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Abstract. The penetrable-sphere model has been introduced in the literature to describe the peculiar thermodynamic behavior
of some colloidal systems. In this model the interaction potential isφ(r) = ε > 0 if the two spheres are overlapped (r < σ )
andφ(r) = 0 otherwise (r > σ ). In this paper the shear viscosity, thermal conductivity, and self-diffusion coefficients of a
dilute gas of penetrable spheres are evaluated. It is found that the effective collision frequencyν(T∗) grows as

√
T∗ up to

T∗ ≡ kBT/ε ' 0.25, reaches a maximum atT∗ ' 0.415 and then decays asT∗−3/2 logT∗ for large temperatures. The results
are applied to the hydrodynamic profiles in the steady Fourier and Couette flows.

1. INTRODUCTION

Traditionally, the kinetic theory of gases has been applied to gases made of particles which interact according to
unboundedspherically symmetric pair potentials, such as hard spheres, power-law repulsive interactions, the square-
well model, or the Lennard–Jones potential [1]. Moreover, granular gases are usually modeled as constituted by
inelastic hard spheres. In the last decade, however, the equilibrium properties of fluids of particles interacting via
boundedpair potentials have been the subject of increasing interest, the Gaussian core model and the penetrable-
sphere model being among the most popular ones [2, 3]. These models have been proposed in the literature in
order to understand the peculiar behavior of somecolloidal systems, such as micelles in a solvent or star copolymer
suspensions. The particles in these colloids are constituted by a small core surrounded by several attached polymeric
arms. As a consequence of their structure, two or more of these particles allow a considerable degree of overlapping
with a small energy cost [2]. These are a few particular cases of systems defining what is commonly known as “soft
matter,” which has become an active field of research with interesting physical, chemical, and engineering applications.

While the equilibrium properties and phase diagrams of particles interacting through soft potentials have been
studied with great detail, the nonequilibrium transport properties of those systems seem to have received less attention.
The aim of this paper is to contribute to the understanding of the nonequilibrium properties of particles interacting via
bounded potentials by analyzing the transport coefficients of the penetrable-sphere (PS) model in the low-density
regime.

2. COLLISION PROCESS IN THE PENETRABLE-SPHERE MODEL

The PS interaction potential is defined as

φ(r) =
{

ε > 0, r < σ ,
0, r > σ .

(1)

Therefore, in this model the gas behaves as a hard-sphere (HS) gas in the low-temperature limit (T∗ ≡ kBT/ε → 0)
and as a collisionless gas in the high-temperature limit (T∗→ ∞). The Liouville operator and the Boltzmann–Lorentz
collision operator for this model have been derived in Refs. [4] and [5], respectively. The PS model should not
be confused with the Widom–Rowlinson (WR) model of interpenetrating spheres [6], which is thermodynamically
equivalent to a binary mixture of highly non-additive hard spheres. The transport properties of the WR model are
obtained in Ref. [7].

Before delving into the transport coefficients of the PS model, let us analyze its peculiar binary collision process.
As usual, we consider the equivalent one-body problem in which a projectile particle (with the reduced massµ = m/2
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FIGURE 1. (a) Sketch of the collision process wheng∗ > 1 andb∗ < n(g∗). The incoming incidence and refraction angles are
α = sin−1b∗ andβ = sin−1 [b∗/n(g∗)], respectively, while the outgoing angles areβ andα, respectively. Thus, the scattering angle
is χ = 2(β −α). This sketch actually corresponds tog∗ = 1.2 andb∗ = 0.3. (b) Different possible trajectories forg∗ = 1.1.

of the colliding pair) feels the central potentialφ(r) centered at the origin. The projectile approaches the “target”
with a (relative) speedg and an impact parameterb, being deflected after interaction with a scattering angleχ(b∗,g∗)
that depends on the reduced impact parameterb∗ ≡ b/σ and reduced speedg∗ ≡ g/

√
2ε/µ . Obviously, ifg∗ < 1, the

projectile does not have enough kinetic energy to “penetrate” into the core of the target and consequently it is deflected
exactly as if the target were a hard sphere; the associated scattering angle is thereforeχ(b∗,g∗) = π−2sin−1b∗. On the
other hand, ifg∗ > 1, the projectile traverses the core of the target moving with a (reduced) kinetic energyg∗2−1 and
eventually leaves the core along the scattering direction with the same speedg∗ as before collision. This penetration
process is analogous to the double refraction of light through a sphere made of a transparent material of relative
refraction indexn(g∗)≡

√
1−g∗−2 < 1. Figure 1(a) shows a sketch of a typical collision withg∗ > 1. The scattering

angle in this case isχ(b∗,g∗) = 2sin−1 [b∗/n(g∗)]−2sin−1b∗. However, the latter expression is valid only if the impact
parameter is sufficiently small, namely ifb∗ < n(g∗). Otherwise, the incidence angleα = sin−1b∗ is large enough as to
produce a “total reflection” effect, so the projectile is again deflected as if colliding with a hard sphere [cf. Fig. 1(b)].
In summary, the scattering angleχ(b∗,g∗) for the PS potential is given by

cosχ(b∗,g∗) = 2b∗2−1+
{

∆1(b∗,g∗), g∗ > 1 and0≤ b∗ ≤ n(g∗),
0, otherwise.

