
J- Phys. I IFance 3 (1993) 2207-2227 NOVEMBER1993, PAGE 2207

Classification

Physics Abstracts

75.24M 75.50L

The de Almeida-Thouless line in the four dbnensional Ising spin
glass

J-C- Ciria(~), G. Parisi(~), F. Ritort(2,3) and J.J. Ruiz-Lorenzo(~)

(~) Dipartimento di Fisica, Universith di Roma I, "La Sapienza", Piazzale Aldo Moro, Roma

00100, Italy and INFN, Sezione di Roma, "Tor Vergata" Via deUa llicerca Scientifica, Roma

00133, Italy
(~) Dipartimento di Fisica, Universith di Roma II, "Tor Vergata", Via deUa llicerca §cientifica,

Roma 00133, Italy
(3) Departarnent de Fisica Fonamental, Universitat de Barcelona, Diagonal 648, 08028

Barcelona, Spain
(~) Departamento de Fisica Teorica, Universidad de Zaragoza, Pza. S- Francisco s/n, 50009

Zaragoza, Spain
(~) Departamento de Fisica Teorica I, Universidad Complutense de Madrid, Ciudad Universi-

taria, 28040 Madrid, Spain

(Received 2 June 1993, accepted 13 July1993)

Abstract We confirm recent results obtained in a previous work by studying the Ising spin
glass at finite magnetic field in four dimensions. Different approaches to this problem suggest
the existence of a critical line similar to that found in mean-field theory but in a universality
class different of the transition at zero magnetic field. Problems due to the strong nature of the

finite-size corrections within
a

magnetic field
are also discussed.

1 Introduction.

Spin glasses have received much attention because they are representative of a large class of

models with disorder and frustration 11, 2, 3]. Up to now a complete understanding of spin-
glass field theory is lacking because of the enormous theoretical difficulties one encounters when

studying short ranged systems [5]. The main success of spin glass theory is mean-field theory

[4]. Even though there are some problems in mean-field theory which we do not fully under-

stand (I.e. some finite-size corrections) the nature of a phase transition from a paramagnetic
phase to a replica broken symmetry phase is widely accepted. The difficulties one encounters

when studying finite dimensional systems using field theoretical methods have provoke the ap-

pearance of other different approaches. Among them we recall the phenomenological droplet
model firstly developed by W.L. Mc Millan [6] and finally collected by D.S. Fisher and D.A.
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Huse [7, 8] in a series of papers. Nevertheless, some predictions of these phenomenological
models are substantially different from those found in short-ranged systems if a mean-field

picture were valid in this case.

From the experimental point of view recent cycling temperature experiments have been

interpreted within the mean-field picture [9, 10]. It has also been claimed that they are incon-

sistent with predictions of the droplet model even though there is not general agreement on

this point.
One of the most striking differences among droplet models and mean-field theory is the

response of the system to an applied magnetic field. If the droplet theory predicts that a

magnetic field should destroy the spin glass phase, the mean-field picture suggests that, even

though some pure states are suppressed by the magnetic field, an infinite number of them

will survive to the perturbation. In this case a transition line in finite magnetic field (de
Almeida-Thouless -AT- line ill] is expected.
Recently this issues has been adressed in a previous work in the four dimensional Ising

spin glass [12]. The advantages of studying the Ising spin glass in four dimensions are mainly
numerical and we believe it captures the main features of spin glasses below the upper critical

dimension and (we hope) those at three dimensions. In that work II 2], it was found evidence of

a phase transition at finite field using standard finite-size scaling methods. A different approach

was used in [13].
Also numerical work in zero magnetic field [14, 15] has shown that the spin glass phase seems

to consist of an infinite number of pure states and that these states cannot be considered as

excitations (droplets) due to inversion of local compact domains.

The problem of the existence of the AT line in short-ranged spin glasses is important because

it is one of the very features of an ordered phase with replica symmetry breaking.
This work is divided as follows. In section 2 we present general theoretical predictions

on the

expected critical behaviour within a magnetic field. Section 3 presents some finite-size scaling
results for the spin-spin overlap and for the link to link energy overlap. Section 4 investigates

some predictions of mean-field theory in a magnetic field for the overlap probability distribution

P(Q) in large systems. Section 5 show results on the dynamics of large samples within the spin-
glass phase with a finite magnetic field. Finally, section 6 presents the conclusions.

2 General predictions.

One of the most important consequences of a spin-glass phase with replica symmetry breaking
(RSB) features is the existence of a lot of thermodynamic states Ns whose number grows
enormously with the size (Ns c~ N" with o < I). All these states have the same free energy
and because its number does not grow exponentially with the size they do not contribute with

an extra entropy to the system. Theoretical results are well know in case of mean field theory
(SK model) in which all is more or less under control.

