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Abstract. Granular gas mixtures modeled as systems of inelastic and rough particles, either hard disks on a plane or hard spheres,
are considered. Both classes of systems are embedded in a three-dimensional space (d = 3) but, while in the hard-sphere case the
translational and angular velocities are vectors with the same dimensionality (and thus there are di; = 3 translational and dio; = 3
rotational degrees of freedom), in the hard-disk case the translational velocity vectors are planar (i.e., diy = 2 translational degrees
of freedom) and the angular velocity vectors are orthogonal to the motion plane (i.e., dror = 1 rotational degree of freedom). This
complicates a unified presentation of both classes of systems, in contrast to what happens for smooth, spinless particles, where
a treatment of d-dimensional spheres is possible. In this paper, a kinetic-theory derivation of the (collisional) energy production
rates §}; and ‘;’—'{/‘.’t (where the indices i and j label different components) in terms of the numbers of degrees of freedom di, and diot
is presented. Known hard-sphere and hard-disk expressions are recovered by particularizing to (d, diot) = (3,3) and (dr, drot) =
(2, 1), respectively. Moreover, in the case of spinless particles with d = di;, known energy production rates fg = ¢&;; of smooth
d-dimensional spheres are also recovered.

INTRODUCTION

A “gas” made of identical and smooth hard disks or spheres with a constant coefficient of normal restitution is perhaps
the simplest and most widely used model of a granular gas [1-8]. On the other hand, the mesoscopic or macroscopic
nature of the “grains” may ask for a refinement of the model by allowing for particle-particle surface friction or
“roughness” (usually accounted for by a constant coefficient of tangential restitution) [9—-47], polydispersity (i.e.,
assuming that the particles belong to more than one component, each one characterized by different mechanical
properties) [48—66], or both [67-74].

An interesting feature of multicomponent gases of rough disks or spheres is the general breakdown of energy
equipartition, even in homogeneous and isotropic states (driven or undriven). This is characterized by unequal transla-
tional (T}r) and rotational (Ti“’t) temperatures associated with each component i. The rate of change of the translational
(rotational) mean kinetic energy of particles of component i due to collisions with particles of component j defines the
energy production rate £ (£77"). By means of kinetic-theory tools, the production rates &' and 7' have been derived
separately for disks [74] and spheres [70] as functions of Ti“, T;r, Ti“’t, T;"t, and of the mechanical parameters (masses,
diameters, moments of inertia, and coefficients of normal and tangential restitution) for each pair i;.

Whereas in the case of smooth, spinless particles a generic kinetic-theory treatment of d-dimensional hard spheres
is possible [56, 58, 62, 63, 75], this is far less straightforward if particles have a rotational or angular motion, in
addition to the translational motion of the center of mass. In fact, mathematical operations such as the cross product
of two vectors (and hence mechanical quantities such as angular momentum and torque) are, in general, meaningful in
a three-dimensional space (d = 3) only. Furthermore, the existence of surface friction or roughness establishes a neat
separation between the cases of disks on a plane and spheres. Both classes of particles are embedded in a common
three-dimensional space, but spinning spheres have di; = 3 translational plus d,, = 3 rotational degrees of freedom,
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while spinning disks on a plane have d;; = 2 translational and d;; = 1 rotational degrees of freedom.

The aim of this work is to unify the derivations of 55. and g;;?t for disks [74] and spheres [70] so that they depend
parametrically on both d; and d;o;. On the one hand, particularization to smooth particles with d;; = d allows us to
recover known results for an arbitrary number d of spatial dimensions [56, 58, 62, 63]. On the other hand, in the case
of rough particles, particularization to (d, dro) = (2, 1) and (dy, diot) = (3, 3) recovers previous results for disks [74]
and spheres [70], respectively.

