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The moment equations of the BGK kinetic equation are solved for a steady homogeneous heat flow generated by a nonconser- 
vative external force. It is shown that the presence of the external force leads to a divergence of the “thermal conductivity” for 
any finite value of the field strength. 

In the past years, several techniques have been used 
in molecular dynamics simulations to produce fluxes 
in homogeneous systems. These techniques rely on 
the introduction of homogeneous, velocity-depen- 
dent external forces. Since these forces do work on 
the system, a drag force is usually added to keep the 
temperature constant. Nonequilibrium states gen- 
erated in this way include uniform shear flow [ 1,2 1, 
heat flow, [ 3,4] and color diffusion [ 51. Although 
these methods are quite efficient from the computer 
point of view, the relationship between the resulting 
states and those driven by realistic boundary con- 
ditions is not completely clear. 

Here, we shall be concerned with the Evans method 
[3] to simulate heat flow by means of a homoge- 
neous external force. As pointed out by Evans [ 3,6 1, 
no physical meaning outside the linear regime is 
known for the nonlinear transport coefficient n(c), 
e being the external force parameter that mimics the 
effect of a thermal gradient VT/T. Very recently, 
Loose [ 71 has studied this problem in dilute gases 
by using simulation as well as kinetic theory. Loose’s 
kinetic theory study led him to conclude that the 
Evans method is useful in the linear regime, but the 
nonlinear “thermal conductivity” d(e) diverges for 
t greater than a certain threshold value efh > 0. The 
latter conclusion is drawn from a qualitative analysis 
based on terms apparently dominant in the moment 
hierarchy of the Boltzmann equation, and also, at a 
quantitative level, from a finite-moment approxi- 

mation to the Boltzmann equation. The first analysis 
indicates that all the coefficients A(‘) in the series 
expansion, 

A(e)= f AW’, (1) 
LO 

are positive [ 7 1. Although not explicitly stated, the 
spirit of the analysis is consistent with the expecta- 
tion that the coefficients A(I) do not tend to zero as 
r increases. In that case, the series ( 1) would diverge 
to infinity for any finite value of e, i.e. eth=O. 

The purpose of this paper is to evaluate explicitly 
the coefftcients A@) from the exact moment equa- 
tions. The price to be paid is the use of the 
Bhatnagar-Gross-Krook (BGK) kinetic equation 
[S] as a model of the Boltzmann equation. In this 
model, the Boltzmann collision term is replaced by 
a single-time relaxation towards the local equilib- 
rium distribution. It has been shown that the mo- 
ment solutions to the BGK [9] and the Boltzmann 
[lo] equations for the steady inhomogeneous heat 
flow have a great similarity. In other nonequilibrium 
situations, the first few moments of the BGK equa- 
tion may exhibit a good quantitative agreement with 
those of the Boltzmann equation [ 111. 

Let us consider a monatomic dilute gas in a steady 
homogeneous state in presence of the external force, 

P=-(tm~*-~~,T)E-a(~)~, (2) 

where u is the velocity, m is the particle mass, ka is 
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where d(e*) is the dimensionless analogue of the 
thermal conductivity. In the limit t*-+O, A=I2(O)= 1, 
which is consistent with the Navier-Stokes thermal 
conductivity. On the other hand, it is evident from 
table 1 that the coefficients A(‘) are all positive and 
grow very rapidly with r. Consequently, the series ( 1) 
diverges for any finite value of e*. Notice that the 
positiveness of the coefficients l(r) excludes the 
interpretation of the series ( 13) as an asymptotic ex- 
pansion. In fact, J (t*) has clearly a lower bound in 
the series 

co 

!! r! c*‘~= dtexp( -t)/( 1 -Ie*‘) , 
r=O j 

0 

which diverges for any nonzero real value of c*. A 
dominant-term analysis of eq. ( 12) shows that 
~1;) essentially behaves for large r as 

(-l)‘&‘- 
(2ktl+rtl)! (2#&lfr-l)! 

22k+‘+2’i(2ktltr)! (2&-l-l)!’ 
(14) 
This suggests that one defines “smooth” coefficients 
I-(‘) through the relation, 

A(,)= _1_ (2~+ 5)! (2r+ 3)! X-(Ij 
360 24’(r+2)! . (15) 

These coefficients are plotted in fig. 1. Table 1 and 
fig. 1 show that the variation of I(r) is much slower 
than that of I(‘). 