The SK model is defined by the hamiltonian

H
=

~j fjaiaj h ~j
ai (I)

i<J i

where the fj are quenched variables with zero mean and I IN variance. The order parameter

is defined by

Qar =

j £?i
Ti (2)

I
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where (a,, ri) are the spins of two independent replicas of the hamiltonian equation (I) with

the same realization of the disorder. From this overlap we construct its probability distribution

P(q)
=

G
=

b q j ~j >T>) (3)

where ((.))
means thermodynamic average and (.) means average over samples. The thermo-

dynamic average is defined by

1(...)I
=

j ~j(...)
exp (-fl H21a, Tl) (4)

with

H2(a, r]
=

Hi(a] + Hi(r] (5)

and the partition function is

z
=

~j
exP (-fl H2 la, Tl) (6)

Replica theory computes all moments Pj(q) from which one can construct its probability

distribution [16]. One of the most important results of mean field theory regard the form

of the P(Q) function. It consists of a continuous non self-averaging part plus a delta-type

singularity at the maximum overlap q = Qmax =
Q(I) where Q(x) is related to P(q) by

dx(q)
~~~~'

Q~ = dq

and x(Q) is the invers of the monotonous function Q(x) [17, 18].
The function P(q) is symmetric. This means that for a given pure state there is another one

related by the inversion of the spins. When a finite magnetic field h is applied to the system we

add to the Hamiltonian equation (I) a perturbation h ~j
ai =

N h m proportional to the size

i

of the system N where m is the magnetization. Since all pure states have zero magnetization

the external field does not couple to any particular state and there is no reason why only one

state should be selected. In fact, this is what happens in the infinite-ranged model where an

infinite number of states still survive to the applied field. In that case, P(q) is non zero only

for Positive and it consists of a continuous part Po(Q) limited by two singularities at
" Qmin

and q = qmax [19].
P(Q)

"
~b (Q Qmin) + P0(Q) + bb (Q Qmax) (8)

and Po(Q) non-zero within the interval Qmin < q < Qmax.

Recently, finite-size corrections to both singularities have been analitically computed. It has

been found [20, 21] that

P (Q > Qmax)
~

N~/~f (>+N (Q
maX)~) (9)

~'(Q ~ Qmin)
~

~ f ~-~ (Qmin Q) (~~)~~~ ~
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with f(x)
r~

exp(-x) for x » I and A+ approximately one order of magnitude greater than

A- [20]. This means that finite-size effects for the singularity at q = qmin should be stronger
than those at " Qmax. For a finite size one also would expect that the height of P(q) at

q = qmin should be smaller than the height of P(q) at q = qmax. Then we expect to find in

the SK model that the P(q) has a left tail with strong finite-size corrections extending down

to negative values of Q. Only for very large sizes the singularity at q = Qmin would be seen. In

fact, we do not know of any numerical work which has tested this point.
The problem we pose in this work regards the determination of the AT line in short-ranged

models. These are given by the Hamiltonian

H
=

~j fj ai aj h ~j
ai II

(",J> 1

and the sum (I, j) runs over nearest neighbours on a simple lattice in d dimensions. In order

to increase the speed of the simulations it is usually taken J,j
=

~l with equal probability.
Recently we have found that finite-size scaling techniques are useful in order to discover the

AT line [12]. The main idea is to find a divergence in the non-linear susceptibility. Finite-size

scaling techniques are useful in spin glasses because one is able to discover the phase transition

qualitatively studying relatively small systems. The danger is that one is not able to discern

between a true divergence in the infinite size limit and a transient behaviour for small sizes.

At zero magnetic field these techniques produce good qualitative results [22]. In general, in

order to locate the transition one introduces the Binder parameter (plainly speaking it is the

curtosis of the order parameter distribution P(q)). This is defined by

g =

3
~ ~ ~

(12)

~

~~2

In a magnetic field one could also define the curtosis by considering the cumulants of the
P(Q) instead of its moments. But now one finds that due to the strong finite-size corrections
and because of the asymmetry between the tail of P(q) when q < qmin respect to the tail for

q > Qmax it is not possible to locate the transition point using data for not too very large sizes.

The conclusion is that in a magnetic field the Binder function is not a good tool. Another

technique in order to locate the transition point is to use the skewness of the distribution P(q).
This quantity is defined by

8=

~~ ~~ (13)

< q2 3/2

where the < >c mean the cumulants of the distribution P(q). This quantity should be

zero if the P(Q) function were symmetric. Only with a magnetic field and within the spin-glass
phase it should be different from zero. As we will show in the next section, also studying the

skewness it is difficult to locate the transition temperature with a magnetic field. Because of

this, if a phase transition exists at finite magnetic field it is difficult to determine a function

which could permit to see the transition temperature in an acceptable range of small sizes (I.e.
L less than 10 for d

=