BINARY COLLISIONS

Let us consider the binary collision of two hard spheres (or disks) of masses m; and m;, diameters o; and o ;, and
moments of inertia /; and I;. Before collision, the particles rotate with angular velocities w; and w;, while their
respective centers of mass move with translational velocities v; and v;. This is sketched in Fig. 1, where o = (r; —
r;)/|r; — ;| is a unit vector pointing from the center of sphere i to the center of sphere j and v;; = v; — v; is the relative
velocity of the centers of mass. The relative velocity (w;;) of the points of the spheres or disks which are in contact at
the collision is o o

=Y J
In the case of spheres, the vector & x S;; points in any direction of the three-dimensional space. In the case of disks,
however, o X S;; = §;;0°, lies on the plane of motion, where o, =0 Xz = 0, X — Ty.

Wij =V,‘j—0'XSij, S

(b)

FIGURE 1. Sketch of the precollisional quantities of particles i and j in the frame of reference solidary with particle j. In panel
(a) (hard spheres), the angular velocities w; and w; can point in any direction of the three-dimensional space. In panel (b) (hard
disks), the angular velocities w; and w; are orthogonal to the plane (xy) of translational motion.

The relative velocity w;; can be decomposed into a normal component (parallel to o) and a tangential component
(orthogonal to o°):
WijZ(Wij'&)&—EX(EXWZ‘j). )
In the case of disks, =0 x (0" X w;j) = (W;; - 0.)0 . After collision, the normal and tangential components of w;;
are modified by constant factors «;; (coefficient of normal restitution) and g;; (coeflicient of tangential restitution),
respectively, i.e.,

%,-j,gwij SO = —Q;jWij &, %Uﬁb\' X Wij = —ﬁ,yb" X Wij, (3)
where the operator B;;7 acting on a precollisional quantity gives the associated postcollisional quantity as the result
of a collision with unit vector o between particles of components i and j. The coefficient of normal restitution ranges
from a;; = 0 (perfectly inelastic particles) to «;; = 1 (perfectly elastic particles), while the coeflicient of tangential
restitution ranges from g;; = —1 (perfectly smooth particles) to 5;; = 1 (perfectly rough particles).

Equation (3), together with the laws of conservation of linear and angular momenta, yield the following collision
rules [30, 70, 74]

1 1 Ti 0j
Biigvi=Vvi——Qij, Biizvi=vi+—Qij, Bwi=w;,— —0XxXQ;j, Bswj=w;——0xQ;, (4
ijoYi i min] ijoVj J m; Ql] ijoWi i 21[ Ql] ijoW; Jj ZIJ Ql] ( )
where _
Qij = myja;j(vij - )0 + myB;; [vij - (vjj-0)0 -0 X Sij] . (5)
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TABLE 1. Relevant collisional changes.

vij(ci,cj) (iBij,E - 1)%’,‘(0:', )
n;v; —miﬁij(vij . b'\)& - mij,Eij [Vij — (V,‘j . b\')b\' — b'\ X Sij]
m;joi— ——
I,w,- _#ﬁ[j[o-xvij"'Sij_(sij'o-)o-]
2—2 )52
2 (U P AL TP SO i 2 (XS AT XV S
mjv’ = (vij - O = 2m@ij(vij - O)Vi - T) + —— [ (@ X Vij)* + (@ X Si)” + 2T X vij) - Sy
=2miiB; [(@ X vij) - (@ X vi) + (@ X Vi) - Sy
25
Iiw,2 #K:] [(5 X Vij)2 + (b\' X Sij)z + 2(& X V,‘j) . S,‘j] - m,‘jﬁijO',‘ [(5 X Sij) . (b\' X (1),‘) + (5 X Vij) . (1),‘]
I’l’l,‘l)i2 + mjvi —m; (1 —_(;ylz] (V,‘j . &)2 + m,-jﬁfj I:(b\' X V,'j)z + (E X S,‘j)z + 2(6: X V,'j) . S,’j]

—2m,‘j,8ij (b\' X Vij)z + (b\' X V,‘j) . S,‘j]
-2
mij:Bij

Kij

I,'(,c)iz + Ija)f [(5’ X V,‘j)z + (EX S,‘j)z + 2(6: X V,'j) . S,’j] - 2m,'jBij I:(b\' X S,’j)z + (EX V,‘j) . S,‘j]

