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Abstract. The flow characterized by a linear longitudinal velocity field ux(x,7) = a(r)x, where a(r) = ap /(1 + apt), a uniform
density n(r) o a(t), and a uniform temperature 7'(r) is analyzed for dilute granular gases by means of a BGK-like model
kinetic equation in d dimensions. For a given value of the coefficient of normal restitution ¢, the relevant control parameter
of the problem is the reduced deformation rate a*(¢) = a(r)/v(t) (which plays the role of the Knudsen number), where

v(t) < n(t)/T(t) is an effective collision frequency. The relevant response parameter is a nonlinear viscosity function n*(a*)
defined from the difference between the normal stress Py (¢) and the hydrostatic pressure p(r) = n(¢)7 (¢). The main results
of the paper are: (a) an exact first-order ordinary differential equation for n*(a*) is derived from the kinetic model; (b)
a recursion relation for the coefficients of the Chapman-Enskog expansion of 1*(a") in powers of a* is obtained; (c) the
Chapman-Enskog expansion is shown to diverge for elastic collisions (o = 1) and converge for inelastic collisions (¢ < 1),
in the latter case with a radius of convergence that increases with inelasticity; (d) a simple approximate analytical solution for
n*(a*), hardly distinguishable from the numerical solution of the differential equation, is constructed.
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INTRODUCTION

A granular gas is a large collection of mesoscopic or macroscopic particles which collide inelastically and are
maintained in a fluidized state. The prototypical model of a granular gas consists of a dilute system of smooth inelastic
hard spheres characterized by a constant coefficient of normal restitution « < 1 [1]. A kinetic theory description based
on the Boltzmann equation for inelastic collisions has proven its relevance for the understanding of the main properties
of dilute granular gases, such as non-equipartition of energy and high-velocity tails in uniform states or non-Newtonian
transport properties in non-uniform steady states.

The kinetic theory definition of nonequilibrium temperature 7 as a measure of the mean kinetic energy (in the
Lagrangian frame) per particle can be directly extended to granular gases (except that it is customary to measure 7' in
energy units, i.e., to take the Boltzmann constant equal to unity). The key difference with respect to normal gases is
that the inelastic character of collisions gives rise to an energy sink, so that the temperature change per unit time due
to collisions is 7| . = —& T, where { is the so-called cooling rate. It is given (in the Maxwellian approximation) by

d+2 5 8md-1)/2 i [T
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where d is the dimensionality of the system, n is the number density, ¢ is the diameter of a sphere, and m is its
mass. Application of the Chapman—Enskog (CE) method to the inelastic Boltzmann equation allows one to derive the
Navier—Stokes (NS) constitutive equations for inelastic hard spheres [2]. In particular, Newton’s law reads

du; du; 2
Pyj = pdij —1ins <8xj + axj - 3V~U5ij> ; @

where P;; is the pressure tensor, p = (1/d)TrP = nT is the hydrostatic pressure, u is the flow velocity, and nys is the
NS shear viscosity. The latter quantity is given, in the simplest Sonine approximation, by [2]
nT 1+« d—1
NS g > { 2d( )} 3)
The uniform longitudinal viscous flow is an unsteady compressible flow defined by a linear longitudinal velocity
field, a uniform density, and a uniform temperature [3]. The exact balance equations for mass and energy yield

u(x,t) =a(t)x, n(t)= Z_E“(’)? alt) 1j(;ot7
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FIGURE 1. Sketch of the uniform longitudinal flow for ap > 0 (left) and ag < 0 (right).
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This simple flow is also known as homo-energetic extension and, along with the uniform shear flow [4, 5], is a
particular case of a more general class of homo-energetic affine flows characterized by 92u;/dx;dx; = 0 [4]. The
initial longitudinal deformation rate rate ag is the only control parameter determining the departure of the fluid from
the homogencous state, thus playing a role similar to that of the shear rate in the uniform shear flow state. On the other
hand, in contrast to the uniform shear flow, the sign of ag plays a relevant role and defines two distinct situations (see
Fig. 1). The case ag > 0 corresponds to a progressively slower expansion of the gas from the plane x = 0 into all of
space. On the other hand, the case ag < 0 corresponds to a progressively faster compression of the gas towards the
plane x = 0. The latter takes place over a finite time period t — |ao|~!. However, since the collision frequency rapidly
increases with time, the finite period ¢ = |ag| ™' comprises an infinite number of collisions per particle (see below).
According to Newton’s law (2), the normal stress P, in the uniform longitudinal flow is given by