4). This makes the determination of the phase transition more difficult

because the transition point has to be searched more indirectly. A similar situation is present

in the three-dimensional ising model at zero field. It is difficult to locate the phase transition
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using the Binder function [22] and one searches for a divergence in the spin-glass susceptibility
[23].

The non linear spin-glass susceptibility is defined by:

Xni "
N

(Q~)
(Q)

j
(14)

with N
=

L~, d being the dimensionality of the system. These moments can be obtained

from the probability distribution P(Q) which in the critical line and for short-ranged models is

expected to scale like

P (Q > Q0)
'~

L~~ f (>+N (Q Q0)~) (15)

P (q < qo)
r~

L~~ f (A-N (qo q) II (16)

The values A- and A+ have been computed in the mean-field case [20] and their values are

related to the length of the left and right tails of the P(q) distribution. In short-range models

one finds that the region of negative overlaps of the left tail is slowly supressed with the size.

Also it is difficult to find the existence of
a peak in the P(q) distribution corresponding to

the minimum overlap. Instead of, the right tail shows a promiment peak with a tail which

progressive dissapears when the size of the system increases. This features
are also observed

in the SK model and they suggest that in short-range models the relation A- « A+ is also

expected. dq are the dimensions of the operator Qab in units of the inverse correlation length.

(Q) " Qo + O jL~~~) (17)

Also, dq is related to the critical exponents along the AT line:

d-2+n
(18)dq =

~

where q is the Fisher exponent which governs the decay of the correlation function in the

critical line:

G(I)
"

(Q(o)Q(I))c
'~ ~d ~+~ (19)

with q(I)
= a,r, and the spins (a, r) belong to two different replicas of the system.

The non linear susceptibility is expected to diverge in the AT line

Xni "

~j G(I)
r~

L~~~ (20)

>

and near the critical line we expect to find the scaling behaviour

xni ~

L~~~ f(f/L)
r~

L~~~ f (Ll (T Tc(h))) (21)

Because of the fact A- « A+ we expect that the left tail of the P(Q) falls down very slowly
reaching the side with negative overlaps. This finite-size effect is very strong and difficult to

control. In mean-field theory (d
=

6) we have dq =
2 and q =

0. The non-linear susceptibility

is expected to diverge like L~
or

(in case of the SK model) Ni. Figure I shows results for

the SK model at the AT line (we have choose T
=

0.5, h
=

0.569934 far from the critical
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Fig. I. xnj versus the size N for the SK model in the AT line. It diverges like N~/3

point Tc
=

I, h
=

0.). This point in the h T plane has been determined solving the usual

saddle-point equations ill]. The sizes range from N
=

32 up to N
=

768 with a number of

samples which range from 6000 for the smallest sizes down to 2000 for the largest ones. We

find a power law divergence xni ~

N°.~~
more or less consistent with the expected exponent

Nl,

Below du
=

6 we do not know the position of the AT line (if it exists). To determine

it we use, as we commented previously, finite-size scaling techniques. In the spin-glass at

four dimensions this has been already done in a previous work [12]. In that work, we found

evidence of a divergence of Xni for h
=

0.6 and T ci I-I- Now we present results for smaller

fields (h
=

o.3, o.4) and a similar range of sizes. In order to have more information on the

transition line we have investigated also the behaviour of the link to link energy overlap. The

energy overlap Q~ is defined by

qe
=

j ~ a,ajJ(r,rj (22)

(1,J)

with fj
=

~l and then J(
=

I.

This quantity was introduced in [24] in order to study the three dimensional ising spin glass
within a magnetic field. After that, it has been shown to be very useful to study the nature

of the spin-glass phase at zero magnetic field in the four dimensional Ising spin glass [14, 15].

According to droplet models, the configurations of spins which have overlap close to zero in

the tail of the P(q) (far from the maximum overlap Qmax which is the true order parameter

if there is a unique ground state) should correspond to excited states. This excited states

are inversion of local compact domains of surface with fractal dimension ds < d. In droplet

models one naturally expects ds not to be exactly equal to d. This implies that the probability

distribution of q~ is peaked around a certain value. This discussion concerns short-range models

(in the SK model all spins interact among them). At zero field [15] and d
=

4 we found that

this seems not be the case and P(q~) develops two singularities reminiscent of the P(q) of the

SK ~odei in a magnetic field. Then, even though P(q) shows strong finite-size effects [25]
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having a tail which extends down to
"

0 this should not to be the case for P (q~). It is true

that ds could be equal to d but we expect this result only when the surface is the volume (for
example at infinite dimensionality). The difference between the fractal dimension ds and d

should increase as the dimensionality of the system decreases.

The fact is that P (q~) does not show so much large tails like P(Q) and it is not very much

