the Gunn-Ortuño
model [5]).

A first attempt to incorporate correlation effects in the expression for the diffu-
sion coefficient was carried out by Ossendrijver, Santos, and Ernst [6] in the so-called
repeated ring approximation (RRA). These authors included the repeated ring colli-
sions (trajectories of the form A−A−A−A, corresponding to repeated visits of the
moving particle to the site A through paths of uncorrelated collisions) by proposing
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a corrected collision operator as follows:

Λ = −
∑

a

ρa {Ta + TaRTa + TaRTaRTa + · · ·} = −
∑

a

ρaTa

1−RTa
,(1)

where Ta = Wa − 1 and R is the ring operator. The element Rij represents the total
return probability with arrival velocity ci to a site visited before, when its departure
velocity was cj . By using standard techniques [6] of kinetic theory, the operator R
can be related to Λ and the corresponding matrix equation is then solved in a self-
consistent way. But the resulting predictions for the diffusion coefficient D are poor,
except for models with a mixture of symmetric scatterers (left and right rotators, for
example) and without pure backscatterers [1].

We have developed a mean-field theory for Cayley trees which predicts the exact
diffusion coefficient in the identical scatterer limit and gives a reasonable estimate for
any other model with a mixture of scatterers [2, 3]. More specifically, we propose a
mean-field expression for R as

R = 1 + X + X2 + . . . =
X

1−X
,(2)

where X is the matrix of first return probabilities. Then, the relevant eigenvalues of
R are r1 = r3 = −x/(1+x), where x is the probability of first return. Substitution of
this result into Eq. (1) gives us the eigenvalues λ1 and λ3 . The diffusion coefficient
is related to these eigenvalues by D = (1/4ρ)(λ−1

1 + λ−3
1 ). To calculate D from this

relation we still need an analytical or numerical estimate for the probability of first
return, x, since λ1 and λ3 depend on it. We have developed a mean-field theory for
x [2] and a series of improved numerical renormalization theories [3]. By using the
prediction of these theories for x as input in the expression for the diffusion coefficient,
we have found that the agreement with the simulation results for several rotator and
mirror models is excellent in the range xB < 0.4, although the agreement worsens
in the percolation region [3]. Nevertheless, our approximation predicts the diffusive
percolation threshold xc

B = 2/3, which agrees with the simulations. In contrast, the
repeated ring approximation always predicts a too small threshold xc

B = 1/3 for any
model with pure backscatterers in the square lattice.
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