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Abstract In the Maxwell interaction model the collision rate is independent of the relative velocity of the
colliding pair and, as a consequence, the collisional moments are bilinear combinations of velocity moments
of the same or lower order. In general, however, the drift term of the Boltzmann equation couples moments of
a given order to moments of a higher order, thus preventing the solvability of the moment hierarchy, unless
approximate closures are introduced. On the other hand, there exist a number of states where the moment
hierarchy can be recursively solved, the solution generally exposing non-Newtonian properties. The aim of
this paper is to present an overview of results pertaining to some of those states, namely the planar Fourier
flow (without and with a constant gravity field), the planar Couette flow, the force-driven Poiseuille flow, and
the uniform shear flow.
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1 Introduction

As is well known, the classical kinetic theory of low-density gases began to be established as a mathematically
sound statistical-physical theory with the work of James Clerk Maxwell (1831–1879) [15–17]. Apart from
obtaining the velocity distribution function at equilibrium (first in 1860 and then, in a more rigorous way,
in 1867), Maxwell derived in 1866 and 1867 the transfer equations characterizing the rate of change of any
quantity (such as mass, momentum, or energy) which can be defined in terms of molecular properties. This
paved the way to Ludwig Boltzmann (1844–1906) in the derivation of his celebrated equation (1872) for
the rate of change of the velocity distribution itself. As a matter of fact, the Boltzmann equation is formally
equivalent to Maxwell’s infinite set of transfer equations.

In his work entitled “On the Dynamical Theory of Gases,” Maxwell departs from the hard-sphere model
and writes [15,17]

“In the present paper I propose to consider the molecules of a gas, not as elastic spheres of definite
radius, but as small bodies or groups of smaller molecules repelling one another with a force whose
direction always passes very nearly through the centres of gravity of the molecules, and whose magni-
tude is represented very nearly by some function of the distance of the centres of gravity. I have made
this modification of the theory in consequence of the results of my experiments on the viscosity of air
at different temperatures, and I have deduced from these experiments that the repulsion is inversely as
the fifth power of the distance”.
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Maxwell realized that the hypothesis of a force inversely proportional to the fifth power of the distance, or,
equivalently, of an interaction potential ϕ(r) ∝ r−4, makes the non-equilibrium distribution function f enter
the transfer equations in such a way that the transport coefficients can be evaluated without the need of knowing
the detailed form of f . His results with this interaction model showed that the shear viscosity was proportional
to the absolute temperature T , whereas in the case of hard spheres it is proportional to the square root of
the temperature. As said in the preceding quotation, Maxwell himself carried out a series of experiments to
measure the viscosity of air as a function of temperature. He writes [15,17]

“I have found by experiment that the coefficient of viscosity in a given gas is independent of the density,
and proportional to the absolute temperature, so that if ET be the viscosity, ET ∝ p/ρ”.

Modern measurements of the viscosity of air show that it is approximately proportional to T 0.76 over a wide
range of temperatures [5,6], so that the actual power is intermediate between the values predicted by the
hard-sphere and Maxwell models.

In any case, the adoption of Maxwell’s interaction model ϕ(r) ∝ r−4 allows one to extract some useful
information from the non-linear Boltzmann equation, or its associated set of moment equations, for states far
from equilibrium. Apart from its intrinsic interest, exact results derived for Maxwell molecules are important as
benchmarks to assess approximate moment methods, model kinetic equations, or numerical algorithms (deter-
ministic or stochastic) to solve the Boltzmann equation. Moreover, it turns out that many consequences of the
Boltzmann equation for Maxwell molecules, when properly rescaled with respect to the collision frequency,
can be (approximately) extrapolated to more general interaction potentials [32].

The aim of this paper is to review a few examples of non-equilibrium states whose hierarchy of moment
equations can be recursively solved for the Maxwell model. The structure and main properties of the moment
equations for Maxwell molecules are recalled in Sect. 2. This is followed by a description of the solution for
the planar Fourier flow (Sect. 3), the planar Couette flow (Sect. 4), the force-driven Poiseuille flow (Sect. 5),
and the uniform shear flow (Sect. 6). The paper is closed with some concluding remarks in Sect. 7.

2 Moment equations for Maxwell molecules

2.1 The Boltzmann equation

Let us consider a dilute gas made of particles of mass m interacting via a short-range pair potential ϕ(r). The
relevant statistical-mechanical description of the gas is conveyed by the one-particle velocity distribution func-
tion f (r, v, t). The number density n(r, t), the flow velocity u(r, t), and the temperature T (r, t) are related
to f through

n(r, t) =
∫

dv f (r, v, t), (1)

u(r, t) = 1

n(r, t)

∫
dv v f (r, v, t), (2)

n(r, t)kB T (r, t) = p(r, t) = m

3

∫
dv V 2(v, r, t) f (r, v, t), (3)

where kB is the Boltzmann constant and V(v, r, t) = v−u(r, t) is the so-called peculiar velocity. The fluxes of
momentum and energy are measured by the pressure (or stress) tensor P and the heat flux vector q, respectively.
Their expressions are

P(r, t) = m
∫

dv V(v, r, t)V(v, r, t) f (r, v, t), (4)

q(r, t) = m

2

∫
dv V 2(v, r, t)V(v, r, t) f (r, v, t). (5)

The time evolution of the velocity distribution function is governed by the Boltzmann equation [21,23]

∂

∂t
f = −v · ∇ f − ∂

∂v
·
(

F
m

f

)
+ J [v| f, f ]. (6)
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The first and second terms on the right-hand side represent the rate of change of f due to the free motion and
to the possible action of an external force F, respectively. In general, such a force can be non-conservative
and velocity-dependent, and in that case it must appear to the right of the operator ∂/∂v. The last term on
the right-hand side is the fundamental one. It gives the rate of change of f due to the interactions among the
particles treated as successions of local and instantaneous binary collisions. The explicit form of the (bilinear)
collision operator J [v| f, f ] is

J [v| f, f ] =
∫

dv1

∫
d�wB(w, χ)

[
f (v′) f (v′

1)− f (v) f (v1)
]
, (7)

where w ≡ v − v1 is the pre-collisional relative velocity,

v′ = v − (w · σ̂ )̂σ , v′
1 = v1 + (w · σ̂ )̂σ (8)

are the post-collisional velocities, σ̂ is a unit vector pointing on the apse line (i.e., the line joining the centers of
the two particles at their closest approach), χ is the scattering angle (i.e., the angle between the post-collisional
relative velocity w′ ≡ v′ − v′

1 and w), and d� = 4|ŵ · σ̂ |dσ̂ is an element of solid angle about the direction of
w′. Finally, B(w, χ) is the differential cross section [33]. This is the only quantity that depends on the choice
of the potential ϕ(r):

B(w, χ) = b(w, χ)

sin χ

∣∣∣∣∂b(w, χ)

∂χ

∣∣∣∣ , (9)

where the impact parameter b(w, χ) is obtained from inversion of

χ(w, b) = π − 2
∫ ∞

r0(w,b)
dr

b/r2

[
1 − (b/r)2 − 4ϕ(r)/mw2

]1/2 , (10)

r0(w, b) being the distance at closest approach, which is given as the root of 1 − (b/r)2 − 4ϕ(r)/mw2.
In the special case of inverse power-law (IPL) repulsive potentials of the form ϕ(r) = ϕ0(σ/r)ζ , the scatter-

ing angle χ depends on both b and w through the scaled dimensionless parameter β = (b/σ)(mw2/2ζϕ0)
1/ζ

(ϕ0, σ , and ζ being constants), namely

χ(β) = π − 2
∫ β0(β)

0
dβ ′

[
1 − β ′2 − 2

ζ

(
β ′

β

)ζ]−1/2

, (11)

where β0(β) is the root of the quantity enclosed by brackets. For this class of potentials the differential cross
section has the scaling form

B(w, χ) = σ 2
(

2ζϕ0

mw2

)2/ζ

B(χ), B(χ) = β(χ)

sin χ

∣∣∣∣dβ(χ)dχ

∣∣∣∣ . (12)

The hard-sphere potential is recovered in the limit ζ → ∞, in which case β = b/σ, β0(β) = min(1, β),
β(χ) = cos(χ/2), and B(w, χ) = 1

4σ
2 = const. On the other hand, in the case of the Maxwell potential

(ζ = 4), the collision rate wB(w, χ) is independent of the relative speed w, namely

wB(w, χ) = QB(χ), Q ≡ σ 2
√

8ϕ0/m. (13)

Maxwell himself realized that if ζ = 4 the integral in Eq. (11) can be expressed in terms of the complete
elliptic integral of the first kind K (z), namely

χ(β) = π − 2
β

(2 + β4)1/4
K

(
1

2
− β2

2(2 + β4)1/2

)
. (14)

Obviously, the associated function B(χ) for the IPL Maxwell potential becomes rather cumbersome and needs
to be evaluated numerically. Nevertheless, it is sometimes convenient to depart from a strict adherence to the
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interaction potential ϕ(r) by directly modeling the scattering angle dependence of the differential cross section
[25]. In particular, in the variable soft-sphere (VSS) model one has [47,48]

β(χ) = cosϑ
χ

2
, B(χ) = ϑ

4
cos2(ϑ−1) χ

2
. (15)

If one chooses ϑ = 1, then the scattering is assumed to be isotropic [38] and one is dealing with the variable
hard-sphere (VHS) model [12]. However, this leads to a viscosity/self-diffusion ratio different from that of the
true IPL Maxwell interaction. To remedy this, in the VSS model [47] one takes ϑ = 2.13986. In the context
of inelastic Maxwell models [10], it is usual to take B(χ) ∝ |̂g · σ̂ |−1 = 1/ sin(χ/2).