affected by the application of a magnetic field. Finite-size scaling techniques for the energy
overlap Q~ are also useful to determine the phase transition in a magnetic field. In the critical

line we expect.

(q~)
=

ql + ° (L~~~ (23)

and from equation (17) we expect the dimensions d~ of the operator energy to satisfy the

inequality d~ > dq because Qo # 0 (d~
=

dq above six dimensions). This should be taken as

a conjeture and we will see that our results are in agreement with it. At zero magnetic field

the relation de > 2dq is satisfied as can be seen using renormalization group derivations near

six dimensions [26]. The fact that de
= dq =

2 in mean-field theory is related to the nature

of the finite-size corrections in the AT line. This was studied in a previous work [21]. It was

found that finite-size corrections to the internal energy go like N~~/3 in the AT line. The

explanation why corrections behave like N~2/3 instead of N~l/3 is that the coefficient of the

last one, even though it is the dominant for large sizes, is much smaller than the coefficient of

the correction N~2/3. A simple explanation of this fact comes when looking to the behaviour

of P(q) in the AT line. For a finite-size the P(q) is not a delta function but a peaked one (with

a finite variance) around a certain value qo(N). In mean-field theory Qo(N) and the variance

have in corrections N~l/~ and N~2/~ respectively. We can write

P(q)
r~

Nl f (N (q qo(N))~ (24)

The function f(x) behaves like exp(- (x( for large values of the exponent x. From equation
(24) we find that there are two finite-size corrections which affect all moments of P(q). The

first one is the motion of qo(N) with N and the other one is the progressive shrinking of the

peak whose variance decreases like N~~/~. The finite-size corrections to the internal energy

can be computed if one takes into account the fact that (only valid in infinite dimensions) [27].

u
=

(i / ~P(q)dq)
(25)

Inserting equation (24) in equation (25) (which is exact for a finite size)
we get for the

internal energy two different finite-size corrections (one of order N~~/~, the other of order

N~~/~). It can be shown that the effect of the shrinking of the peak has a coefficient neatly
higher than that of the motion of qo (N) towards qo(cc) (this can be analitically found in mean-

field theory). This explains why finite-size corrections which go like N~2/~
are found in the

AT line for the energy. The coefficient of the N~i correction can also be analitically computed

as was shown in [21].
A similar argument should be considered for short-ranged systems. This means that for the

small sizes which can be studied using finite-size scaling one sees for the link to link energy a

critical behaviour on the AT line which is mainly governed by a value of de approximately the

twice of its real value (which should correspond to the next order finite-size correction). We

expect

-2

XII
"

N (Q?) toe) (26)



2214 JOURNAL DE PHYSIQUE I N°11

which should scale like

x[j
r~

L~~~~
x (Ll (T Tc(h) )) (27)

with

de
"

~
~~ ~~ (28)

Even though we should ixpect (for very large sizes) both exponents q and q~ to be such

that dq < de it could be that for the sizes one is able to study with numerical techniques,
the exponent qe obtained using the finite-size scaling equation (27) is different from the true

exponent qe derived from the main critical behaviour on the AT line for the parameter Qe.

From these considerations about the critical behaviour on the AT line we expect the quotient
de /dq in the AT line to be approximately twice its true value. Also, for small sizes and not

too much large fields the system could feel the effects of the critical point at zero field. In the

critical point the value de /dq
ci 2.7 was obtained for d

=
4 in a pevious work [14]. In any

case the value found for small sizes using finite-size scaling techniques should be intermediate

between this ratio (d~/dq ce 2.7) and the correct one de /dq > I.

In the following section we are going to present our numerical results for small samples
using finite-size scaling techniques. We remind the reader on the difficulty to extract a precise

determination of the parameters describing the transition (critical temperature and critical

exponents) and that our main derivations are obtained using the arguments presented in this

section.

3. Finite-size scaling results.

In this section we show the numerical results we have obtained studying the four-dimensional

ising spin glass with a magnetic field equation (II). We have done Monte Carlo numerical

simulations using the heat bath method in a four-dimensional lattice with periodic boundary
conditions. Two magnetic fields have been studied h

=
0.3, 0A far front the h

=
0 line. This

is also smaller than the field h
=

0.6 we studied in the previous work [12].
Firstly we present results for h

=
0.4. In this case we have tried to determine the transition

point studying the Binder function equation (12) and the skewness equation (13) of the order

parameter q. To this end we have simulated three sizes L
=

3, 4, 5 and a large number

of samples (900,500,100 respectively). It is necessary to simulate a large number of samples
because of the strong fluctuations of the curtosis and the skewness from sample to sample. A