2 2

1 -aj — kg L=Byp 2~ 2 A
E,‘j —m,‘jT(V,'j'O') —m,‘jm 3 [(O'XVij) +(0’XS,‘J') +2(0’XV,'j)'S,'j]
tj
Here,
m;m; _ — Kij m; +m; 41; 4Ij
mij = s @i =ltay, By = (1 +,3ij), Kij = KiKj———————, Ki= ——, Kj= 5. (0)
m; + m; 1+ Kij Kim; + K;m; m[O'i ij'j

The values of the reduced moments of inertia ; run from «; = 0, if the mass is completely concentrated in the center of
the body, to x; = 1 (disks) or k; = % (spheres), if the mass is concentrated on the perimeter of the particle. In the case

of a uniform mass distribution, «; = % (disks) or k; = % (spheres). Note that for perfectly smooth particles (5;; = —1)

one has §3; ; =0, and thus the angular velocities are not affected by collisions.
The rules for restituting collisions are

%_Lv.zv_iQT. %_LV.=V.+L = Bl w = w - 26\'><Q'_' B Lw =0, - QEXQ'_' )
Vi i~ Vi j m; ij ijoi Y ij? ijo J 21; ij°
where -
_ 5,‘]‘ e~ :Bij = =
Qij =mjj—(Vij - O)0 + m;;—— [Vij - (vij-0)T -0 X Sij] : ®)
ij Bij

Given a certain dynamic variable ¥;;(c;, ¢;), where the short-hand notation ¢; = {v;, w;}, ¢; = {v;, w;} has been
introduced, Egs. (4) and (5) provide its collisional change (%[ i~ 1) ¥ij(¢;, ¢;). The most relevant cases are presented
in Table 1 [70]. In the last row,

Lo, L, 1, 1.,
E,’j = Em,-v[ + Emjvj + 51[0),- + alja)j (9)
is the total kinetic energy (translational plus rotational) of both colliding particles. Energy is conserved only if the
particles are elastic (;; = 1) and either perfectly smooth (8;; = —1) or perfectly rough (5;; = 1). Otherwise,

(QS,- T~ 1) E;; < 0 and kinetic energy is dissipated upon collisions.
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The collision rules (4) and (5), as well as those in Table 1, hold both for spheres and disks. In the latter case, how-
ever, some terms may simplify [74]. On the other hand, the Jacobian of the transformation {¢;, ¢;} — {B;;z¢;, B;jz¢;}
is different for spheres (d = dior = 3) and disks (dy; = 2, diot = 1), namely [70, 74]

S o 0 (%ij,aci’ %ij,acj) _ 0 (Ci, c]) _ { a’ij'ﬂijl (diSkS), (10)
ij = 9 (Ci, cj) 9 (%;j’l‘;ci, %[_j};cj) a/ij,B,zj (spheres).
BOLTZMANN EQUATION

Let fi(r, ¢;; 1) be the one-body velocity distribution function of particles of component i. In the low-density limit, by
application of the molecular chaos assumption on the first equation of the Bogoliubov—-Born—Green—Kirkwood-Yvon
(BBGKY) hierarchy, f(r, ¢;; f) obeys the Boltzmann equation [70, 74]

ufir,ei0) +vi- V(s 1) = > Tylr e i i, (i
J

where
- - — |
J,‘j[l‘,Ci;ﬂﬁ,fj] =)(,‘j0'?;r ldejde'(Vij'O')(rS”%ij}a._ 1)ﬁ(r,ci;t)f}(r,cj;t) (12)
+ 1jij

is the bilinear Boltzmann collision operator. In Eq. (12), y;; is the contact value of the pair correlation function,
oij = %(O'i + ), fdcj = fdvjfda)j, and L do = fd&@(vij - 0), O(x) being the Heaviside step function. The
following mathematical integrals over o= will be needed [76]:

fda‘(v,-,- -0)" = Baj, fda‘(v,,-a‘)"a‘ = Beav); 'vij, (13a)
+ +

Bt’ - B{’+2 -2

P~ =\ -2 2
de'(V,'j . 0') oo = Bé’+2”,‘j Vijvij + Uij (U,'jltr - V,'jV,‘j), (13b)

dy — 1

+ tr

where |, is the di X dy unit tensor and By = n%=D2T(£/2 + 1/2)/T(L]2 + di/2).
Given a one-body dynamic variable ;(c;), its average value is