wrn _ Pa(t) _,d-1 a*(t) . @x@ 1
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where {* = {/v is a dimensionless constant (except that it depends on d and «). Note that 7, is the ratio between
the “longitudinal” temperature 7, = Py./n and the true granular temperature 7. The absolute value of the reduced
longitudinal rate a* plays the role of the Knudsen number of the problem. The linear relationship (6) between 7;* and
a* is expected to hold for small values of |¢*| only. More in general, one can define a (reduced) nonlinear viscosity
function 11*(a*) by the relation

10 = 1-2 @ W) @), Jimn*(a’) = s =eo @

The expansion of n1*(a*) in powers of a* yields the CE series
(@)=Y, aa™, @®)

=0

where ¢ is a Burnett coefficient, ¢, is a super-Burnett coefficient, and so on.

In this paper a kinetic theory description of the longitudinal viscous flow defined by Eqs. (4) and (5) is presented.
As will be shown, a steady-state value of the temperature is reached only if g < 0. The main result is the derivation of
a nonlinear first-order differential equation for n*(a*). This equation allows one to get the CE coefficients ¢ of Eq. (8)
in a recursive way. The results show that the CE series is convergent for inelastic hard spheres, while it diverges in the
elastic case. The viscosity function 11*(a*) for any value of the inelasticity parameter & can be obtained by numerically
solving the differential equation with appropriate boundary conditions. Finally, a simplified analytical solution hardly
distinguishable from the numerical solution is proposed.

KINETIC MODEL

In order to obtain explicit results, it is convenient to consider the following BGK-like kinetic model [6] of the inclastic
Boltzmann equation:
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where f is the velocity distribution function and f,q is the local version of the homogeneous cooling state distribution
[1]. The NS viscosity coincides with that of the Boltzmann equation if v is given by Eq. (3). However, a simpler
and more consistent choice is v = £ (1+ a)w [7], so that {* = [(d +2)/2d](1 — ). In the uniform longitudinal flow
the velocity distribution function f(x,v,) becomes spatially uniform when the velocities are referred to a Lagrangian
frame moving with the flow, i.e., f(x,v,1) = f(V,1), where V= v —u(x, 1) is the peculiar velocity. After simple algebra,
Eq. (9) can be rewritten as

(ar_aOaVXVx)fz -V (7_7hcs) +%(9V (Vf) ’ (10)
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V.0 = v, V(= ov, T = 5L, t=ay' (1t a). (11

Equation (10) shows that the original uniform longitudinal flow problem can be mapped onto the equivalent problem

of a uniform gas with a velocity distribution £ and subject to the action of a non-conservative force —magV,X. The

density associated with f is the initial density no and thus remains constant. In fact, f is the probability distribution

function normalized to ng. The time variable T = [; d’n(t")/no is a nonlinear measure of time scaled with the number

density. It is unbounded even if ag < 0 since in that case T — oo when t — |ap| ™.