slow cooling procedure was done in order to thermalize the samples even though it was not

too much difficult reach equilibrium because of the small sizes we simulated. Figures 2 and 3

show the Binder parameter and the skewness for these sizes in a wide range of temperatures
(from T

=
2.5 down to T

=
1.25). In both cases (Binder parameter and skewness) all moment>

have been computed over the distribution P((Q(). When the P(Q) has a tail extending down ti

negative overlaps the moments < (q(~ > are different from the moments < Q~ > Anyway
w

expect that the crossing point can be determined using both types of moments because thf

should coincide for very large sizes.

There is no clear signature of a crossing point similar to that found at zero magnetic fief

In fact, both parameters (curtosis and skewness) are highly irregular with the temperature a

this could be a consequence of the strong-finite size effects in the tail of the P(q) distributi>

Also we have studied the curtosis and the skewness for the overlap Qe and in this case

crossing point is seen. But these strong finite-size effects are more pronounced in the case

the overlap than in case of the overlap Qe.
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Fig. 2. The binder parameter g as a
function of the temperature for three different small sizes at

h
=

0A. The error bars have been obtained using the jack-knife method.

It could be argued that this could be a sign of no phase traJJsition. In fact, this possibility
is not excluded but as we will see later, the clear evidence of this strong finite-size corrections

(especially those which regard the left tail of the P(Q) distribution) give a direct explanation
why is so difficult to locate the transition with a magnetic field.

As we
commented in the second section we can try to determine indirectly the transition

point using finite-size scaling (Eqs. (21 and 27)). Following the same procedure like in a

previous [12] we have studied a smaller magnetic field h
=

0.3 (in that case we
studied a strong

magnetic field h
=

0.6 in order to be far from the critical point). We simulated six values

of L from L
=

3 up to L
=

8 with 64 samples in each case. We computed the non linear

susceptibilities xni and x[j for q and q~ respectively. In order to supress strong corrections

because of the tail of the P(q) extending down to negative overlaps (for Qe this effect is not

present)
we have calculated, instead of equation (14) the following non linear susceptibility

Xnl "
N (Q~) ((Q()

~l(29)

This expression tries to diminish the effect of the long tail of the P(Q) and it should give the

same divergence for large sizes like equation (14). We used simulated annealing [28] in order

to thermalize samples and a careful check was made in order to be sure that thermalization

was achieved especially for the largest sizes. The temperature was decreased from T
=

2.5

down to T
=

1.25, the Monte Carlo time growing as a power of the k-th step in the annealing
schedule. A power increase between three and four was enough to thermalize the samples.

Tipically for the largest sizes L
=

7, 8 the system stayed 10000 Monte Carlo steps at T
=

2.5
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Fig. 3- The skewness
as a

function of the temperature for three different small sizes at h
=

0-4. The

error bars have been obtained using the jack-knife method.

which were progressively increased up to 100000 at the lowest temperature T
=

1.25 (in
case

L
=

8 we simulated only down to T
=

1.5). At each temperature statistics was collected over

20000 Mcsteps. Also, 8 replicas were made to evolve in parallel increasing the statistics up to

160000 Mcsteps.
Figures 4 and 5 show xni and X[i respectively versus size in a logarithmic scale. Power law

divergences set in close to T
=

1.7.Km seems to diverge like L~.~ and x[j like L~.°. In order

to establish more accurately the transition point and the value of the critical exponents we

have constructed a numerical algorithm which looks for the best fit. This algorithm uses the

least squares method and looks for the three parameters (Tc, q and v) which minimize the cost

function (in data analysis it is usually called x~). The difficulty of finding the transition point
is clearly seen when looking at the overlap q. In this case it is very difficult to find a good fit

and this gives a critical temperature close to T
=

1.5 which we judge not very fiable and too

small because of the bad quality of the finite-size scaling (a similar feature was observed in

our previous work for h
=

0.6 and it could be that our estimate for the critical temperature
close to T

=
I.I in that case were too small). The explanation why the overlap q is not useful

to accurately determine the transition temperature and the critical exponents is because of

the aforementioned strong finite-size effects. Figure 6 shows the symmetrized order parameter
P( (q( for three sizes L

=
5, 6, 7 for the field h

=
0.3 at the lowest temperature T

=
1.25. Even

for L
=

7 the P((q[) shows a long left tail extending to zero overlap. This means that P(q) for

L
=

7 still reaches the region of negative overlaps.

Instead of, we can
search for the best fit in case of the energy overlap qe. Figure 7 shows

p (q~) for the same sizes like figure 6. In this case the support of the distribution P (qe) is