1
Wile)) = — f deqyi(e)file), ni= f dei fite), n= ) m; (14)
n; 7

n; and n being the number density of component i and the total number density, respectively. For the sake of brevity,
in Eq. (14) and henceforth the spatial and temporal arguments are omitted. Analogously, the average of a two-body
dynamic variable ;;(c;, ¢;) is

1
Wisterepy = o [ de [ dejutenepiesice). (1s)
J

n;

Multiplying both sides of the Boltzmann equation (11) by ¢,(¢;) and integrating over ¢;, we obtain the balance equation
0
7 niwie))] + V- [mivavite)] = ) Tijlwilfi. £, (16)
! J
where
Jijlwilfi, ;1 = f de;yilenJijleil i fi] = xios ™! f dc; f de; f Ao (vij - D file f(e)) (Bijz — 1) wiled.  (17)
+

Therefore, n;,~' J; ilWilfi il = 6t(zﬁ[)|mu, ; represents the rate of change of the quantity ¢;(c;) due to collisions with par-
ticles of component j. Analogously, in the case of a two-body dynamic variable ¢;;(c;, ¢;), the collisional production
rate J;;[i;lf;, f;] is defined by the second equality of Eq. (17) with the replacement ¢;(¢c;) — ¥;;(¢;, ¢;).
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TABLE 2. Relevant collisional integrals in terms of two-body averages.

vij(ci, c)) Il fi £
dy — 1= 7l (3/2 +dy/2
mv; (ai,» + tT/s,,) Qoivig) - %ﬂu« viy X Sip)

L S [3uiSsi) - it vy Sipvip)|

dy dp — 1=
miv? 2(aij+ 5 ﬁl,)«vl,(v, w»——,( = ﬁfj)<<v§j>>

2

—2
VAl'(3/2 + dw/2)— ,8,]
W’BU«S’/ (vi X Vlj)» -

= [3¢0uS ) = it v S|

2

o} S By [3opwr Si) - (0 (v Sy(vy - @ ,>>>]
+34uiS ) = vy (vij - Sip)*) ]

[(dtr DY

—2

dy — i
miv; + mjv; [1—a?, ﬁ,,(Z ﬂ,,)] <<vl,>>—/i[3<<v,,s,,>> (w5 vij - Sy

dy — 115’

w? + Ijw? 57’/ (26 = By) [360sS T = (o (vig - 81,°0] = === paLC )
l—a/l?j 3 kij(l = '82) 1 2
E; S Gl + ﬁ[(a’u DT + 34uiS ) = (o (vij - Sip)*)]
Kij

Let us focus on the quantities ¥;;(c;, ¢;) listed on the first column of Table 1. When obtaining the corresponding
production rates [l fi, fj], the angular integrals L do (v; e o) (iBi T 1) Yij(c;, ¢;) can be evaluated with the help
of Eqgs. (13), so that [l fi, fi] are expressed in terms of two-body averages. Some care is needed when applying
Eq. (13b) and contracting the tensor | with an angular velocity vector, for instance | - S;;. In the case of spheres
(dix = 3), one obviously have |, - S;; = S;;. However, in the case of disks (di; = 2) the vector S;; is orthogonal to the
subspace where the identity tensor | acts, and thus I - S;; = 0. To unify both possibilities, and taking into account that
the rotational degrees of freedom are meaningless except in the cases of disks and spheres, it is convenient to write
I - = (dy — 2)Sij. Analogously, Iy : S;;S;; = (di - 2)S[2j and ly : S;jw; = (dy — 2)w; - S;j. The final results are
dlsplayed in Table 2, where we have introduced the scaled collisional integrals

TQ3/2+d./2) Tijlwijlfifil
Kilwiilfi i1 =~ ;(d:_l),‘z/ ) Tl (18)

d[l——l
Xijmijninjo;