2.2 Moment equations

Let ψ(v) be a test velocity function. Multiplying both sides of the Boltzmann equation (6) by ψ(v) and
integrating over velocity one gets the balance equation

∂�

∂t
+ ∇ · �ψ = σ

(F)
ψ + Jψ, (16)

where

� =
∫

dvψ(v) f (v) ≡ n〈ψ〉 (17)

is the local density of the quantity represented by ψ(v),

�ψ =
∫

dv vψ(v) f (v) (18)

is the associated flux,

σ
(F)
ψ =

∫
dv
∂ψ

∂v
·
[

F
m

f (v)
]

(19)

is a source term due to the external force, and

Jψ =
∫

dvψ(v)J [v| f, f ]

= 1

4

∫
dv
∫

dv1

∫
d�wB(w, χ)

[
ψ(v)+ ψ(v1)− ψ(v′)− ψ(v′

1)
]

f (v) f (v1) (20)

is the source term due to collisions. The general balance equation (16), which is usually referred to as the weak
form of the Boltzmann equation, is close to the approach followed by Maxwell in 1867 [17,95]. We say that�
is a moment of order α ifψ(v) is a polynomial of degree α. In that case, if the external force F is independent of
velocity, the source term σ

(F)
ψ is a moment of order α− 1. The hierarchical structure of the moment equations

is in general due to the flux �ψ and the collisional moment Jψ . The former is a moment of order α+ 1, while
the latter is a bilinear combination of moments of any order because of the velocity dependence of the collision
ratewB(w, χ). In order to get a closed set of equations some kind of approximate closure needs to be applied.
In the Hilbert and Chapman–Enskog (CE) methods [13,21,77] one focuses on the balance equations for the
five conserved quantities, namely ψ(v) = {1, v, v2}, so that Jψ = {0, 0, 0}. Next, an expansion of the velocity
distribution function in powers of the Knudsen number Kn = �mfp/�h (defined as the ratio between the mean
free path �mfp and the characteristic distance �h associated with the hydrodynamic gradients) provides the
Navier–Stokes (NS) hydrodynamic equations and their sequels (Burnett, super-Burnett, …). On a different
vein, Grad proposed in 1949 [35,36] to expand the distribution function f in a complete set of orthogonal
polynomials (essentially Hermite polynomials), the coefficients being the corresponding velocity moments.
Next, this expansion is truncated by retaining terms up to a given order α, so the (orthogonal) moments of order
higher than α are neglected and one finally gets a closed set of moment equations. In the usual 13-moment
approximation, the expansion includes the density n, the three components of the flow velocity u, the six
elements of the pressure tensor P, and the three components of the heat flux q. The method can be augmented
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to twenty moments by including the seven third-order moments apart from the heat flux. Variants of Grad’s
moment method have been developed in the last few years [79], this special issue reflecting the current state
of the art.

As said above, the collisional moment Jψ involves in general moments of every order. An important
exception takes place in the case of Maxwell models, where wB(w, χ) is independent of the relative speed w
(cf. Eq. 12 with ζ = 4). This implies that, if ψ(v) is a polynomial of degree α, then Jψ becomes a bilinear
combination of moments of order equal to or less than α [38,52,95]. To be more precise, let us define the
reduced orthogonal moments [19,35,52,62,95]

ψk�µ(c) = Nk�c
�L

(�+ 1
2 )

k (c2)Yµ� (̂c), (21)

where

c =
√

m

2kB T
V (22)

is the peculiar velocity normalized with respect to the thermal velocity, L
(�+ 1

2 )

k (c2) are generalized Laguerre
polynomials [1,37] (also known as Sonine polynomials), Yµ� (̂c) are spherical harmonics, ĉ = c/c being the
unit vector along the direction of c, and

Nk� =
[

2π3/2 k!
�(k + �+ 3

2 )

]1/2

(23)

are normalization constants, �(x) being the gamma function. The polynomials {ψα(c); α ≡ (k�µ)} form a
complete set of orthonormal functions with respect to the inner product 〈F |G〉 = π−3/2

∫
dc e−c2

F∗(c)G(c).
Let us denote as

Mα = 1

n

∫
dvψα(c) f (v) (24)

the (reduced) moment of order α = 2k + � associated with the polynomial ψα(c) ≡ ψk�µ(c). In the case of
Maxwell models one has

Jα = 1

n

∫
dvψα(c)J [v| f, f ]

= −λk�Mα +
†∑

α′,α′′
Cαα′α′′Mα′Mα′′ . (25)

The dagger in the summation means the constraints α′ +α′′ = α and 2 ≤ α′ ≤ α−2. Moreover, it is necessary
that (�, �′, �′′) form a triangle (i.e., |�′ − �′′| ≤ � ≤ �′ + �′′) and µ′ +µ′′ = µ [52]. The explicit expression of
the coefficients Cαα′α′′ = Cαα′′α′ is rather involved and can be found in Ref. [52]. A computer-aided algorithm
to generate the collisional moments for Maxwell models is described in Ref. [66].

Equation (25) shows that the polynomials ψα(c) are eigenfunctions of the linearized collision operator for
Maxwell particles, the eigenvalues λk� being given by

λk� = 2πnQ
∫ π

0
dχ sin χB(χ)

[
1 + δr0δ�0 − cos2k+� χ

2
P�
(

cos
χ

2

)
− sin2k+� χ

2
P�
(

sin
χ

2

)]
, (26)

where P�(x) are Legendre polynomials. Irrespective of the precise angular dependence of B(χ), the following
relationships hold

λk,1 = λk+1,0, (2�+ 1)λk� = (�+ 1)λk−1,�+1 + �λk,�−1. (27)

The eigenvalues can be expressed as linear combinations of the numerical coefficients
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Table 1 Reduced eigenvalues λk� ≡ λk�/λ11 for 2k + � ≤ 6

k � λk�

0 0 0
0 1 0
1 0 0

0 2 3
2

1 1 1

0 3 9
4

2 0 1

1 2 7
4

0 4 7
2 − 35

8
A4
A2

2 1 3
2

1 3 11
4 − 5

2
A4
A2

0 5 5 − 175
16

A4
A2

3 0 3
2

2 2 9
4 − 3

2
A4
A2

1 4 4 − 115
16

A4
A2

0 6 27
4 − 357

16
A4
A2

+ 231
16

A6
A2

Table 2 Coefficients A2a (a = 1, . . . 5) for the IPL, VSS (ϑ = 2.13986), and VHS (ϑ = 1) models

a ILP VSS VHS

1 0.685174 0.517177 0.523599
2 0.108109 0.102913 0.104720
3 0.0213745 0.0219923 0.0224399
4 0.00455921 0.00487876 0.00498666
5 0.00101072 0.00110750 0.00113333

A2a = 2π

π∫

0

dχ sin χB(χ) cosa χ

2
sina χ

2

= 2π

∞∫

0

dβ β cos2a χ(β)

2
sin2a χ(β)

2
. (28)

In particular, λ11 = 2nQ A2. The reduced eigenvalues λk� ≡ λk�/λ11 of order 2k + � ≤ 6 are listed in Table 1.
For the IPL model the coefficients Aa must be evaluated numerically. On the other hand, by assuming Eq. (15)
one simply has

A2a = πϑB(a + ϑ, a + 1), (29)

where B(x, y) = �(x)�(y)/�(x + y) is the Euler beta function [1,37]. Table 2 gives the first few values of
A2a for the IPL, VSS, and VHS models. It can be observed that the latter two models provide values quite
close to the correct IPL ones, especially as a increases. A rather extensive table of the eigenvalues λk� for the
IPL Maxwell model can be found in Ref. [4].

The most important eigenvalues are λ02 and λ11, which provide the NS shear viscosity and thermal con-
ductivity, namely

PNS
i j = pδi j − ηNS

(
∇i u j + ∇ j ui − 2

3
∇ · uδi j

)
, ηNS = p

λ02
, (30)

qNS = −κNS∇T, κNS = 5

2

kB p

mλ11
. (31)

AndresSantos
Comentario en el texto
2a

AndresSantos
Comentario en el texto
2a
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(a) (b) (c)

Fig. 1 Sketch of the steady states considered in this paper: a Fourier flow without (g = 0) or with (g �= 0) gravity, b Couette
flow, and c force-driven Poiseuille flow

2.3 Solvable states

Even in the case of Maxwell models the moment hierarchy (16) couples moments of order α to moments of
order α + 1 through the flux term �ψ . Therefore, the moment equations cannot be solved in general unless
an approximate closure is introduced. There exist, however, a few steady states where the hierarchy (16) for
Maxwell molecules can be recursively solved [32,74]. In those solutions one focuses on the bulk of the system
(i.e., away from the boundary layers) and assumes that the velocity distribution function adopts a normal form,
i.e., it depends on space only through the hydrodynamic fields (n,u, and T ) and their gradients. On the other
hand, it is not necessary to invoke that the Knudsen number Kn = �mfp/�h (where, as said before, �mfp is the
mean free path and �h is the characteristic distance associated with the hydrodynamic gradients) is small.