(2)

where

∆1(b∗,g∗) = 2
√

1−b∗2/n2(g∗)
[
2
(

b∗2/n(g∗)
)√

1−b∗2−
(

2b∗2−1
)√

1−b∗2/n2(g∗)
]
. (3)

At a given value of the (reduced) relative speedg∗ > 1, χ starts increasing withb∗ until it reaches a maximum value
χmax(g∗) = cos−1

(
1−2g∗−2) atb∗ = n(g∗), and decreases thereafter. Figure 2 showscosχ for a few cases.

From the scattering law one can obtain thedifferential cross section asB(χ ,g∗) = 1
2σ2|∂b∗2/∂ cosχ |. If g∗ < 1,

thenB(χ ,g∗) = 1
4σ2, as for hard spheres. Otherwise,

B(χ,g∗)/σ2 =

{
0, χ > χmax(g∗),
1
4 + 1

2

∣∣∣ ∂b∗2

∂ cosχ

∣∣∣
b∗<n(g∗)

, 0≤ χ < χmax(g∗), (4)

where
∣∣∣∣∣

∂b∗2

∂ cosχ

∣∣∣∣∣
b∗<n(g∗)

= (g∗2−1)
2
√

1+cosχ(2g∗2−1)+g∗
√

2(g∗2−1)
[
1+3cosχ−2(1−cosχ)2g∗2(g∗2−1)

]

4
√

1+cosχ
[
1+2(1−cosχ)g∗2(g∗2−1)

]2 .

(5)
Figure 3 shows the differential cross sectionB(χ ,g∗) for several values ofg∗ > 1. We observe thatB(χ ,g∗) = 0 for
χ > χmax(g∗), i.e. for cosχ < 1− 2g∗−2, takes the HS valueB(χ ,g∗) = 1

4σ2 at χ = χ−max(g∗) and monotonically
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FIGURE 2. Left panel: Plot ofcosχ(b∗,g∗) versusb∗2 for g∗ = 1.1, g∗ = 1.5, andg∗ = 2. Right panel:cosχ(b∗,g∗) versusg∗
for b∗ = 0.2, b∗ = 0.5, b∗ = 0.8, andb∗ = 0.9.
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FIGURE 3. Differential cross sectionB(χ,g∗)/σ2 versuscosχ for g∗ = 1.1, g∗ = 1.5, andg∗ = 2.

increases with decreasing scattering angle forχ < χmax(g∗), i.e. forcosχ > 1−2g∗−2. This implies that, as expected,
when the kinetic energy is much larger thanε most of the collisions are grazing. On the other hand, thetotal cross
section, which is given by the area below the curves in Fig. 3, is independent ofg∗ and hence it coincides with that of
HS, namely2π

∫ 1
1−2/g∗2 d(cosχ)B(χ,g∗) = πσ2.

3. TRANSPORT COEFFICIENTS

As is well known, the Chapman–Enskog method allows one to derive the Navier–Stokes transport coefficients from
the Boltzmann equation for a dilute gas in terms of the scattering law corresponding to the interaction potential of
interest [1]. For a single gas, the relevant transport coefficients are the shear viscosityη(T), the thermal conductivity
κ(T), and the self-diffusion coefficientD(T). In the first Sonine approximation, their expressions are [1]

η(T) =
5
8

kBT
Ω2,2(T)

, κ(T) =
15
4

kB

m
η(T), D(T) =

3
8

kBT
mnΩ1,1(T)

, (6)

where the collisional integralsΩk,`(T) are

Ωk,`(T) =

√
kBT
2πµ

∫ ∞

0
dye−y2

y2k+3Q`

(
y
√

2kBT/µ
)

, Q`(g) = 2π
∫ ∞

0
dbb

[
1−cos` χ(b,g)

]
. (7)

In the special case of hard spheres, one has

ΩHS
k,` (T) = πσ2 (k+1)!