The most important one-body averages are

i minau; min; dy e ™M oo botonr i o n; AT + dit T
=(vi), u= T Qi =(w), —Ti=—AVi-w7), —=T;7=SHw), T= Z ditde
(19)
where u; and Q; are partial flow and angular velocities, respectively, u is the global flow velocity, T;" and 77 are
partial granular temperatures associated with the translational and rotational degrees of freedom, respectively, and
T is the global granular temperature. The partial energy production rates associated with 77" and 77" are defined as
[70, 74]

ro_ 2 TO
é::j = dtr lTﬁmj[ml(V, u) |ﬁ’ fj], é:[j[ _drm ,Tmtmj[lw |ﬁ’f] (20)
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These quantities can be expressed in terms of two-body averages with the help of Table 2. From f?; and ff;.’t one can
obtain the total production rates & and &', as well as the global cooling rate £, by the relations

Tro . tr gtr TOt g0t
é;tAr = — l coll Z é: rot al t coll Z é:rot E _ atT|coll — Z i (dtrTi gi + drOtTi é:i ) (21)
' Ttr i S Tm‘ i T ,~ (dy + dror)nT

Before closing this section, let us consider the mean collision frequency of a particle of component i with particles
of component j as given by [77]

iy~ << vi >> I(1 /2 +dy/2)

where in the second equality, namely v;; = (v;;)/ V24, > use has been made of Eq. (13a), 4;; being the mean free
path of a particle of component i with respect to collisions with particles of component j. Note that nyv;; = njvj;.
The total collision frequency of a particle of component i is v; = 3 ; vi;, while the global mean collision frequency is
V= Z i Vi / n.

All the results in this section are exact within the framework of the Boltzmann equation. The expressions of the
main collisional integrals in terms of two-body averages are useful to evaluate those integrals by computer simulations.
On the other hand, exact analytic expressions are not possible unless fi(c;) and fj(c;) are known. The next section
provides analytic approximations for the energy production rates based on a Maxwellian approximation.

ESTIMATES OF TWO-BODY AVERAGES AND APPROXIMATE ENERGY
PRODUCTION RATES

Henceforth, we particularize to mixtures without mutual diffusion (i.e., u; = u for all /) and with isotropic distributions
of translational velocities, v; — u, relative to the flow velocity.

In order to get practical estimates of the two-body averages appearing in Table 2, let us approximate the unknown
velocity distribution functions fi(c¢;) by means of two assumptions: (i) statistical independence between translational
and rotational velocities, i.e., fi(¢;) = n;~' f(v)) /7 (w;), where f(v;) and f7°(w;) are the marginal distribution func-
tions associated with the translational and rotational degrees of freedom, respectively; (ii) Maxwellian form for £ (v).
Therefore,

m; die/2 mi(vi _ l,l)2 ot
file:) = ( T”) OXp |~ S (). (23)

When Eq. (23), together with the equivalent approximation for fj(c;) is inserted into Eq. (15), the two-body averages
appearing in Table 2 can be explicitly evaluated in terms of the material parameters (m;, m;, o, 0}, ki, K, @;j, and f3;;)
and of the physical quantities Q;, Q;, T}", T;r, T, and T;"t. Analogously to what happened with Table 2, the evaluation
of averages involving angular velocities must be done with care to treat the cases of spheres and disks in a common
setting. For instance, (v, (vij - Si)Vij) = (05 vijvip) - €Sij) = d GuigVle - €S53) = di (de — 2)C0i)(S17). Similarly,
Qi (vij - Sip)*) = trl(dtr 2)Kui ST and v (vij - Si)(vij - @) = diy (die = 2)4vijH{w; - Sij). The results for the
two-body averages are summarized in Table 3. Note that (S izj)) = diot (Ti“’t Jmik; + T;"‘ /mik;j + oo Q- Q j/2dm[) is
positive definite.
Substitution of the expression for {v;;) into Eq. (22) provides the approximate expression

w12
Vanldu=12 dot [ T, Tj]

Tn m ey

V,‘j =
m; m;

Analogously, substitution into Table 2 of the expressions for other two-body averages shown in Table 3 allows us to
obtain the energy production rates fg and g;;?t defined by Eq. (20). The results are given in Table 4, where the equality

diot = %dtr(d[r — 1) (valid only for disks and spheres) has been used in order to present the expressions in a compact
form. In fact, we can observe that the number of degrees of freedom d,; and d, intervene in f}; and flr.;?t by following
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TABLE 3. Expressions, as obtained from the approximation (23), for the two-body averages appearing in
Table 2.