The aim of the remainder of the paper is to review some of those solutions. All of them have the common
features of a planar or channel geometry (gas enclosed between infinite parallel plates) and a one-dimensional
spatial dependence along the direction orthogonal to the plates. Figure 1 sketches the four steady states to be
considered. In the planar Fourier flow (without gravity) the recursive solvability of the moment equations is
tied to the fact that the (reduced) moments of order α = 2k + � are just polynomials in the Knudsen number
(here associated with the thermal gradient) of degree α − 2 and parity �. This simple polynomial dependence
is broken down when a gravity field is added but the problem is still solvable by a perturbation expansion in
powers of the gravity strength. When the gas is sheared by moving plates (planar Couette flow) the dependence
of the reduced moments on the Knudsen number associated with the thermal gradient is still polynomial, but
with coefficients that depend on the (reduced) shear rate. In the case of the force-driven Poiseuille flow the
non-equilibrium hydrodynamic profiles are induced by the presence of a longitudinal body force only. Again
a perturbation expansion allows one to get those profiles, which exhibit interesting non-Newtonian features.

3 Planar Fourier flow

3.1 Without gravity

In the planar Fourier flow the gas is enclosed between two infinite parallel plates kept at different temperatures
(see Fig. 1a). We assume that no external force is acting on the particles (g = 0) and consider the steady state
of the gas with gradients along the direction normal to the plates (∇ → ẑ∂z) and no flow velocity,

u = 0. (32)

Under these conditions, the Boltzmann equation (6) becomes

vz
∂

∂z
f (z, v) = J [v| f, f ] (33)

and the conservation laws of momentum and energy yield

Pzz = const, (34)

qz = const, (35)

respectively.
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In 1979 Asmolov et al. [9] proved that an exact normal solution of Eq. (33) for Maxwell molecules exists
with

p = nkB T = const, (36a)

T (z)
∂T (z)

∂z
= const. (36b)

The original paper is rather condensed and difficult to follow, so an independent derivation [70] is expounded
here.

Since in this problem the only hydrodynamic gradient is the thermal one, i.e., ∂zT , the obvious choice of
hydrodynamic length is �T = (∂z ln T )−1. As for the mean free path one can take �mfp = √

2kB T/m/λ11.
Both quantities are local and their ratio defines the relevant local Knudsen number of the problem, namely

ε(z) =
√

2kB T (z)/m

λ11(z)

∂ ln T (z)

∂z
. (37)

Note that λ11(z) ∝ n(z) ∝ 1/T (z), so that
√

T (z)ε(z) = const, where use has been made of Eq. (36). Here it
is assumed that the separation 2L between the plates is large enough as compared with the mean free path to
identify a bulk region where the normal solution applies. Such a solution can be non-dimensionalized in the
form

φ(c; ε) = 1

n(z)

[
2kB T (z)

m

]3/2

f (z, v), (38)

where c is defined by Eq. (22). All the spatial dependence of φ is contained in its dependence on c and ε. Thus

∂ f

∂z
= ∂T

∂z

∂ f

∂T
, (39)

where

∂ f

∂T
= n

(
2kB T

m

)−3/2 (
−5

2
T −1φ + ∂c

∂T
· ∂φ
∂c

+ ∂ε

∂T

∂φ

∂ε

)
. (40)

Taking into account that ∂c/∂T = − 1
2 T −1c and ∂ε/∂T = − 1

2 T −1ε, one finally gets

∂

∂z
f (z, v) = −n

(
m

2kB T

)2

λ11
ε

2

(
2 + ∂

∂c
· c + ε

∂

∂ε

)
φ(c; ε). (41)

Consequently, the Boltzmann equation (33) becomes

− ε

2
cz

(
2 + ∂

∂c
· c + ε

∂

∂ε

)
φ(c; ε) = n

λ11
Q
∫

dc1

∫
d�B(χ) [φ(c′

1; ε)φ(c′; ε)− φ(c1; ε)φ(c; ε)
]

≡ J [c|φ(ε), φ(ε)]. (42)

The orthogonal moments of φ(c; ε) are

Mk�(ε) =
∫

dcψk�(c)φ(c; ε), (43)

so that

φ(c; ε) = π−3/2e−c2
∞∑

k=0

∞∑
�=0

Mk�(ε)ψk�(c). (44)

Here,

ψk�(c) ≡ ψk�0(c) = Nk�

√
2�+ 1

4π
L
(�+ 1

2 )

k (c2)c�P�(cz/c). (45)
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The moments {Mk�} are a subclass of the moments defined by Eq. (24). From the definition of temperature
and density, and the fact that the flow velocity vanishes, it follows that

M00 = 1, M10 = M01 = 0. (46)

Taking into account the recurrence relations of the Laguerre and Legendre polynomials [1,37] it is easy to
prove that

c · ∂
∂c
ψk�(c) = (2k + �)ψk�(c)− 2

√
k

(
k + �+ 1

2

)
ψk−1,�(c), (47)

czψk�(c) = �k�ψk,�+1(c)− ωk+1,�−1ψk+1,�−1(c)+�k,�−1ψk,�−1(c)− ωk�ψk−1,�+1(c), (48)

where

�k� ≡ (�+ 1)

[
k + �+ 3

2

(2�+ 1)(2�+ 3)

]1/2

, ωk� ≡ (�+ 1)

[
k

(2�+ 1)(2�+ 3)

]1/2

. (49)

Multiplying both sides of Eq. (42) by ψk�(c) and integrating over c one gets

ε

2

(
2k + �− 1 − ε

∂

∂ε

) (
�k�Mk,�+1 − ωk+1,�−1Mk+1,�−1 +�k,�−1Mk,�−1 − ωk�Mk−1,�+1

)

−ε
√

k

(
k + �+ 1

2

) (
�k−1,�Mk−1,�+1 − ωk,�−1Mk,�−1 +�k−1,�−1Mk−1,�−1 − ωk−1,�Mk−2,�+1

)

= −λk�Mk� + 1

λ11

†∑
k′�′k′′�′′

Ck�k′�′k′′�′′Mk′�′Mk′′�′′ . (50)

The choice of the orthogonal moments {Mk�} simplifies the structure of the collisional terms but, on the other
hand, complicates the convective terms. Alternatively, one can use the non-orthogonal moments

Mk�(ε) =
∫

dc c2kc�zφ(c; ε). (51)

In that case, one gets

ε

2

(
2k + �− 1 − ε

∂

∂ε

)
Mk,�+1(ε) =

∫
dc c2kc�z J [c|φ(ε), φ(ε)]

≡ J k�(ε) (52)

from Eq. (42). Obviously, J k� is a bilinear combination of moments Mk′�′ of order equal to or smaller than
α = 2k + �.

Equations (50) and (52) reveal the hierarchical character of the moment equations: moments of order α
are coupled to moments of lower order but also to moments of order α + 1. However, the hierarchy can be
solved by following a recursive scheme. Of course, the moments of zeroth and first order, as well as one of
the two moments of second order are known by definition (cf. Eq. 46). The key point is that the moments of
order α ≥ 2 are polynomials in ε of degree α − 2 and parity �:

Mk�(ε) =
2k+�−2∑

j=0

µ
(k�)
j ε j , µ

(k�)
j = 0 if j + � = odd, (53)

whereµ(k�)j are pure numbers to be determined. Let us see that Eq. (53) is consistent with Eq. (50). First note that
all the moments on the left-hand side of Eq. (50) have a parity different from that of Mk� but the parity is restored
when multiplying by ε or applying the operator ε2∂/∂ε. Similarly, the condition 2k′ + �′ + 2k′′ + �′′ = 2k + �
assures that the product Mk′�′Mk′′�′′ is a polynomial of the same degree and parity as those of Mk�. Next,
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Fig. 2 Planar Fourier flow. Sketch of the sequence followed in the recursive determination of the numerical coefficientsµ(k�)j . All
the coefficients of the same order α = 2k + � are represented by a common circle. The coefficients with j < α/3 (represented
by circles lying below the dash-dot line) are equal to zero. So are the coefficients with j < �

although the moments Mk,�+1 and Mk+1�−1, are polynomials of degree 2k + �− 1, the action of the operator
ε(2k + �− 1 − ε∂/∂ε) transforms those polynomials into polynomials of degree 2k + �− 2.

In order to complete the proof that (53) provides a solution to the moment equations (50), a recursive
scheme must be devised to get the numerical coefficients µ(k�)j . First, notice that the left-hand side of Eq. (50)

contains at least the first power of ε. So, if � = even one easily gets µ(k�)0 , provided that µ(k
′�′)

0 is known for

2k′ + �′ ≤ 2k + �− 2. Next, if � = odd, the coefficient µ(k�)1 is determined from the previous knowledge of

µ
(k′�′)
0 for 2k′ + �′ ≤ 2k + � + 1 and of µ(k

′�′)
1 for 2k′ + �′ ≤ 2k + � − 2. Again, if � = even and we know

µ
(k′�′)
0 and µ(k

′�′)
2 for 2k′ + �′ ≤ 2k + � − 2, as well as µ(k

′�′)
1 for 2k′ + �′ ≤ 2k + � + 1, we can get µ(k�)2 ,

and so on. As a starting point (moments of zeroth degree) we have M10 = 0 and M02 = 0, the latter being a
consequence of M01 = 0. The recursive scheme is sketched in Fig. 2, where the arrows indicate the sequence
followed in the determination of µ(k�)j . The open (closed) circles represent the coefficients associated with
even (odd) j and �. Notice that the number of coefficients needed to determine a given moment Mk� is finite.
In fact, the coefficients represented in Fig. 2 are the ones involved in the evaluation of Mk� for k + 2� ≤ 8.
In practice, the number of coefficients actually needed is smaller since

µ
(k�)
j = 0 if j < max

(
2k + �

3
, �

)
. (54)

To check the above property, note that Eq. (50) implies that

µ
(k�)
j = L.C.