Taking velocity moments on both sides of Eq. (10) one gets

2 _ _
T+ ZaoTy = =TT, T+ 2a0Ty = =V (T,=T) =T, (12)

If ap > 0, d; T < 0 even in the elastic case ({ = 0). As a consequence, the gas cools down and the reduced longitudinal
rate a* = a/v ~ 1/y/T increases without bound, i.e., lim; ...a*(7) = oo. On the other hand, in the compression
case (ap < 0) the “viscous heating” term (2/d)|ao|T; competes with the “inelastic cooling” term {7, so that the
temperature either decreases or increases with time depending on whether in the initial state one has {T > (2/d)|ao|Tx
or §T < (2/d)|ao| Ty, respectively. In either case, a steady-state temperature Ty is eventually reached when both effects
cancel each other. Therefore, if ap < 0 one has lim;_...a*(7) = a!. The steady-state values for the reduced longitudinal
rate ¢*, the temperature ratio Ty, /T, and the reduced viscosity n* can be easily obtained from Eq. (12) and are given
by
* * *
R A S R L S (13)
27 1+dg* < (1+8*)?
Comparison between 1) and the NS value ¢ in Eq. (7) shows that the steady state is inherently non-Newtonian, even
in the quasi-elastic limit {* < 1, in which case ¢y ~ 1 — */2 whilst 0} & 1+ (d —2){*. Note that in the elastic case
(§ = 0) with ap < 0 only the viscous heating term is present in the energy balance equation, so that lim;_...a*(7) = 0.

In summary, the zero Knudsen number value (¢* = 0) is a “repeller” of the time evolution of ¢*(7) in the inelastic
case. For elastic collisions, the state a* = 0 is also a repeller if ao > but it is an “attractor” of a*(7) if ap < 0. Figure
2(a) shows ag, T}, and 1y as functions of « for three-dimensional systems (d = 3). It is interesting to note that the
steady-state reduced viscosity 1, is nearly independent of «.

As noted before, if ag < 0 the whole compression process takes place during a finite time period t = |ag|~'. Let us see
now that the corresponding number of collisions per particle is infinite. The number of collisions per particle during an
elementary time interval dr is ds = vdf = vdt. The accumulated number of collisions between the initial state and the
scaled time 7 is then s(7) = vo fof dt/\/T(7')/ Ty, where vy and Ty are the initial collision frequency and temperature,
respectively. If ap < 0 the temperature is bounded between Ty and T, i.e., min(7p, 7;) < T(7') < max(7p, T;). Therefore,
min(1, /7 /To)vot < s(7) <max(1,+/T;/Tp)voT. Since T — oo when ¢ — |ag| !, it follows that s — o in that limit.

NONLINEAR VISCOSITY

In order to get the whole theological function 17*(a*) we need to eliminate time in favor of a*(t) = ao/V(7), taking
into account that both V and { are proportional to [T(7)]4, where g = % It is convenient to consider for the moment g
as an arbitrary positive parameter and set g = % at the end. Thus, since 7 = 7T, one has

QT = T 3T + T(35a" )y T = (T — qa* 3y T O; T. (14)
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FIGURE 2. (a) Plot of the steady-sate values ag, T,";, and 1" as functions of «. (b) Ratio |cx/cy 11| for & = 0.5, 0.9, and 1; the

horizontal dashed lines indicate the corresponding values of |a}|. (c) Nonlinear viscosity for o = 0.5 and 1 as obtained from the
numerical solution of Eq. (15) (solid lines) and from Eq. (20) (dash-dotted lines); the circles denote the steady-state points and the
arrows indicate the direction of the time evolution. All the panels correspond to three-dimensional hard spheres (g = %, d=3).

Making use of Eq. (12) it is easy to get the following nonlinear first-order differential equation for the function *(a*):
* d_l** 2** *2* d_l** * * *
n*— (1—2717 a > <1+En a >+q {C +2a (1—2717 a ﬂ (n*+a*dx=n*)=0. (15
Inserting the CE expansion (8) one can get the coefficients ¢ in a recursive way:

1 2 1

d—1 k—2
=5 == 3 ([d=24kq)cr1+2—— ) crcra e[l —({+1)q] ;. (16)
1+4¢ =0

S d 1+ (k+1)gl* d

Figure 2(b) shows the absolute value of the ratio cx/cpy1 for three-dimensional hard spheres (g = % d = 3) with
o = 0.5 (highly inelastic case), o = 0.9 (moderately inelastic case), and « = 1 (elastic case). In the inelastic cases
the ratio |c/cr1| tends to a non-zero finite value, thus indicating that the CE series (8) converges. In fact, the results
are consistent with limy_... |cx/cro1| = |ak], i.e., the radius of convergence of the CE series coincides with the steady-
state value of the Knudsen number. In contrast, in the elastic case one has limy .., |cx/cr1| = 0, so that the radius of
convergence shrinks to zero and the CE series (16) diverges. In fact, if {* = 0, the magnitude of the coefficients cy
grows so fast that the summation term in Eq. (15) can be neglected and one has |cx/ciy 1| = (d/2q)k~".
Inspection of Eq. (15) shows the following asymptotic behaviors in the limit of |a*| — oe:
ap>0: limg .. n*(a*)a* = Z(d{1)7 limg+ .. T (a*) =0,

ap<0: limg . wn*(a¥)a* = —%, lmg_ T} (a*) =d.

amn

Therefore, in the limit a* — oo there is no motion (relative to the flow velocity) along the x direction, while in the
opposite limit a* — —eo the motion becomes one-dimensional along the x axis.

The complete viscosity function n*(a*) for any a*, including values of the Knudsen number |a*| beyond the radius
of convergence |a}|, is obtained by numerically solving the differential equation (15) with appropriate boundary
conditions. To get the branches a* > 0 and a} < ¢* < 0 one must start from a small value of |a*| and apply the
initial condition 1* = co+ c1a®*. The branch a* < a} < 0 is obtained by starting from a large value of a* and applying
the boundary condition n* = —d/2a*. The resulting curve n*(a*) is plotted in Fig. 2(c) for three-dimensional hard
spheres (g = % d = 3) with & = 0.5 and 1. The arrows on the curves indicate the direction followed by the time
evolution of a*(7).

While the differential equation (15) can be solved numerically, it is interesting to approximate its solution by an
analytical expression. To that end, let us see g as a small perturbation parameter and formally expand the solution to
Eq. (15) in powers of ¢:

n*(a*) =ng(a’)[1—qhi(a®)+--]. (18)
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FIGURE 3. Surface plot showing the dependence on both a* and o of of the viscosity function n1* given by Eq. (20). The thin
and thick lines refer to the NS and steady-state points, respectively.

By inserting Eq. (18) into Eq. (15) and keeping terms linear in g, one gets, after some algebra,
1 d-2 ! &+ 1 +at—Bla) 1 2 2
w0 kY | * * Y * = - * — Zar. 1
mia) = |3+ —a" +B@)| . hia) e Pa=y(5re) e @

Note that the zeroth-order function 1;(a*) is independent of the reduced cooling rate {*. Instead of proceeding to
higher order terms in the g-expansion (18), let us consider the simple Padé approximant

R 10
n'@) = T e (20)
This approximation has the merit of providing correctly (for any value of g) the values of the NS coefficient cg [see
Eq. (16)] and the steady-state point i) = n*(a¥) [see Eq. (13)], as well as the limiting behaviors (17). Moreover, even
in the physical case of hard spheres (g = %), Eq. (20) represents an excellent analytical approximation to the numerical
solution of Eq. (15), especially for highly in¢lastic systems, as shown in Fig. 2(c). The discrepancies are only apparent
near the maximum of *(a*) and in the decay to the left of the maximum. Figure 3 shows a surface plot of Eq. (20).