Luijvii), €vij X SijD, €Sij - (Vi X vip)) 0

VAL (1/2 + du/2) [T_ . T_}r]”z

Kij» I (di/2) P
Wy 2V2I' (3/2 + dy/2) T_ltr . T_;r 32
T (T T\ 3
pivy o [m . ;] o
1 i 5
: dy + 1
3oiSis) — (v (vVij - Sip)vish 7 (0',-9,- + g-jgj)«vij»
tr

dtr+1d [Tim[ T;Ot +0’g0‘jﬂ,"9j
ot

3GuiS T = v (Vi - Sip)*» 2= ] Kvijh

m;K; m K Zdrot

3{vijw; - Sijh — vy I(th Sivij - w))

miK; 2dyor

zdtr + 1 drot 2Tir0t + O’,'O'jQ[ | Qj
dy 0o

) Kij»

three simple rules: (i) 55 and ff;.’t are divided by di; and d,, respectively, as a consequence of their definitions in Eq.
(20); (ii) a factor d;o/d, is attached to ,E,- ; and E?j; (iii) a factor d-! is attached to €; - Q.

Tot

In the special case of frictionless, smooth particles (5;; = -1 = ,8 = 0), one has fr"‘ 0 and

tr 2Vl],/nl./ 2— T‘ltr —2 Tl[r T;r 25
flj dtrm, Tl[r ¢ J m,j aU m; mj ( )

This coincides with previous results for an arbitrary number of dimensions d = d; [56, 58, 62, 63]. On the other hand,
in the case of rough disks (d; = 2, diot = 1) or spheres (dy = 3, dior = 3), the expressions for f}; and ff;’t in Table 4
reduce to results derived in Refs. [74] and [70], respectively.

The global cooling rate £ defined in Eq. (21) is also shown in Table 4. Now, a factor d,o/d, is attached to (1 — ,Bl?j).
While ¢ is a positive definite quantity, the partial production rates fg and g;;?t can in general be positive or negative
since the energy dissipation and equipartition effects are mixed together. To disentangle them, it is convenient to carry
out the decompositions [71, 74]

droKi Tro

é:g _ T[r é;lr;)t + 4] += '—(1) + :(2) é;rot _ {rot —(3) (26)

—~(1 3)

where gij T and gi; 1ot are true cooling rates (positive definite), whereas = represent equipartition rates and do not

have a deﬁmte sign. The expressions for i tr rft and :(jl ) are also 1ncluded in Table 4. It can be easily checked that
nTIEY +nTYEY = 0 and n; [dtrT“” + dior(1 + K; )Tfot”“)] + 1 [d TYE + diot(1 + & )Tfm"“)] 0. Therefore,

as expected on physical grounds, the equipartition rates H(Jl % do not contrlbute to the net cooling rate £, so that

(= m Z ni [deTEES + di(1+ k)T | + | da TV + dron (1 + )T 27)
tr Tot
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TABLE 4. Collisional energy production rates for polydisperse systems

2 T T TO TO
o 2 deg VI (G (T TT) e (T T i @
g dy miTlFr Y dy Y mij Yoody T my mj dy mik;  MjK; 2d,ot
o j 4mBy [T miio @@ By (T4 T T T 000 @
Y dlr mszT, mij  my; Adgy 2 \mi  my  mik;  mk; 2d.or
B P L T O O
—af)| -+ L - +
77 (dtr + dmt)l’lT Y m; m; dn—(l + K,‘j) m; m; miK; m;K; Zdrot
tr
T
g dlr m; T m, mj
7ot vy 2 =) (TF N I L T;Ot L i
Y die mii(1 + k;j)>TF m; Mk MK 2d,ot
2 .
E(l) m 4m11(1 + a,lj) ( tr_ Ttr)
Y d[r miij;r
=@ Vij Adyomijk; (1 + Bij) T _ ot _ mik;o o} - Q)
g dtzr m,(l + K,‘j)TlFr ! ! 4dr0t
=0 vij 4mig(L+ By | T~ T3 . T -17 LIS (miki—m 1) 000, Q,
i dy (1+«k; _)2Tirot m;m;KiK mim jK; mim; jK; MM KK oy 4Ad,or

Apart from the energy production rates shown in Table 4, one can introduce a spin production rate £ f} by [41]

& © v 4m ],B, 4mijf;;

—J,][w i fil = = (0 + 03)). £f = (28)

dn— miK;
where in the last equality use has been made of Tables 2 and 3.