{
µ
(k,�+1)
j−1 , µ

(k+1,�−1)
j−1 , µ

(k−1,�+1)
j−1 , µ

(k,�−1)
j−1 , µ

(k−2,�+1)
j−1 , µ

(k−1,�−1)
j−1

}

+ L.C.

⎧⎨
⎩

j∑
j ′=0

µ
(k′�′)
j ′ µ

(k′′�′′)
j− j ′

⎫⎬
⎭

2k′+�′+2k′′+�′′=2k+�, |�′−�′′|≤�≤�′+�′′
, (55)

where L.C. stands for “linear combination of”. If µ(k�)j = 0 for j < 1
3 (2k + �) then the first term on the

right-hand side of Eq. (55) vanishes because j − 1 < 1
3 (2k + �− 3) < 1

3 (2k + �− 1) < 1
3 (2k + �+ 1); the

second term also vanishes because either j ′ < 1
3 (2k′ + �′) or j − j ′ < 1

3 (2k′′ + �′′). Similarly, if µ(k�)j = 0
for j < � then both terms on the right-hand side vanish because j − 1 < �− 1 < �+ 1 and either j ′ < �′ or
j − j ′ < �′′, respectively. The property µ(k�)j = 0 for j < � yields

M0� = 0, � ≥ 1. (56)
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Table 3 Planar Fourier flow: orthogonal moments Mk�(ε) and non-orthogonal moments Mk�(ε) for 2k + � ≤ 5 and for
(k, �) = (3, 1), (4, 1), and (5, 1)

k � Mk�(ε) Mk�(ε)

0 0 1 1
0 1 0 0

1 0 0 3
2

0 2 0 1
2

1 1
√

5
2 ε − 5

4 ε

0 3 0 − 3
4 ε

2 0 7
2

√
5
6 ε

2 15
4 + 35

4 ε
2

1 2 −4
√

2
21 ε

2 5
4 + 17

4 ε
2

0 4 0 3
4 + 81

28 ε
2

2 1 − 17(225−122A4/A2)

18
√

35(3−2A4/A2)
ε3 − 35

4 − 17(225−122A4/A2)
36(3−2A4/A2)

ε3

1 3
√

3
5

4(100−27A4/A2)
7(11−10A4/A2)(3−2A4/A2)

ε3 − 21
4 ε − 63225−86656A4/A2+29036(A4/A2)

2

84(11−10A4/A2)(3−2A4/A2)
ε3

0 5 0 − 15
4 ε − 5(3125−2074A4/A2)

84(11−10A4/A2)
ε3

3 1 21.86ε3 + 402.2ε5 − 945
16 ε − 726.2ε3 − 4.371 × 103ε5

4 1 −9.250ε3 − 1.471 × 103ε5 − 2.816 × 104ε7 − 3465
8 ε − 1.107 × 104ε3 − 1.712 × 105ε5 − 1.436 × 106ε7

5 1 2.038 × 103ε5 + 1.592 × 105ε7 + 3.548 × 106ε9 − 225 225
64 ε − 20 286 875

128 ε3 − 4.593 × 106ε5

−9.292 × 107ε7 − 1.031 × 109ε9

In the latter cases the numerical coefficients correspond to the IPL model. Those numerical values are, however, very similar to
those corresponding to the VHS and VSS models [28]

Since the non-orthogonal moments Mk� are linear combinations of the orthogonal moments Mk′�′ with
2k′ + �′ ≤ 2k + � and �+ �′ = even, the polynomial form (53) also holds for Mk�:

Mk�(ε) =
2k+�−2∑

j=0

m(k�)
j ε j , m(k�)

j = 0 if j + � = odd. (57)

The explicit expressions for the moments of order smaller than or equal to five are given in Table 3. It also
includes the moments of order seven, nine, and eleven corresponding to � = 1 and k = 3, 5, and 7, respectively.
The result M02 = 0 or, equivalently, M02 = 1

2 imply that

Pzz = p, (58)

in agreement with Newton’s law (30). The most noteworthy outcome is the linear relationship M11(ε) =
√

5
2 ε

or, equivalently, M11(ε) = − 5
4ε. This means that Fourier’s law (31) is exactly verified, i.e.,

qz = qNS
z , (59)

no matter how large the temperature gradient is. Likewise, M03(ε) = 0 or M03(ε) = − 3
4ε imply that

〈v3
z 〉 = 3

5
〈v2vz〉. (60)

The non-linear character of the solution, however, appears through moments of fourth order and higher.
Although those moments are polynomials, the velocity distribution function (44) involves all the powers in the
Knudsen number ε.

Figure 3 shows the Knudsen number dependence of the moments Mk1(ε) (k = 2–5) relative to their NS

values M
NS
k1 (ε) = m(k1)

1 ε. It is quite apparent that, as ε increases, important deviations from the NS predictions
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Fig. 3 Planar Fourier flow. Plot of the ratio Mk1(ε)/M
NS
k1 (ε) for, from bottom to top, k = 2, 3, 4, and 5

exist, even for low values of k. This is a consequence of the rapid growth of the non-linear coefficients of
Mk1(ε) and Mk1(ε) as k increases. This property also holds in the exact solution [46,71,72] of the Bhatna-
gar–Gross–Krook (BGK) model kinetic equation [11,97] for the Fourier flow, where it is proven that it is
closely related to the divergence of the CE expansion [72]. Whether or not this divergent character of the CE
expansion also holds for the solution of the true Boltzmann equation for Maxwell molecules cannot be proven
at this stage but it seems sensible to conjecture that the answer is affirmative.

A comparison between the analytical expressions of Mk1(ε)/M11(ε) for k = 2–5 and the numerical
values obtained from the DSMC method for ε � 0.08 shows an excellent agreement [28,29], thus validating
both the practical applicability of the theoretical results in the bulk region and the reliability of the simulation
method under highly non-equilibrium conditions. Although the validity of Fourier’s law for large thermal
gradients is in principle restricted to Maxwell models, it turns out that its practical applicability extends to
other potentials, such as that of hard spheres [53].

Before closing this section, it is worthwhile addressing the spatial dependence of the dimensional moments

Mk�(z) =
∫

dv v2kv�z f (z, v)

= n(z)

[
2kB T (z)

m

]k+�/2
Mk�(ε(z)). (61)

Taking into account Eq. (57) and the fact that
√

T (z)ε(z) = √
T0ε0 = const (where T0 and ε0 are the

temperature and the Knudsen number evaluated at z = 0, respectively), one can easily get

Mk�(z) = 2p

m

(
ε2

0
2kB T0

m

)k+�/2−1 k−1+[�/2]∑
j=0

m(k�)
2k+�−2−2 j

[
T (z)

ε2
0T0

] j

, (62)

where [�/2] is the integer part of �/2 and it is understood that 2k + � ≥ 2. Equation (62) shows that Mk�(z)
is just a polynomial in T (z) of degree k − 1 + [�/2]. As for the spatial dependence of temperature, Eq. (36b)
implies that

T (z) = T0

√
1 + 2ε0

�mfp(0)
z, (63)

where �mfp(0) ∝ T 3/2
0 /p is the local mean free path at z = 0. It is convenient to define a scaled spatial variable

s as

s =
∫ z

0
dz′ λ11(z

′). (64)

Since λ11(z) ∝ p/T (z), one has

s =
√

2kB T0/m

ε0

[√
1 + 2ε0

�mfp(0)
z − 1

]
. (65)
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In terms of this new variable the temperature profile (63) becomes linear,

T (s) = T0

(
1 + ε0√

2kB T0/m
s

)
. (66)

Likewise, according to Eq. (62), the moment Mk�(s) is a polynomial in s of degree k − 1 + [�/2]. The exact
solution of the BGK model for any interaction potential [46,71,72] keeps the linear and polynomial forms
of T (s) and Mk�(s), respectively, as functions of s. The only influence of the potential appears through the
temperature dependence of the collision frequency (which plays the role of λ11), so that when applying Eq. (64)
one does not get Eqs. (63) and (65), except for Maxwell molecules. The solution of the Boltzmann equation
for Maxwell molecules described here can be extended to the case of gaseous mixtures [60].

3.2 With gravity

Let us suppose that the planar Fourier flow is perturbed by a constant body force F = −mĝz orthogonal to
the plates and directed downwards (e.g., gravity). This situation is sketched in Fig. 1a with g �= 0 and has the
same geometry as the Rayleigh–Bénard problem. In fact, we can define a microscopic local Rayleigh number
as

γ ≡ g

λ2
11

∂ ln T

∂z
= gε

λ11
√

2kB T/m
, (67)

where in the last step use has been made of Eq. (37). The dimensionless parameters γ and ε characterize the
normal state of the system. Note that γ = 0 implies that either g = 0 but ε �= 0 (Fourier flow without gravity)
or ε = 0 but g �= 0 (equilibrium state with a pressure profile given by the barometric formula).

The conventional Rayleigh number is Ra ∼ |γ |(L/�mfp)
4. The situation depicted in Fig. 1a corresponds

to a gas heated from above (∂zT > 0 ⇒ γ > 0). If the gas is heated from below then ∂zT < 0 and γ < 0.
We assume that either γ > 0 or γ < 0 but Ra � 1700, so that the gas at rest is stable and there is no convec-
tion (u = 0). On the other hand, rarefied gases can present a Rayleigh–Bénard instability under appropriate
conditions [20,78].