CONCLUSIONS

The uniform longitudinal viscous flow is an unsteady compressible flow [see Eqs. (4) and (5)] that, despite its apparent
simplicity, constitutes a non-trivial playground for nonequilibrium statistical mechanics beyond the NS description.
While this state has been studied in the past for normal gases [3], the present work addresses the problem in the case of a
granular gas of inelastic hard spheres. The relevant control parameter is the reduced longitudinal rate a*(¢) = a(t) /v (1)
(whose magnitude plays the role of the Knudsen number of the problem) and the relevant response function is the time-
dependent generalized viscosity n*(a*) defined by Eq. (7). The exact energy balance equation (5) shows that if ap > 0
(expansion states), the temperature monotonically decreases and so a*(¢) increases with time, for both elastic (§ = 0)
and inelastic (£ > 0) collisions. On the other hand, if ap < 0 (compression states), a*(¢) goes to zero from below in the
elastic case, whereas it tends to a stationary value a; < 0 in the inelastic case [see Fig. 2(a)]. Expressed in other terms,
one can say that the homogeneous state (ag = 0 or a* = 0) is unstable against any perturbation ay # 0, no matter how
weak it is, if the particles are inelastic. On the other hand, a* = 0 is stable for elastic collisions if ay < 0. Given that
the CE expansion (8) is carried out about (and measures the departure from) the reference homogeneous state (a* = 0),
it follows the “arrow of time” for granular gases but goes against it for normal gases (if agp < 0). As a consequence, it
can be expected on physical grounds that the CE expansion diverges in the case of elastic collisions but does converge
if the collisions are inelastic, the radius of convergence |a;| increasing with inelasticity.
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To confirm the above expectation and also to get the rheological function n*(a*), the simple model kinetic equation
(9) has been considered in this paper. The viscosity function n*(a*) predicted by the model is the solution to the
nonlinear first-order differential equation (15) (with g = %). The CE coefficients c; are shown to verify the asymptotic
law limy_ .o |cx/cre1| = |ak|, thus confirming the convergence of the series (8) with a finite radius a* = |a}|, which
vanishes in the elastic limit [see Fig. 2(b)]. The function n*(a*) exhibits an interesting behavior [see Fig. 2(c)]. Starting
from the NS value n1*(0) = ¢y, it decreases as the longitudinal rate a* increases, behaving as n*(a*) = [d/2(d —1)]/a*
in the limit of large positive a*. In the latter limit, the gas becomes highly anisotropic with no random motion along the
flow direction. The situation is even more interesting in the case of negative a*. As the magnitude of the longitudinal
rate increases, the viscosity function starts increasing, reaches a maximum value past the steady-state point, and
decreases thereafter, behaving as n*(a*) =~ (d/2)/|a*| in the limit of large |a*|. The gas becomes highly anisotropic
also in this limit, but this time because the degrees of freedom orthogonal to the flow direction are suppressed. As Fig.
2(c) shows, the largest quantitative influence of inelasticity on the shape of n*(a*) occurs near the maximum. It is also
in this region where the analytical approximation (20) exhibits the largest deviations from the numerical solution of
Eq. (15). Otherwise, Eq. (20) succeeds in capturing the main features of the solution, including the steady-state and
NS values, as well as the asymptotic behaviors. However, an important property not accounted for by Eq. (15) is the
divergence of the CE series in the elastic case ({* = 0). This is a consequence of the fact that Eq. (15) is based on the
g-expansion (18) (truncated after the first term) and the CE expansion in the reference system (g = 0) is convergent,
regardless the value of {*.

As a final point, it is worthwhile rewriting the CE expansion (8) in the dimensional form

d—1 > o [ Oux k1
Po—p—2 K . 21
p 7 /INs L Vi ( e > (21)

When arbitrary hydrodynamic gradients are present, Eq. (21) represents a partial contribution to the general CE
expansion of the normal stress P, . The advantage of the uniform longitudinal flow is that it possesses an only
hydrodynamic gradient, du,/dx, which is spatially uniform. Therefore, in this case the general CE expansion of Py,
reduces to Eq. (21). However, the convergence or divergence of the partial series (21) does not depend on whether the
system is actually in the uniform longitudinal flow or in any other state. According to the results derived in this paper,
it turns out that the partial series (21) diverges for normal gases but converges for granular gases. A similar conclusion
is reached in the case of the expansion of the shear stress P, in powers of the shear rate du,/dy [8].
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