always in the region of positive values of the overlap qe and finite-size effects are smaller.



N°11 AT LINE IN THE 4D ISING SPIN GLASS 2217

o o

,

~ ~

.
2.5

/
,

"

,

a 2.25

/
°. ,'

/ '~
'

°

o 2.0
° '/x'

O
, +

/
-x- .1.75

j '

°

A

II ,'
.+. .1.5

o, ,'
~

,
, °

~

~

~ l.25 /j~
~

.

~4
10

/
/

.

° ~/. ,'

.

j'
j ~

x

o

a

o

L

Fig. 4. xnj versus
size for

a
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T
=

1-7 and xnj +~

L~~~ with ~ ci -0.6.

Using our numerical algorithm for the best finite-size scaling for the energy overlap qe we find

Tc
=

1.75 ~ 0.02, v =
0.9 ~ 0.I and qe ce 1.0 ~ 0.I. The error bars delimite the region in

which our numerical algorithm gives a good fit. These error bars should be take with care and

only like estimates. It is difficult to find the precise value of the error bars and they could

be determined correctly only using a sophisticated jack-knife method. The best fit is of good

quality to the naked eye and it is shown in figure 8. The value of q~ ci 1.0 for the critical

temperature Tc ci 1.75 is consistent with the slope of the divergence shown in figure 5. Using

the value of Tc found with the overlap qe we can establish the value of q for the overlap q

looking at figure 4. We obtain q ce -0.6 ~ 0.I and using the previous values of Tc and v for

q~ we obtain the finite-size scaling plot shown in figure 9. The curves for different sizes do not

seem to fall onto the same universal curve but this has not to be a surprise because, as we

commented previously, also does not the best fit (let
us

remember that the parameters Tc, q

and v we have used in figure 9 are not the ones we obtain looking at the best fit for the overlap

q using our numerical algorithm).

Using equations (18 and 28) we obtain dq t 0.7 and d~ ce 1.5 giving the ratio
)

r~
2.2. This

q

ratio should be intermediate between the value found at zero field (t 2.7) [14] and its real value

(d~ /dq > I). This gives support to the fact that the energy overlap shows the critical behavior

of the codominant finite-size correction (which is the dominant one at zero magnetic field). In

fact, we can estimate the true ratio
).

Because de shows the codominant finite-size correction

q
which should be the second order one we can estimate de to be the half one de t 0.75. As

commented in the previous section, this also happens in mean-field theory in the AT line.

Using numerical simulations one finds de
=

4 but the correct value is the half one de
= dq =

2.
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In the four-dimensional case with applied magnetic field we obtain the ratio
~~

m I-I.
dq

Our results for h
=

0.3 (altogether with those previously found at h
=

0.6 [12]) are compat-
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ible with the existence of a transition line in finite magnetic field with a similar form to that

of mean-field theory and (obviously) with different critical exponents. The Fisher exponent

n +~

-o.6(~o.I) differs from that found at zero field q r~
-0.25(~0.I). Also the exponent v
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seems to be sensibly different (v
r~

0.9 ~ 0.I versus v t 0.7 ~ 0.2 at zero
field) within our

numerical precision. Then the AT line seems to be in a different universality class in respect
to the transition at zero magnetic field.

We stress that it is very difficult to locate the transition point using the overlap q for the

small sizes we have investigated. It is affected of very strong finite-size corrections (the always
commented effect of the left tail of the P(Q)). In our previous determination of the AT line

with a higher field h
=

0.6 these effects were smaller in respect to the results we now present
at field h

=
0.3 because in a higher field we expect that the left tail of the P(q) is suppressed

faster. In fact, in that case the finite-size scaling for the overlap q (our Fig. 9) was better to

the naked eye. It is difficult to quantify how many this higher-order corrections can perturb
the results and a precise determination of the critical temperature and of the critical exponents
along the AT line seems to be very difficult using finite-size scaling methods for small sizes.

In the following sections we present different approaches in order to discover the existence

of a transition line in a magnetic field but using larger sizes.

4. Replica symmetry breaking for large sizes.

As was explained in the second section one of the very features of a replica symmetry broken

phase with magnetic field is the existence of an infinity of equilibrium states which can be

described using the P(Q) function. If the spin-glass phase in a magnetic field in short range
models were similar to the phase predicted by the mean-field theory we expect that the P(q)
should have two singularities as described in equation (8).
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Let us now couple two replicas with a field
e

~2(?> Tj ~l (?j + l~l(Tj + E
~?iTi (30)

1

and the single replica Hamiltonian Hi is given in equation (11).
For a very large size and a finite coupling e

the overlap q among two replicas a and r can

vary with e in two different ways according to the sign of e. Generally~ within the spin-glass
phase, we can expect [14]:

Q(e)