The stationary Boltzmann equation for the problem at hand reads

vz
∂

∂z
f (z, v)− g

∂

∂vz
f (z, v) = J [v| f, f ]. (68)

In this case the moment hierarchy (16) becomes

∂

∂z
Mk,�+1(z)+ g

[
2k Mk−1,�+1(z)+ �Mk,�−1(z)

] = Jk�(z), (69)

where the moments Mk� are defined by the first equality of Eq. (61) and Jk� are the corresponding collisional
moments. In particular, conservation of momentum and energy imply that ∂z M02 = −gn and ∂z M11 = 0,
respectively. In other words, one has

∂Pzz(z)

∂z
= −gρ(z), (70)

where ρ = mn is the mass density, plus Eq. (35). The presence of the terms proportional to g in Eqs. (68) and
(69) complicates the problem significantly, thus preventing an exact solution (for general ε and γ ), even in the
case of Maxwell molecules. On the other hand, if |γ | � 1 one can treat it as a small parameter and carry out
a perturbation expansion of the form

f (z, v) = f (0)(z, v)+ f (1)(z, v)γ + f (2)(z, v)γ 2 + · · · , (71)

Mk�(z) = M (0)
k� (z)+ M (1)

k� (z)γ + M (2)
k� (z)γ

2 + · · · . (72)

Here the superscript (0) denotes the reference state without gravity, i.e., the one analyzed in Sect. 3.1. When
the expansion (72) is inserted into Eq. (69) one gets a recursive scheme allowing one to obtain, in principle,
{M ( j+1)

k� } from the previous knowledge of {M ( j)
k� }. The technical details can be found in Ref. [83] and here
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only the relevant final results will be presented. First, it turns out that the temperature field T ( j) of order γ j is a
polynomial of degree j +1 in the scaled variable s defined by Eq. (64). This generalizes the linear relationship
(66) found for T (0) (i.e., in the absence of gravity). Analogously, M ( j)

k� for 2k + � ≥ 2 is a polynomial in s

of degree k + j − 1 + [�/2]. In order to fully determine M ( j)
k� it is necessary to make use of the collisional

moments Jk′�′ with 2k′ + �′ ≤ 2(2k + �+ j − 1). The main results are [83]

∂

∂z
T
∂T

∂z
= −104

5

mλ2
11T

kB
γ 2 + O(γ 3), (73)

Pzz − p

p
= 128

45
γ 2 + O(γ 3), (74)

qz = qNS
z

[
1 + 46

5
γ + O(γ 2)

]
, (75)

〈v3
z 〉 = 3

5
〈v2vz〉

[
1 + 64

105
γ + O(γ 2)

]
. (76)

Equations (73)–(76) account for the first corrections to Eqs. (36b), (58), (59), and (60), respectively, due to the
presence of gravity. In addition, given Eqs. (70) and (74), one has ∂z p = −ρg +O(γ 3). According to Eq. (75)
the presence of gravity produces an enhancement of the heat flux with respect to its NS value when heating
from above (γ > 0). The opposite effect occurs when heating from below (γ < 0).

The above theoretical predictions for Maxwell molecules were seen to agree at a semi-quantitative level
with DSMC results for hard spheres [82]. Moreover, an analysis similar to that of Ref. [83] can be carried out
from the BGK kinetic model. The results though order γ 6 [85] strongly suggest the asymptotic character of
the series (71) and (72). The theoretical asymptotic analysis of Ref. [85] agrees well with a finite-difference
numerical solution of the BGK equation [22].

4 Planar Couette flow

Apart from the Fourier flow, the steady planar Couette flow is perhaps the most basic non-equilibrium state. It
corresponds to a fluid enclosed between two infinite parallel plates maintained in relative motion (see Fig. 1b).
The plates can be kept at the same temperature or, more generally, at two different temperatures. In either case,
in addition to a velocity profile u = ux (z)̂x, a temperature profile T (z) appears in the system to produce the
non-uniform heat flux compensating for the viscous heating. As a consequence, there are two main hydrody-
namic lengths: the one associated with the thermal gradient (as in the Fourier flow), i.e., �T = (∂z ln T )−1,
plus the one associated with the shear rate, namely �u = √

2kB T/m(∂ux/∂z)−1. Therefore, two independent
(local) Knudsen numbers can be defined: the reduced thermal gradient defined by Eq. (37) and the reduced
shear rate

a = 1

λ02

∂ux

∂z
, (77)

where for convenience here we use the collision frequency λ02 associated with the viscosity, while in Eq. (37)
use is made of the collision frequency λ11 associated with the thermal conductivity. Like in the planar Fourier
flow, the Boltzmann equation of the problem reduces to Eq. (33). The conservation of momentum implies
Eq. (34) as well as

Pxz = const. (78)

However, in contrast to Eq. (35), now the energy conservation equation becomes

∂qz

∂z
+ Pxz

∂ux

∂z
= 0. (79)

In 1981, Makashev and Nosik [50,61] extended to the planar Couette flow the solution found in Ref. [9]
for the planar Fourier flow. More specifically, they proved that a normal solution to Eq. (33) for Maxwell
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molecules exists characterized by a constant pressure, i.e., Eq. (36a), and velocity and temperature profiles
satisfying

T (z)
∂ux (z)

∂z
= const, (80a)

T (z)
∂

∂z
T (z)

∂T (z)

∂z
= const. (80b)

These two equations are the counterparts to Eqs. (32) and (36b), respectively. Since λ02 ∝ p/T , Eq. (80a)
implies that the dimensionless local shear rate defined by Eq. (77) is actually uniform across the system, i.e.,

a = const. (81)

In the NS description, Eq. (81) follows immediately from the constitutive equation (30) and the exact conser-
vation laws (34) and (78). Here, however, Eq. (81) holds even when both Knudsen numbers ε and a are not
small and Newton’s law (30) fails. This failure can be characterized by means of a non-linear (dimensionless)
shear viscosity η∗(a) and two (dimensionless) normal stress differences �1,2(a) defined by

Pxz = −η∗(a)ηNS
∂ux

∂z
, (82)

Pxx − Pzz

p
= �1(a),

Pyy − Pzz

p
= �2(a). (83)

Note that Eqs. (34), (36a), (78), and (81) are consistent with Eqs. (82) and (83), even though η∗(a) �= 1 and
�1,2(a) �= 0.

As for Eq. (80b), it can also be justified at the NS level by the constitutive equation (31) and the exact
conservation equation (79). Again, the validity of Eq. (80b) goes beyond the scope of Fourier’s law (31). More
specifically, Eq. (79) yields

1

λ11

∂qz

∂z
= 3p

2
η∗(a)a2 = const. (84)

Equations (80b) and (84) are consistent with a heat flux component qz given by a modified Fourier’s law of
the form

qz = −κ∗(a)κNS
∂T

∂z
, (85)

where κ∗(a) �= 1 is a non-linear (dimensionless) thermal conductivity. Equations (84) and (85) allow us to
identify the constant on the right-hand side of Eq. (80b), namely

T
∂

∂z
T
∂T

∂z
= −3m(λ11T )2

5kB
a2θ(a) = const, (86)

where θ(a) ≡ η∗(a)/κ∗(a) is a sort of non-linear Prandtl number. Making use of Eq. (37), Eq. (86) can be
rewritten as

√
T ε

∂

∂T

(√
T ε
)

= −6

5
a2θ(a). (87)

To prove the consistency of the assumed hydrodynamic profiles (36a) and (80) we can proceed along
similar lines as in the case of the planar Fourier flow [32,88]. First, we introduce the dimensionless velocity
distribution function

φ(c; ε, a) = 1

n(z)

[
2kB T (z)

m

]3/2

f (z, v), (88)

where now it is important to notice that the definition (22) includes the flow velocity u. Therefore,

∂ f

∂z
= ∂T

∂z

∂ f

∂T
+ ∂ux

∂z

∂ f

∂ux
, (89)
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where

∂ f

∂ux
= −n

(
m

2kB T

)2
∂φ

∂cx
. (90)

The derivative ∂ f/∂T is given again by Eq. (40), but now ∂ε/∂T = −T −1( 1
2ε + 6

5ε
−1a2θ) on account of

Eq. (87). In summary,

∂

∂z
f (z, v) = −n

(
m

2kB T

)2

λ11

[
ε

2

(
2 + ∂

∂c
· c + ε

∂

∂ε

)
+ 6

5
a2θ(a)

∂

∂ε
+ 3

2
a
∂

∂cx

]
φ(c; ε, a). (91)

Consequently, the Boltzmann equation (33) becomes

− cz

[
ε

2

(
2 + ∂

∂c
· c + ε

∂

∂ε

)
+ 6

5
a2θ(a)

∂

∂ε
+ 3

2
a
∂

∂cx

]
φ(c; ε, a)

= n

λ11
Q
∫

dc1

∫
d�B(χ) [φ(c′

1; ε, a)φ(c′; ε, a)− φ(c1; ε, a)φ(c; ε, a)
]

≡ J [c|φ(ε, a), φ(ε, a)]. (92)

Of course, Eq. (92) reduces to Eq. (42) in the special case of the Fourier flow (a = 0).
For simplicity, we consider now the following non-orthogonal moments of order α = 2k + �,

Mk�h(ε, a) =
∫

dc c2kc�−h
z ch

xφ(c; ε, a), 0 ≤ h ≤ �, (93)

instead of the orthogonal moments (24). By definition, M000 = 1,M010 = M011 = 0, and M100 = 3
2 .