The expressions of Table 4 simplify considerably in the case of monodisperse systems, i.e., if m; = 2m;; = m,
Ki=Kij =K 0;=0j; =0, aijza,ﬁijzﬁ,)(,] =X, T[r T[r Tmt_Tmt, QiZQ, andvij:v, with

2ldu=1)/2 p G
- =l [ 29
ST " N @
for all i and j. From those conditions, Table 4 reduces to Table 5. Moreover, the spin production rate becomes ¢’ f]z =
£ =2v(1 +B)/du(1 + ).

CONCLUSION

Arguably, the most distinctive feature of granular gases is collisional energy dissipation due to inelasticity and surface
roughness of the particles. Moreover, there are in general two classes of contributions to the kinetic energy, one asso-
ciated with dy; translational degrees of freedom and the other one associated with d; rotational degrees of freedom. In
a multicomponent gas, additionally, the (translational or rotational) kinetic energy is split into different components.
To characterize all these separate contributions, the (partial) granular temperatures T;" and 7' are defined as twice
the mean (translational or rotational) kinetic energy per particle and per degree of freedom associated with component
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TABLE 5. Collisional energy production rates for monodisperse systems

é_-tr dl {1 —61/2 + jd(riitli(l;ft)r K(lz_lB) (Ttr + lm + ngz) + T4 _ ot _ KZZZQZ]}
tr tr K K Tot Tot
ot v 2k +B) [1=-B(., T mo>Q? ot o kmoP Q2
— T + + +T% -T" +
¢ dy (1 +K)2Trot | 2 4d, o 4d, o
v N\ diok(1 =B (n T mo?Q?
¢ e da [(1 )T o Ut
r v 2
— |l -«
¢ (i)
o v k(1= (4 . ™ . mo?Q?
dy (1+ K)ZTrO[ 4dyo;
=0 0
=2 v 2dioik(1 + B) it _ ot _ kmo2Q?
- & (1+0T" 4ddyor
=6) de 1" o

(1 + k) Tt

i. Collisions of particles of component i with those of component j produce two main competing effects: on the one
hand, 7Y, T;r, Ti*', and T;Ot tend to decay due to a dissipative cooling effect but, on the other hand, those partial tem-
peratures also tend to equal each other due to an equipartition effect. These basic effects are entangled in the energy
production rates f}; and flr.;?t defined by the rate equations 6sz‘“|¢011,,' = —f};T}r and 6tTir°‘|mHJ = —g—‘g;?‘ T,

The aim of this work has been the unified derivation of ff; and fg;?‘ for disks (dy = 2, dioy = 1) and spheres
(dy = diot = 3) from the Boltzmann equation (i.e., under the molecular chaos ansatz). In order to obtain analytic
results, statistical independence of the distributions of translational and angular velocities and a Maxwellian form for
the translational distribution have been assumed. The expressions for 55. and f;.’t, together with those for the global
cooling rate ¢, the partial cooling rates {5 and f]‘?t, and the equipartition rates ES)*G), are presented in Table 4. They
encapsulate isolated previous results for smooth d-dimensional spheres [56, 58, 62, 63], rough disks [74], and rough

spheres [70] in a common framework. The parametric dependence of f?; and ff;.’t on the numbers of degrees of freedom
dy and d,o turns out to be quite simple: dtrg-‘;; /vij and drotflr.;’t/ vij, where the collision frequency v;; depends on dy; [see

Eq. (24)], have a factor d;o/dy attached to B,- ; and Bz

;> and a factor d.} attached to Q; - Q.

Tot
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