= Qmax + E+ef~~

e > 0 (31)

Q(E) " Qmin E~(~E)~~~
E < ° (32)

In mean-field theory fqq
=

1/2 and in four dimensions at zero magnetic field its value seems

to be close to 1/3 [14]. Because of the large tail of the P(q) which extends down to negative
overlaps we expect E~ to be much smaller than E+ and the equation for Q(e) with e < 0 to

be much affected by higher-order corrections.

At zero magnetic field this quantity q(e) is very useful because it thermalizes relatively
quickly and it can be also easily measured using the Monte Carlo method. Physically speaking
it corresponds to the intra-valley overlap or overlap among two identical pure states with

an extra added perturbation proportional to the field
e. It can be also shown that it gives

equivalent information to the tails of the P(q) functions (see [14, 15]). With a magnetic field

is more difficult to extract information about the behaviour of q(e) with e especially when

e < 0. This is because the region of interest in which the equations (31 and 32) are valid is

when e < h~. When
e < 0 the behaviour of q(e) for

e < h2 differs from its behaviour for e > h2

because the effect of the magnetic field conflicts with the effect of the negative coupling
e

which

tends to make the spins of each of the two replicas to point in different directions. This effect

is not important when e > 0. This means that only for very small values of e one can use the

equations (32) to extrapolate to e -
0. Then the problem is that for such small values of e is

very difficult to thermalize and one encounters serious difficulties in order to find the values of

Qmin.

Anyway we have tried to discover indications of a finite discontinuity in Q(e) for e =
0. The

existence of a discontinuity in the quantity q(e) in the limit e -
0 is a signature of a replica

broken phase. Figure 10 shows q(e) for a very large size L
=

17 at finite magnetic field h
=

0.2

and temperature T
=

1.5. According to our finite-size scaling results we expect this point in the

h T plane to be within the spin-glass phase. The function Q(e) is far from being symmetric
under the interchange e - -e as expected (symmetry is expected only in the region (e( » h2

where the effect of the field is negligible).
Fitting our data to equation (31) for different positive values of

e
(from

e =
0.5 down to

e r~
6 x 10~~) we obtain qmax m 0Al and fqq close to 0A. This value 0Al is very similar

to the value of qmax found at zero magnetic field at the same temperature. This very small

dependence of qmax with the magnetic field is a peculiar feature also in mean-field theory.
For e negative we see that the overlap remains negative in a wide range of values of e. The

extrapolation using equation (32) does not work well. Using only values of e
smaller that 0.01

(in order to be in the region e < h~) one sees that next order corrections for e in equation
(32) when e is negative are important. This conclusion which is clearly seen for this very large
size is equivalent to the fact already commented in previous sections regarding the long left

tails of the P(q) function for small sizes. It is really difficult to obtain a fiable extrapolation of

qmin and we are not able to precisely determine the discontinuity in q for e -
0. What can be

concluded from looking at figure 10 is that there is a strong asymmetry between the behaviour
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nuities

~~ ~~~ ~~~~ ~~~ ~~~x Q~jin ~~~~

is, at least, a sign of metastability. If this discontinuities survive for very large times (less
than exp (N~) with close to 1/3 according to [30] which is the characteristic time of crossing

energy barriers among pure states) this could be naturally explained in terms of a phase with

replica symmetry breaking features.

But we can do more. We can study the time evolution of the overlaps for the same realization

of disorder but different initial conditions (I.e. different pairs of replicas). Within the spin-
glass phase we expect that starting from different pairs of thermalized (over a time to) initial

configurations, the overlaps and Qe will evolve identically over time scales t such that log(t) <

log (to After that, the different pairs of replicas will begin to surmount energy barriers (higher
than those of size Tlog (to) over which the replicas where initially at thermal equilibrium).
And overlaps will follow different trajectories in phase space. This first regime is well known

in mean-field theory [31]. Instead of, starting from random initial configurations we expect
diverging trajectories in phase space as soon as the time evolution takes place.

This is observed in our results. We have simulated a very large size L
=

18 for one realization

of the disorder. Figures ii and 12 show the time evolution of q and q~ in the paramagnetic
phase T

=
2.0, h

=
0.3 well above the AT line. The upper curves correspond to the case of

thermalized initial configurations over a time to
=

10000. The lower curves correspond to the

evolution starting from random initial configurations. Upper and lower curves show the time

evolution of four pairs of replicas. No sign of discontinuities (Eq. (33) bq and bq~ are observed.

Also there is no sign of diverging trajectories. Even though there is metastability (note that