According to Eq. (92) the moment equations read
[
ε

2

(
2k + �− 1 − ε

∂

∂ε

)
− 6

5
a2θ(a)

∂

∂ε

]
Mk,�+1,h + 3

2
a
(
2k Mk−1,�+2,h+1 + hMk,�,h−1

)

=
∫

dc c2kc�−h
z ch

x J [c|φ, φ] ≡ J k�h(ε, a). (94)

While this hierarchy is much more involved than Eq. (52), it can be easily checked to be consistent with
solutions of the form

Mk�h(ε, a) =
2k+�−2∑

j=0

m(k�h)
j (a)ε j , m(k�h)

j (a) = 0 if j + � = odd. (95)

Therefore, the moments Mk�h(ε, a) of order 2k +� ≥ 2 are again polynomials in the thermal Knudsen number
ε of degree 2k + � − 2 and parity �. In particular, the moments of second order are independent of ε, which
yields Eqs. (82) and (83) with

η∗(a) = −2m(021)
0 (a)

a
, (96)

�1(a) = 2
[
m(022)

0 (a)− m(020)
0 (a)

]
, �2(a) = 3 − 2

[
m(022)

0 (a)+ 2m(020)
0 (a)

]
. (97)

The third-order moments are linear in ε, as anticipated by Eq. (85) with

κ∗(a) = −4

5
m(110)

1 (a). (98)

Besides, the shearing induces a component of the heat flux parallel to the flow but normal to the thermal
gradient:

qx = �(a)κNS
∂T

∂z
, �(a) = 4

5
m(111)

1 (a). (99)
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Since the reduced shear rate a is constant in the bulk domain, it is not difficult to get the spatial dependence
of the dimensional moments

Mk�h(z) =
∫

dv |v − u(z)|2kv�−h
z [vx − ux (z)]h f (z, v)

= n(z)

[
2kB T (z)

m

]k+�/2
Mk�h(ε(z), a). (100)

Inserting Eq. (95) into Eq. (100) one has

Mk�h(z) = 2p

m

(
2kB

m

)k+�/2−1 k−1+[�/2]∑
j=0

m(k�h)
2k+�−2−2 j (a)

[√
T (z)ε(z)

]2k+�−2−2 j
[T (z)] j . (101)

As in the case of the Fourier flow, it is convenient to introduce the scaled spatial variable s through Eq. (64).
In terms of this variable, Eqs. (80) can be integrated to give

ux (s) = 3

2
as, T (s) = T0

[
1 + ε0√

2kB T0/m
s − 3m

10kB T0
a2θ(a)s2

]
, (102)

where use has been made of Eqs. (77) and (86). Thus, ux and T are linear and quadratic functions of s,
respectively. Analogously,

√
T ε is linear in s, namely

√
T (s)ε(s) = √

T0ε0 − 3
√

2m/kB

5
a2θ(a)s. (103)

Therefore, in view of Eq. (101), it turns out that, if expressed in terms of s, the dimensional moment Mk�h(s)
is a polynomial of degree 2k + �− 2. Inverting Eq. (64) one gets the relationship between s and z:

z = �mfp(0)
s√

2kB T0/m

[
1 + ε0

2

s√
2kB T0/m

− a2θ(a)
s2

10kB T0/m

]
. (104)

The solution to this cubic equation gives s as a function of z. Of course, Eqs. (65) and (66) are recovered from
Eqs. (104) and (102), respectively, by setting a = 0.

The key difference with respect to the Fourier flow case (cf. Eq. 57) is that, while the coefficients m(k�)
j were

pure numbers, now the coefficients m(k�h)
j (a), as well as θ(a), are non-linear functions of the shear Knudsen

number a (of parity equal to h). Unfortunately, the full dependence m(k�h)
j (a) cannot be recursively obtained

from Eq. (94) because the term headed by a2θ(a) couples m(k�h)
j (a) to m(k,�+1,h)

j+1 (a). On the other hand, since

that coupling is at least of order a2, it is possible to get recursively the numerical coefficients of the expansions
of m(k�h)

j (a) in powers of a [88]:

m(k�h)
j (a) =

∞∑
i=0

m(k�h)
j i ai , m(k�h)

j i = 0 if i + h = odd. (105)

Obviously, the coefficients m(k�h)
j0 are those of the Fourier flow and are obtained from the scheme of Fig. 2.

Their knowledge allows one to get m(k�h)
j1 , and so on. In general, the coefficients m(k�h)

j i can be determined from

the previous knowledge of the coefficients m(k′�′h′)
j ′i ′ with 2k′+�′ ≤ 2k+� and 2k′+�′+ j ′+i ′ ≤ 2k+�+ j +i .
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Table 4 Planar Couette flow: numerical values of the super-Burnett coefficients η∗
2, κ

∗
2 , and θ2 = η∗

2 − κ∗
2 , according to the

Boltzmann equation (for the IPL Maxwell potential) and several approximations

Coefficient Boltzmann BGK model Ellipsoidal Statistical model 13-moment R13-moment

η∗
2 −3.311 −3.60 −4.20 −2.60 −3.311
κ∗

2 −7.260 −6.48 −7.88 0.42 −7.256
θ2 3.948 2.88 3.68 −3.02 3.945

Table 5 Planar Couette flow: scaled moments Rk(ε), as defined by Eq. (111), for k = 1, 2, and 3

k Rk(ε)

1 7
2 + 22.41ε2

2 63
4 + 339.8ε2 + 2.184 × 103ε4

3 693
8 + 4.167 × 103ε2 + 7.153 × 104ε4 + 5.977 × 105ε6

From the results to order a3 one gets [32,88]

η∗(a) = 1 + η∗
2a2 + O(a4), η∗

2 = −149

45
, (106)

κ∗(a) = 1 + κ∗
2 a2 + O(a4), κ∗

2 = −15238 + 45A4/A2

2100
, (107)

θ(a) = 1 + θ2a2 + O(a4), θ2 = 24854 + 135A4/A2

6300
, (108)

�1(a) = 14

5
a2 + O(a4), �2(a) = 4

5
a2 + O(a4), (109)

�(a) = 7

2
a + O(a3). (110)

The coefficients in Eqs. (109) and (110) are of Burnett order, while those in Eqs. (106)–(108) are of super-Bur-
nett order. Table 4 compares the latter coefficients with the predictions of the BGK kinetic model [14,24,32,45],
the Ellipsoidal Statistical (ES) kinetic model [31,54] first proposed by Holway [7,18,40], Grad’s 13-moment
method [63,64], and the regularized 13-moment (R13) method [79–81]. Despite their simplicity, the BGK and
ES kinetic models provide reasonable values. The 13-moment method, however, gives wrong signs for κ∗

2 and
θ2. On the other hand, the more elaborate R13-moment method practically predicts the right results.

The quantities (82), (83), (85), and (99) correspond to moments of second and third order. As an illustration
of higher-order moments, let us introduce the quantities

Rk(ε) ≡ lim
a→0

Mk21(ε, a)

M021(a)
= lim

a→0

〈c2kcx cz〉
〈cx cz〉

= 1

m(021)
01

k∑
j=0

m(k21)
2 j,1 ε

2 j . (111)

The functions Rk(ε) for k = 1, 2, and 3 are listed in Table 5, while Fig. 4 shows the ratio Rk(ε)/RNS
k , where

RNS
k = Rk(0) is the NS value.

Analogously to the case of the Fourier flow, a comparison between the theoretical expressions of the
orthogonal moments related to Rk(ε) for k = 1–3 and the numerical values obtained from the DSMC method
for ε � 0.08 presents an excellent agreement [28,29]. Although the full dependence of the moments on the
reduced shear rate a cannot be evaluated exactly from the Boltzmann equation, this goal has been achieved in
the case of the BGK [14,32,45] and ES [31,32] kinetic models, where one can also obtain the velocity distribu-
tion function φ(c; ε, a) itself. The results show that the CE expansion of the distribution function in powers of
both ε and a is only asymptotic. The BGK and ES predictions for the coefficients η∗(a), κ∗(a), θ(a),�1,2(a),
and�(a) compare favorably well with DSMC results for both Maxwell molecules and hard spheres [59]. The
BGK kinetic model has also been used to assess the influence of an external body force F = −mĝz on the
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Fig. 4 Planar Couette flow. Plot of the ratio Rk(ε)/RNS
k for, from bottom to top, k = 1, 2, and 3

transport properties of the Couette flow [84]. The results show that such an influence tends to decrease as the
shear rate increases in the case of the rheological properties η∗(a) and�1,2(a), while it is especially important
in the case of the heat flux coefficient �(a).

5 Force-driven Poiseuille flow

One of the most well-known textbook examples in fluid dynamics is the Poiseuille flow [93]. It consists of the
steady flow along a channel of constant cross section produced by a pressure difference at the distant ends of the
channel. At least at the NS order, essentially the same type of flow can be generated by the action of a uniform
longitudinal body force F = −mĝz (e.g., gravity) instead of a longitudinal pressure gradient. This force-driven
Poiseuille flow (see Fig. 1c) has received much attention from computational [42,43,51,65,91,92,99] and theo-
retical [3,8,26,30,39,65,67,76,80,81,86,87,89,90,96,98] points of view. This interest has been mainly fueled
by the fact that the force-driven Poiseuille flow provides a nice example illustrating the limitations of the NS
description in the bulk domain (i.e., far away from the boundary layers).