The divergence of the transport coefficient A( t*) 
contrasts with the results obtained in ref. [ 71 from 
a seven-moment approximation of the Boltzmann 
equation. According to the latter, A( E*) rapidly grows 
with t* but is otherwise finite for a certain range of 
field strengths. We think that the above discrepancy 
is due to inadequacies of the finite-moment ap- 
proach rather than to failure of the BGK equation to 
account for the main qualitative features of the 
Boltzmann equation. In order to clarify this point, it 
is instructive to consider, for the sake of simplicity, 
the one-dimensional version of eq. (3) 

=-vIf(u,)-“f(“)(ux)]. (16) 
Let us expand the distribution function in Hermite 
polynomials 

0 2 4 6 6 10 12 14 16 LB 20 22 24 26 26 30 

Fig. 1. Plot of the “smooth” coeffkients L(‘), eq. (14), of the 
thermal conductivity A(c*). 

f(b)=f’“‘(&) k~o~kH,l(mlzk,T)1i2~~l. (17) 

Insertion into eq. ( 16) yields the following hierarchy 
for the (orthogonal) moments J& 

[k(k+l)dk+,+(k-l)&+,+fd,,_,]ft* 

t(k.kfk+~Ak_2)&=-uk;;, kb3, (18) 

where Jo=l, ./&L,=JZ~=O, and a/mv=-6P.Ax. 
As in the case of eq. (6), eq. ( 18) represents a 

nonlinear infinite hierarchy. Inspection of eq. ( 18) 
shows that Jz$ is of order ~*~[(~+~)‘~l if k is even and 
of order e*’ +2[(k+1 )j61 if k is odd, respectively, where 
[ ] denotes the integer part. This seems to support 
a finite-moment approximation by introducing the 
closure &k, = 0 for a chosen value of k’ and getting 
-8c, as a function of t* for k< k’- 1. In that way, a 
closed equation for d3 or, equivalently, for the ther- 
mal conductivity I= -S&/c*, can be obtained. In 
particular, the closures A4=0, J&=0, and J&=0 
yield, respectively, 

c*2~2++&0 ) (19) 

f*413+p%2t&( 1- 12~*$&-&0 ) (20) 
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Eqs. ( 19 ) - (2 1) are exact up to orders e &), Cam, and 
Cam, respectively. In general, the closure J&=0 al- 
lows one to get an equation of degree k’-2 for 1, 
which is exact up to order ~*2[(2k’-7)/3]. Thus, the 
finite-moment approximation is equivalent to re- 
taining exactly the first few terms in the expansion 
of 2 in powers of c* and replacing the remainder by 
an approximant. If the exact A(E*) were regular at 
c* = 0, one might expect the approximate functions 
generated by finite-moment approximations to be 
rather insensitive to the number of moments re- 
tained, at least for a certain region of e*. In that case, 
Loose’s seven-moment approximation, which plays 
the same role as our closure J&=O, eq. (20), could 
be viewed as relevant. 

The (physical) solutions of eqs. (20) and (21) 
are plotted in fig. 2. It is evident that both solutions 
only agree at quite small values of c*. In fact, eq. (20) 
gives~=1t~c*2t$$‘4t...,whereaseq. (2l)gives 
the exact first three terms: II= 1 t$t*2+ye*4t... . 
Further finite-moment approximations would retain 

“.O~ 
/I 

2.5 
I 

Fig. 2. Thermal conductivity as a function of the field strength in 
the one-dimensional case as obtained from the moment hier- 
archy by imposing the closures (a) .&=O and (b) .k’,=O. 

more exact expansion coefficients (which grow very 
rapidly) and would overlap for values oft* tending 
to shrink towards c*-+O. In this respect, the quali- 
tative agreement shown in fig. 1 of ref. [7] between 
the seven-moment solution and molecular dynamics 
results can be seen as fortuitous. A larger number of 
moments would probably produce important devia- 
tions for the range of field strengths considered. 

In summary, we have solved the moment equa- 
tions obtained from the BGK equation model for a 
steady homogeneous heat flow induced in a dilute 
gas by a nonconservative external force. The results 
indicate divergence of the quantity measuring the 
nonlinear response of the system to the external per- 
turbation. It is worth emphasizing that the BGK 
model is a one-relaxation-time approximation to the 
Boltzmann equation. In this respect, the possible ex- 
trapolation of our conclusions to the Boltzmann 
equation would require careful work. Nevertheless, 
the fact that the BGK equation accounts for the main 
qualitative features of the Boltzmann equation leads 
one to conclude that the usefulness of the Evans 
method can be restricted to situations asymptoti- 
cally close to equilibrium. In the nonlinear regime, 
the velocity distribution function f(o) possesses di- 
verging moments of degree greater than 2. Alterna- 
tively, it is also possible that a strict steady state does 
not exist. In fact, recent simulation results in a two- 
dimensional fluid show the existence of an instabil- 
ity for large systems when 6 exceeds a certain critical 
value [ 61. Beyond that value, heat is conducted by 
means of a solitary shock wave and the apparent 
thermal conductivity abruptly increases with e. Evans 
and Hanley [ 61 conjecture that the critical value of 
E goes to zero in the thermodynamic limit. Notice 
that the simulations in ref. [ 71 were carried out far 
from that limit ( 128 particles). A similar instability 
has also been observed in the external-force-driving 
self-diffusion problem [ 51. 
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