the time evolution of the overlaps is noticeable only on large time scales)
no sign of replica

symmetry breaking is observed.

The picture is very different in figures 13 and 14. They correspond to dynamics below the

AT line, T
=

1.25, h
=

0.3 and the parameters are the same like figures II and 12. Firstly we

find evidence of a finite discontinuity for bq and hoe. Also, the upper curves
(corresponding to

4 pairs of replicas) follow the same time evolution up to a time t close to to After that time,
they begin to depart one from the other. The lower curves

(corresponding to random initial

configurations) began to depart very soon.

This results are in agreement with a phase transition at h
=

0.3 between T
=

1.25 and

T
=

2.0 from a paramagnetic phase to a spin-glass phase with replica symmetry breaking
features as we know in mean-field theory.

6. Conclusions.

One of the open questions in spin glasses regards the existence of a finite temperature phase
transition with an applied magnetic field. This question is of maximum interest in case of

short-range ising spin glasses in which mean-field theory and droplet models give substantially
different predictions.

We have adressed this question studying the four dimensional Ising spin glass. The technique

we have used is finite-size scaling. Our results are consistent with the existence of an AT line

similar to that found in mean-field theory (even though our numerical precision is not enough
in order to predict its precise form). This phase transition seems to be in a different universality
class to that found at zero field. We find q ce -0.6 ~ 0.I and v ci 0.9 ~ 0.I along the AT line.

The first exponent differs clearly from that found at zero field (q ci -0.25 ~ 0.I) but the second

one is only sensibly different (v ce 0.7 + 0.2). These results have been obtained studying both
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the order parameter and the energy overlap Q~ and they reveal the same kind of features like

in niean-field theory. Two main comments are in order.

The first one regards the liniitation of finite-size techniques. As we said in the second section

we are not able to see the dominant critical behaviour for the energy overlap Qe and it is very

difficult to obtain a best finite-size scaling for the non linear-susceptibility corresponding to the

overlap q. In fact, for the largest sizes we have been able to simulate (L
=

8), the probability
distribution P(q) for a finite niagnetic field still has a long tail reaches a wide zone of negative

overlaps. The consequences of this strong effect is that the Binder paranieter and the skewness

are not useful in order to locate the transition and this has to be searched niore indirectly. It

is clear then that if the effects of the tail of the P(Q)
are very strong, we cannot exclude the

possibility of a crossover to a different reginie for larger sizes. As a consequence (and
we have

concentrated our numerical study on the field h
=

0.3)
we have been able to extract critical

exponents looking for the best finite-size scaling for the energy overlap Qe. After that, we have

been able to deterniine the critical exponent q for the overlap Q. Our results for the critical

exponents are conipatible with those found in a previous work at a higher field h
=

0.6 and

they suggest that the AT line is in a different universality class.

A different approach but for niuch larger sizes (in which there is not a long tail for P(Q)
which reaches down to negative values of the overlap) is mandatory. To this end, we have

investigated the prediction of mean-field theory regarding the existence of two singularities in

the P(q) distribution (this was done for a size L
=

-17). Also we have studied the dynamics of a

large sample (L
=

18) within and out of the spin-glass phase. Our results obtained by coupling

two replicas suggest that the left tail of the P(q) has very strong next order corrections and

that there is a slight indication of a discontinuity in the overlap q(e) in the limit e -
0. This is

in agreement with the mean-field prediction on the existence of two singularities for the P(q)
located at two different values of the overlap Q. Also, we have studied the dynamics of the

system with a magnetic field. Our results are consistent with the picture of a spin-glass phase
with many valleys similar to what happens in mean-field theory.

The second comment refers to the order of the phase transition in a magnetic field. This

problem was studied long time ago by A-J- Bray and S.A. Roberts [32] using the
e expansion

near six dimensions. They did not found a non-gaussian fixed point below six dimensions

suggesting that there is not a usual phase transition with magnetic field. From our results we

have seen it seems to be of the usual second order type (for the largest size L
=

8 we have

seen that there is no latent heat)
even though we cannot exclude the possibility of a different

kind of phase transition with some features of first order ones. This is a very interesting open

problem.

In order to complement more all our results it would be necessary to perform a large scale

simulation for a very large size in order to confirm all our predictions for the critical exponents.
This is a very interesting open numerical task.
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