2

1− 1+(−1)`

2(1+`)√
2πµ/kBT

, (8)
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ηHS(T) =
5
16

√
mkBT/π

σ2 , κHS(T) =
15
4

kB

m
ηHS(T), DHS(T) =

3
8

√
kBT/mπ
nσ2 . (9)

Now we particularize to penetrable spheres. In that case, it is convenient to define thereducedintegralsΩ∗
k,`(T

∗) =
Ωk,`(T)/ΩHS

k,` (T), so that

ηHS/η = Ω∗
2,2(T

∗), κHS/κ = Ω∗
2,2(T

∗), DHS/D = Ω∗
1,1(T

∗). (10)

The functionsΩ∗
k,`(T

∗) can be expressed as

Ω∗
k,`(T

∗) = 1− 4

(k+1)!
[
1− 1+(−1)`

2(1+`)

]
∫ ∞

1/
√

T∗
dye−y2

y2k+3R̀
(

y
√

T∗
)

, (11)

where we have called

R̀ (g∗) =
∫ n(g∗)

0
db∗b∗∆`(b∗,g∗), ∆`(b∗,g∗)≡ cos` χ(b∗,g∗)−

(
2b∗2−1

)`
. (12)

In particular, taking into account Eq. (2) and setting` = 1 and` = 2, one gets

R1(g∗) =
1

6g∗4

(
g∗2−1

)(
g∗2 +2

)
+

1

12g∗3

(
g∗2−1

)−1/2(
4g∗4−4g∗2 +3

)

+
1

8g∗4

(
g∗2−1

)−1(
2g∗2−1

)
ln

(
2g∗2−2g∗

√
g∗2−1−1

)
, (13)

R2(g∗) =
1

15g∗6

(
g∗2−1

)(
3g∗4 +4g∗2−12

)
+

1

60g∗5 (g∗2−1)−3/2
(

8g∗8−16g∗6 +58g∗4−50g∗2 +15
)

+
1

8g∗6

(
g∗2−1

)−2(
2g∗2−1

)(
2g∗4−2g∗2 +1

)
ln

(
2g∗2−2g∗

√
g∗2−1−1

)
. (14)

Insertion of Eqs. (13) and (14) into Eq. (11) givesΩ∗
1,1(T

∗) andΩ∗
2,2(T

∗) in terms of quadratures that need to be
evaluated numerically. On the other hand, for high temperatures (T∗À 1) the integral in Eq. (11) is dominated by the
behavior ofR̀ (g∗) for g∗À 1. In that limit Eqs. (13) and (14) become

R1(g∗) =
1
2
− 1+4ln(2g∗)

8g∗4 +O
(

g∗−6 lng∗
)

, R2(g∗) =
1
3
− 1+4ln(2g∗)

4g∗4 +O
(

g∗−6 lng∗
)

. (15)

This yields the followingasymptoticapproximations:

Ω∗
1,1(T

∗)≈ 1−e−1/T∗
(

1+
1

T∗

)
− Ei(−1/T∗)

4T∗2 , (16)

Ω∗
2,2(T

∗)≈ 1−e−1/T∗
(

1+
1

T∗
− 4ln2−1

8T∗2

)
− Ei(−1/T∗)

4T∗2 , (17)

where Ei(z) = −Γ(0,−z) = −∫ ∞
−zdt t−1e−t is the exponential integral function,Γ(n,z) being the incomplete gamma

function. Quite interestingly, the approximate expressions (16) and (17) agree almost perfectly for the whole temper-
ature domain with the results obtained from Eq. (11) by numerical integration, as shown in the left panel of Fig. 4. As
usual, we can introduce aneffectivecollision frequency associated with the shear viscosity as [1]ν(T) = nkBT/η(T).
Therefore,

ν(T∗) = ν0
√

T∗Ω∗
2,2(T

∗), ν0 ≡ 16
5

nσ2
√

πε/m. (18)

In the case of hard spheres,νHS(T∗) = ν0
√

T∗. The right panel of Fig. 4 showsν(T∗)/ν0 for PS and HS. We observe
that up toT∗' 0.25both systems have practically the same collision frequency. For larger temperatures, however, both
collision frequencies strongly differ each other. While in the HS case the mean free path is independent of temperature
and henceνHS(T∗) grows proportionally to the thermal velocity, penetrability effects in the PS model become more
and more important forT∗ & 0.25. As a consequence,ν(T∗) reaches a maximum valueνmax' 0.548ν0 atT∗ = T∗max'
0.415, and then decays for asymptotically large temperatures asν(T∗) ≈ T∗−3/2

(
1
4 lnT∗+ 3

8− 1
4γ + ln

√
2
)

, where

γ ' 0.577216is Euler’s constant.
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FIGURE 4. Left panel:Ω∗
1,1(T

∗) andΩ∗
2,2(T

∗) as obtained from Eq. (11) by numerical integration (solid lines) and from the
approximate expressions (16) and (17) (dashed lines). The numerical and approximate curves are practically indistinguishable in
the case ofΩ∗

2,2(T
∗). Right panel: Effective collision frequencyν(T∗)/ν0 for the PS model (solid line) and for HS (dashed line).