The Boltzmann equation for this problem becomes

vx
∂

∂x
f (x, v)− g

∂

∂vz
f (x, v) = J [v| f, f ]. (112)

The apparent similarity to Eq. (68) is deceptive: although the velocity distribution function only depends on
the coordinate (x) orthogonal to the plates, this axis is perpendicular to the force, in contrast to the case of
Eq. (68). The conservation laws of momentum and energy imply

Pxx = const,
∂Pxz

∂x
= −ρg,

∂qx

∂x
+ Pxz

∂uz

∂x
= 0. (113)

The appropriate (dimensional) moments are defined similarly to the first line of Eq. (100), namely

Mk�h(x) =
∫

dv |v − u(x)|2kv�−h
x [vz − uz(x)]h f (x, v), 0 ≤ h ≤ �. (114)

Because of the symmetry properties of the problem, uz(x) is an even function of x and Mk�h(x) is an even
(odd) function of x if � − h is even (odd). Seen as functions of g, uz(x) − uz(0) is an odd function, while
Mk�h(x) is an even (odd) function if h is even (odd). The corresponding hierarchy of moment equations reads

∂

∂x
Mk,�+1,h(x) + ∂uz(x)

∂x

[
2k Mk−1,�+2,h+1(x)+ hMk,�,h−1(x)

]
+ g

[
2k Mk−1,�+1,h+1(x)+ hMk,�−1,h−1(x)

] = Jk�h(x). (115)

Again, moments of order 2k + � are coupled to moments of order 2k + �+ 1, and so their full dependence on
x and g cannot be determined, even in the bulk domain and for Maxwell models. However, the problem can be
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solved by a recursive scheme [86] if the moments are expanded in powers of g around a reference equilibrium
state parameterized by uz(0) = u0, p(0) = p0, and T (0) = T0:

uz(x) = u0 + u(1)z (x)g + u(3)z (x)g3 + · · · , p(x) = p0 + p(2)(x)g2 + p(4)(x)g4 + · · · , (116)

T (x) = T0 + T (2)(x)g2 + T (4)(x)g4 + · · · , Mk�h(x) = M (0)
k�h + M (1)

k�h g + M (2)
k�h g2 + · · · . (117)

Due to symmetry reasons, u( j)
z (x) = 0 if j = even, p( j)(x) = T ( j)(x) = 0 if j = odd, and M ( j)

k�h(x) = 0

if h + j = odd. The functions u( j)
z (x), p( j)(x), and T ( j)(x) are even, while M ( j)

k�h(x) has the same parity as
� − h. In fact, it turns out that those functions are just polynomials of degree 2 j (or 2 j − 1 if � − h = odd)
[86], namely

u( j)
z (x) =

j∑
i=1

u( j,2i)
z x2i , p( j)(x) =

j∑
i=2

p( j,2i)x2i , (118)

T ( j)(x) =
j∑

i=2

T ( j,2i)x2i , M ( j)
k�h(x) =

2 j∑
i=0

m( j i)
k�h xi , (119)

where m( j i)
k�h = 0 if i + � − h = odd and m(12)

k�h = 0. The numerical coefficients u( j,2i)
z , p( j,2i), T ( j,2i), and

m( j i)
k�h are determined recursively by inserting (116)–(119) into (115) and equating the coefficients of the same

powers in g and x in both sides. This yields a hierarchy of linear equations for the unknowns. This rather
cumbersome scheme has been solved through order g2 in Ref. [86]. The results for the hydrodynamic profiles
and the fluxes are

uz(x) = u0 + ρ0g

2η0
x2 + O(g3), p(x) = p0

[
1 + C p

(
mg

kB T0

)2

x2

]
+ O(g4), (120)

T (x) = T0

[
1 − ρ2

0 g2

12η0κ0T0
x4 + CT

(
mg

kB T0

)2

x2

]
+ O(g4), (121)

Pxx = p0

(
1 − Cxx

ρ0η
2
0g2

p3
0

)
+ O(g4), (122)

Pzz(x) = p0

[
1 + 7

3
C p

(
mg

kB T0

)2

x2 + Czz
ρ0η

2
0g2

p3
0

]
+ O(g4), (123)

Pxz(x) = −ρ0gx

[
1 + ρ2

0 g2

60η0κ0T0
x4 + C p − CT

3

(
mg

kB T0

)2

x2

]
+ O(g5), (124)

qx (x) = ρ2
0 g2

3η0
x3 + O(g4), qz(x) = Cqmgκ0 + O(g3), (125)

where ρ0 = ρ(0) = mp0/kB T0, η0 = ηNS(0), and κ0 = κNS(0). The numerical values of the coefficients
C p,CT ,Cxx ,Czz , and Cq are shown in Table 6, which also includes the values predicted by the NS constitutive
equations, the Burnett equations [96], Grad’s 13-moment method [65], the R13-moment method [80,81], a
19-moment method [39], and the BGK kinetic model [87].

All the coefficients C p,CT ,Cxx ,Czz , and Cq vanish in the NS description [76]. At a qualitative level, the
main correction to the NS results appears for the temperature profile. While, according to the NS equations, the
temperature has a maximum at the mid plane x = 0, the Boltzmann equation shows that, because of the extra
quadratic term headed by CT , the temperature actually presents a local minimum T0 at x = 0 surrounded by two
symmetric maxima Tmax at x = ±xmax, where xmax ≡ √

6CT η0κ0T0/p0. The relative height of the maxima is
(Tmax − T0)/T0 = 2CT (mgxmax/2kB T0)

2. Therefore, the temperature does not present a flat maximum at the
middle of the channel but instead exhibits a bimodal shape with a local minimum surrounded by two symmetric
maxima at a distance of a few mean free paths. This is illustrated by Fig. 5a for g = 0.05p3/2

0 /ρ
1/2
0 η0. The

Fourier law is dramatically violated since in the slab enclosed by the two maxima the transverse component of
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Table 6 Force-driven Poiseuille flow: numerical values of the coefficients C p,CT ,Cxx ,Czz , and Cq , according to the Boltzmann
equation (for the IPL Maxwell potential) and several approximations

Coefficient Boltzmann NS Burnett 13-moment R13-moment 19-moment BGK model

C p 1.2 0 1.2 1.2 1.2 1.2 1.2
CT 1.0153 0 0 0.56 0.9295 1.04 0.76
Cxx 6.2602 0 0 0 3.36 – 12.24
Czz 6.4777 0 0 0 3.413 – 13.12
Cq 0.4 0 0.4 0.4 0.4 0.4 0.4

(a) (b)

Fig. 5 Force-driven Poiseuille flow. Plot of a T (x)/T0 and b Pii (x)/p0 for g = 0.05p3/2
0 /ρ

1/2
0 η0, according to the NS equations

and the Boltzmann equation for Maxwell molecules

the heat flux is parallel (rather than anti-parallel) to the thermal gradient. Other non-Newtonian effects are the
fact that the hydrostatic pressure is not uniform across the system (C p �= 0) and the existence of normal stress

differences (Cxx �= 0,Czz �= 0), as illustrated by Fig. 5b for g = 0.05p3/2
0 /ρ

1/2
0 η0. Moreover, there exists a

heat flux component orthogonal to the thermal gradient (Cq �= 0).
The coefficients C p = 6

5 = 1.2 and Cq = 2
5 = 0.4 are already captured by the Burnett description

[86,96]. On the other hand, the determination of CT ,Cxx , and Czz requires the consideration of, at least,
super-Burnett contributions (e.g., ∂3T/∂x3), as first pointed out in Ref. [86]. However, a complete deter-
mination of those three coefficients requires to retain super-super-Burnett terms (e.g., ∂4T/∂x4). In gen-
eral, in order to get the fluxes through order g2 j , one needs to consider the CE expansion though order
2( j + 1) in the gradients [86]; but this would also provide many extra terms of order higher than g2 j , that
should be discarded. The 13-moment approximation [65] is able to predict, apart from the correct Burnett-
order coefficients C p and Cq , a non-zero value CT = 14

25 = 0.56. The R13-moment approximation signifi-
cantly improves the value of CT (CT = 1859

2000 = 0.9295) and accounts for non-zero values of Cxx and Czz

(Cxx = 84
25 = 3.36,Czz = 256

75 � 3.413). Although both values are almost half the correct ones, they satis-
factorily show that Czz is only slighter larger than Cxx , implying that Cyy = −(Czz − Cxx ) is rather small.
The more complicated 19-moment approximation [39] gives CT = 26

25 = 1.04 for Maxwell molecules but the
predictions for Cxx and Czz were not explicitly given in Ref. [39].

The solution to the BGK equation for the plane Poiseuille flow has been explicitly obtained through order
g5 [87]. The results strongly suggest that the series expansion is only asymptotic, so that from a practical
point of view one can focus on the first few terms. The results agree with the profiles (120)–(125), except
that the numerical values of the coefficients CT = 19

25 = 0.76 and, especially, Cxx = 306
25 = 12.24 and

Czz = 328
25 = 13.12 differ from those derived from the Boltzmann equation for Maxwell molecules, as shown

in Table 6. Interestingly enough, the BGK value of CT agrees quite well with DSMC simulations of the
Boltzmann equation for hard spheres [51]. It is worth mentioning that an exact, non-perturbative solution of
the BGK kinetic model exists for the particular value g = 2.5240p3/2

0 /ρ
1/2
0 η0 [3].