4. APPLICATION TO THE FOURIER AND COUETTE FLOWS

Let us compare now the temperature and velocity profiles for HS and PS in the steady Fourier and Couette flows
[8]. In the planar Fourier flow the gas is enclosed between two parallel plates at rest located aty = 0 and y = L
and kept at temperaturesT1 andT2, respectively. In the steady state described by the Navier–Stokes equations the
temperature profile is the solution toν−1(T)∂T/∂y = const. Neglecting boundary layer effects and applying the
boundary conditions, the implicit solution is

y/L =
[∫ T∗2

T∗1
dθ ν−1(θ)

]−1∫ T∗

T∗1
dθ ν−1(θ). (19)

In the case of hard spheres, this yieldsT∗(y) = T∗1
[
1+

(√
T∗2 /T∗1 −1

)
y/L

]2
.

In the planar Couette flow the plates aty = 0 andy = L move along thex-direction with velocities−U and+U ,
respectively, but otherwise they are kept at the same temperatureT0. According to the Navier–Stokes equation in the
steady state the temperature and velocity fields are related [8, pp. 213–222] byT∗(u∗x) = T∗0

[
1+M2(1−u∗x

2)
]
, where

u∗x = ux/U is the reduced flow velocity andM ≡
√

2mU2/15kBT0 is a sort of Mach number. The velocity profile obeys
the conditionν−1(T(ux))∂ux/∂y = const, whose implicit solution (again neglecting boundary effects) is

y/L =
[∫ 1

−1
dwν−1(T∗(w))

]−1∫ u∗x

−1
dwν−1(T∗(w)). (20)

For hard spheres,u∗x(y) =
√

1+M−2sin
[
(2y/L−1)sin−1(1+M−2)−1/2

]
.
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The temperature and velocity profiles corresponding to HS and PS are compared in Fig. 5 for representative
examples of Fourier and Couette flows. Note that in the region whereT∗ > T∗max' 0.415, the PS and HS systems
have opposite curvatures for the temperature (Fourier) and velocity (Couette) profiles.

5. CONCLUDING REMARKS

The aim of this paper has been to derive and analyze the Navier–Stokes transport coefficients of a dilute gas made
of penetrable spheres (PS). Apart from its ability to describe qualitatively the effective interactions in some colloidal
systems, the PS model is also interesting as a crossover between a gas of hard spheres (HS) in the low temperature
limit (T∗→ 0) and a gas of non-interacting particles in the opposite limit (T∗→ ∞). Although the total cross section
of PS at any temperature is the same as that of HS, the effective collision frequencyν(T∗) associated with the shear
viscosity and thermal conductivity exhibits a non-trivial temperature dependence. As expected on physical grounds,
ν(T) ranges fromν(T∗)→ νHS(T∗) ∝

√
T∗ whenT∗ → 0 to ν(T∗)→ 0 whenT∗ → ∞, so it presents a maximum

valueνmax at a certain temperatureT∗max. On the other hand, plausible physical arguments do not suffice to answer
more specific questions, for instance: (i) at which threshold temperatureT∗th doesν(T∗) start to deviate significantly
from νHS(T∗)?; (ii) what is the value ofT∗max?; (iii) how small isνmax as compared withνHS(T∗max)?; (iv) at which
temperatureT∗1/2 > T∗max the collision frequency has decayed to half its maximum value?; (v) how is the asymptotic
behavior ofν(T∗) in the high-temperature limit?

The evaluation of the transport coefficients and ofν(T∗) has required the detailed analysis of the collision process.
In principle, the collision integrals must be evaluated numerically [cf. Eqs. (11)–(14)], but excellent approximations
are provided by Eqs. (16) and (17). The answer to the questions posed above are: (i)T∗th ' 0.25; (ii) T∗max' 0.415;
(iii) νmax/νHS(T∗max)' 0.850; (iv) T∗1/2 ' 1.619; (v) ν(T∗)≈ 1

4T∗−3/2 lnT∗ for T∗→ ∞. The contrasting temperature
dependencies of the PS and HS transport coefficients forT∗ > T∗th ' 0.25have been illustrated here by comparing the
respective hydrodynamic profiles for the Fourier and Couette flows.
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