6 Uniform shear flow

The uniform shear flow is a time-dependent state generated by the application of Lees–Edwards boundary
conditions [49], which are a generalization of the conventional periodic boundary conditions employed in
molecular dynamics of systems in equilibrium. Like the Couette flow, the uniform shear flow can be sketched
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by Fig. 1b, except that now density and temperature are uniform and the velocity profile is strictly linear
[32,94,95]. The Boltzmann equation in this state becomes

∂

∂t
f (z, v)+ vz

∂

∂z
f (z, v) = J [v| f, f ]. (126)

Since there is no thermal gradient, the only hydrodynamic length is �u = √
2kB T/m(∂ux/∂z)−1, so that

the relevant Knudsen number is the reduced shear rate defined by Eq. (77), which is again constant. On the
other hand, in the absence of heat transport, the viscous heating term Pxz∂ux/∂z cannot be balanced by the
divergence of the heat flux and so the temperature monotonically increases with time. In other words,
the energy balance equation (79) is replaced by

3nkB

2

∂T

∂t
+ Pxz

∂ux

∂z
= 0. (127)

We can still define the dimensionless distribution function (88) and the dimensionless moments (93), but now
ε = 0 (no thermal gradient), so these quantities are non-linear functions of the reduced shear rate a only. The
moment hierarchy is formally similar to Eq. (94), except that the first term on the left-hand side is replaced
by a term coming from the time dependence of temperature, in the same way as the first term on the left-hand
side of Eq. (79) is replaced by that of Eq. (127). More explicitly, the moment equations are(

k + �

2

)
ξMk�h+a

(
2k Mk−1,�+2,h+1 + hMk,�,h−1

) = 1

λ02
J k�h(a), (128)

where ξ ≡ λ−1
02 ∂ ln T/∂t . In contrast to Eq. (94), the hierarchy (128) only couples moments of the same order

2k + � and of lower order, so it can be solved order by order. Note that moments of odd order (like the heat
flux) vanish because of symmetry.

Specifically, setting (k, �, h) = (1, 0, 0), (0, 2, 0), (0, 2, 1), and (0, 2, 0) in Eq. (128), one gets

M020(a) = 1

2

1

1 + ξ(a)
, M021(a) = −1

2

a

[1 + ξ(a)]2 , M022(a) = 1

2

1 + 3ξ(a)

1 + ξ(a)
, (129)

where ξ(a) is the real root of the cubic equation 3ξ(1 + ξ)2 = 2a2, namely

ξ(a) = 4

3
sinh2

[
1

6
cosh−1(1 + 9a2)

]
. (130)

Upon deriving Eqs. (129) and (130) use has been made of the properties M100 = 3
2 , J 100 = 0, J 020 =

−λ02
(
M020 − 1

2

)
, J 021 = −λ02 M021, and J 022 = −λ02

(
M022 − 1

2

)
.

The non-linear shear viscosity η∗(a), defined by Eq. (82), and the normal stress differences�1,2(a), defined
by Eq. (83), are now explicitly given by

η∗(a) = 1

[1 + ξ(a)]2 , �1(a) = 3ξ(a)

1 + ξ(a)
, �2(a) = 0. (131)

The dependence of η∗(a) and �1(a) on the reduced shear rate a is shown in Fig. 6. For small shear rates, one
has ξ(a) = 2

3 a2 + O(a4), so that η∗(a) = 1 − 4
3 a2 + O(a4),�1(a) = 2a2 + O(a4). The latter two quantities

differ from the ones in the Couette flow, Eqs. (106) and (109).
Once the second-order moments are fully determined, one can proceed to the fourth-order moments.

Although not related to transport properties, they provide useful information about the population of particles
with velocities much larger than the thermal velocity. From Eq. (128) one gets a closed set of nine linear equa-
tions that can be algebraically solved [32,73,75]. Interestingly, these moments are well-defined only for shear
rates smaller than a certain critical value ac (ac � 6.846 and 7.746 for the IPL and VHS models, respectively).
Beyond that critical value, the scaled fourth-order moments [e.g., 〈c4〉 = 〈V 4〉/(2kB T/m)2] monotonically
increase in time without upper bound and diverge in the long-time limit. This clearly indicates that the reduced
velocity distribution function exhibits an algebraic high-velocity tail [32,56,57]

φ(c; a) ∼ c−5−τ(a), (132)

so that those moments of order equal to or larger than 2 + τ(a) diverge. In particular, the critical shear rate
ac is the solution to τ(a) = 2. The dependence of the exponent τ(a) on the shear rate is shown in Fig. 7. The
scenario described by Eq. (132) has been confirmed by DSMC results for Maxwell molecules [58]. On the
other hand, hard spheres do not present an algebraic high-velocity tail [56] and thus all the moments are finite.
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Fig. 6 Uniform shear flow. Plot of the non-linear shear viscosity η∗(a) (solid line) and the normal stress difference�1(a) (dashed
line)

Fig. 7 Uniform shear flow. Plot of the exponent τ(a) defined by Eq. (132) for the IPL model (solid line) and the VHS model
(dashed line). The dotted horizontal line τ = 2 intercepts the curves at ac � 6.846 and ac � 7.746, respectively

7 Conclusions

In this paper I have presented an overview of a few cases in which the moment equations stemming from
the Boltzmann equation for Maxwell molecules can be used to extract exact information about strongly non-
equilibrium properties in the bulk region of the system. This refers to situations where the Knudsen number
defined as the ratio between the mean free path and the characteristic distance associated with the hydrody-
namic gradients is finite, whilst the ratio between the mean free path and the size of the system is vanishingly
small. In other words, the system size comprises many mean free paths but the hydrodynamic quantities can
vary appreciably over a distance on the order of the mean free path.

In the conventional Fourier flow problem, the relevant Knudsen number (in the above sense) is given by
Eq. (37). Regardless of the value of ε, it turns out that the infinite moment hierarchy admits a solution where
the pressure is uniform, the temperature is linear in the scaled variable s defined by Eq. (64) (cf. Eq. 66), and
the dimensionless moments of order α are polynomials in ε of degree α−2 (cf. Eqs. 53, 57). The latter implies
that the dimensional moments of order α are polynomials in s of degree [α/2]− 1 (cf. Eq. 62). In this solution
the heat flux is exactly given by Fourier’s law, Eq. (59), even at far from equilibrium states. On the other hand,
the situation changes when a gravity field normal to the plates is added. Apart from the Knudsen number ε, a
relevant parameter is the microscopic Rayleigh number defined by Eq. (67). Assuming |γ | � 1, a perturbation
expansion can be carried out about the conventional Fourier flow state, the results exhibiting non-Newtonian
effects (cf. Eq. 74) and a breakdown of Fourier’s law (cf. Eq. 75).

When the parallel plates enclosing the gas are in relative motion, one is dealing with the so-called planar
Couette flow. The plates can be kept at the same temperature or at different ones. In the former case the state
reduces to that of equilibrium when the plates are at rest, while it reduces to the planar Fourier flow in the latter
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case. In either situation, the shearing produces a non-uniform heat flux to compensate (in the steady state)
for the viscous heating, so that a temperature profile is present. This implies that two independent Knudsen
numbers can be identified: the one associated with the flow velocity field (cf. Eq. 77) and again the one related
to the temperature field (cf. Eq. 37). Now the exact solution to the moment equations is characterized by a
constant pressure, a constant reduced shear rate a, a quadratic dependence of the temperature profile on the
scaled spatial variable s (cf. Eq. 102), and again a polynomial dependence of the dimensionless moments on
the reduced thermal gradient ε (cf. Eq. 95). The dimensional moments of order α are polynomials of degree
α − 2 in s (cf. Eq. 101). As a consequence, Newton’s law is modified by a non-linear shear viscosity (cf.
Eq. 82) and two viscometric functions (cf. Eq. 83), and a generalized Fourier’s law holds whereby the heat
flux is proportional to the thermal gradient but with a non-linear thermal conductivity (cf. Eq. 85) and a new
coefficient related to the streamwise component (cf. Eq. 99). The main difficulty lies in the fact that the coef-
ficients of those polynomials are no longer pure numbers but non-linear function of the reduced shear rate a.
Therefore, although the structural form of the solution applies for arbitrary a, in order to get explicit results
one needs to perform a partial CE expansion in powers of a and get the coefficients recursively. In particular,
the super-Burnett coefficients η∗

2 and κ∗
2 are obtained (cf. Eqs. 106 and 107).

One of the non-equilibrium states more extensively studied in the last few years is the force-driven Poiseu-
ille flow. A series expansion about the equilibrium state in powers of the external force allows one to get the
hydrodynamic profiles and the moments order by order. Calculations to second order suffice to unveil dramatic
deviations from the NS predictions. More explicitly, the temperature profile presents a bimodal shape with
a dimple at the center of the channel (cf. Fig. 5a). Besides, strong normal-stress differences are present (cf.
Fig. 5b).

In the specific states summarized above the moment equations have a hierarchical structure since the diver-
gence of the flux term, represented by ∇ · �ψ in Eq. (16), involves moments of an order higher than that of
�. This is what happens in Eqs. (50), (52), (69), (94), and (115). As a consequence, a recursive procedure is
needed to obtain explicit results step by step without imposing a truncation closure. On the other hand, the
methodology is different (and simpler!) in time-dependent states that become spatially uniform in the co-mov-
ing or Lagrangian frame of reference. In that case the divergence of the flux term �ψ involves moments of
the same order as ψ and so the hierarchical character of the moment equations is truncated in a natural way.
This class of states include the uniform shear flow [2,32,41,55,57,73,75,94,95] considered in Sect. 6, and
the uniform longitudinal flow (or homoenergetic extension) [27,34,44,68,69,95]. In both cases the moments
of second order (pressure tensor) obey a closed set of autonomous equations that can be algebraically solved
to get the rheological properties as explicit non-linear functions of the reduced velocity gradient, the solution
exhibiting interesting non-Newtonian effects. Once the moments of second order are determined, one can
proceed to the closed set of equations for the moments of fourth order. Here the interesting result is that those
moments diverge beyond a certain critical value of the reduced velocity gradient [2,32,68,75], what indicates
the existence of an algebraic high-velocity tail of the velocity distribution function [2,32,57].

Needless to say, exact results in kinetic theory are important by themselves and also as an assessment of
simulation techniques, approximate methods, and kinetic models. In this sense, it is hoped that the states and
results reviewed in this paper can become useful to other researchers.
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