Shear flow of Inelastic Maxwell particles

Andrés Santos*

Departamento de Física, Universidad de Extremadura, Badajoz (Spain)

* In collaboration with Vicente Garzó

Boltzmann equation (elastic particles)

$$
\partial_{t} f(\mathbf{v})+\mathbf{v} \cdot \nabla f(\mathbf{v})=J[\mathbf{v} \mid f, f]
$$

$$
\begin{aligned}
J[\mathbf{v} \mid f, f]= & \int d \mathbf{v} \int d \hat{\sigma} \mathcal{F}(g, \widehat{\mathbf{g}} \cdot \hat{\sigma}) \\
& \times\left[f\left(\mathbf{v}^{\prime \prime}\right) f\left(\mathbf{v}_{1}^{\prime \prime}\right)-f(\mathrm{v}) f\left(\mathrm{v}_{1}\right)\right]
\end{aligned}
$$

$\mathcal{F}(g, \hat{\mathrm{~g}} \cdot \widehat{\boldsymbol{\sigma}}) \sim$ Collision rate

$$
\left.\begin{array}{l}
\mathrm{v}^{\prime \prime}=\mathrm{v}-(\mathrm{g} \cdot \hat{\sigma}) \hat{\sigma} \\
\mathrm{v}_{1}^{\prime \prime}=\mathrm{v}_{1}+(\mathrm{g} \cdot \hat{\sigma}) \hat{\sigma} \hat{\sigma}
\end{array}\right\} \text { Restituting velocities }
$$

Collision models

Hard spheres: $\mathcal{F}(g, \widehat{\mathbf{g}} \cdot \hat{\boldsymbol{\sigma}})=\sigma^{2} g \Theta(\widehat{\mathbf{g}} \cdot \widehat{\boldsymbol{\sigma}})(\widehat{\mathbf{g}} \cdot \hat{\boldsymbol{\sigma}})$

$$
\propto g
$$

Maxwell models: $\mathcal{F}(g, \widehat{\mathrm{~g}} \cdot \widehat{\boldsymbol{\sigma}})=\frac{\nu_{0}}{n} \Phi(\widehat{\mathrm{~g}} \cdot \widehat{\boldsymbol{\sigma}})$ $=g$-independent

Maxwell models

Velocity moments: $M_{r}=\int d \mathbf{v} \mathcal{P}_{r}(\mathrm{v}) f(\mathrm{v})$ Collisionalmoments: $J_{r}=\int d \mathbf{v} \mathcal{P}_{r}(\mathrm{v}) J[\mathbf{v} \mid f, f]$

$$
J_{r}=\sum_{s=0}^{r} C_{r, s} M_{s} M_{r-s}
$$

Maxwell models

Ernst \& Brito (2002): "What harmonic oscillators are for quantum mechanics, and dumb-bells for polymer physics, that is what elastic and inelastic Maxwell models are for kinetic theory"

- Exact derivation of Navier-Stokes and Burnett transport coefficients.
- Bobylev-Krook-Wu's (1976) exact solution of the homogeneous BE.
- Rheological properties of the uniform shear flow (Ikenberry \&Truesdell,1956).
- Singular behavior of high-degree moments in the USF (Santos et al., 1993;

Montanero et al., 1996).

- Fourier law in the nonlinear planar heat flow (Asmolov et al., 1979).
- Rheological properties of the planar Couette flow (Makashev \& Nosik, 1981; Tij \& Santos, 1995).
- Rheological properties of the gravity-driven Poiseuille flow (Tij et al., 1998).
- ...
- Benchmarks to test Bird's Direct Simulation Monte Carlo method (Gallis et al., 2005).

Inelastic Maxwell Particles

(Bobylev et al., 2000 ; Krapivsky \& Ben-Naim, 2000; Ernst \& Brito, 2002)

- What if collisions are inelastic?
- A new parameter: the coefficient of normal restitution $\alpha \leq 1$.

$$
\left.\begin{array}{rl}
\mathbf{v}^{\prime \prime} & =\mathbf{v}-\frac{1+\alpha^{-1}}{2}(\mathbf{g} \cdot \hat{\sigma}) \hat{\sigma} \\
\mathbf{v}_{1}^{\prime \prime}= & \mathbf{v}_{1}+\frac{1+\alpha^{-1}}{2}(\mathbf{g} \cdot \hat{\sigma}) \hat{\sigma}
\end{array}\right\} \text { Restituting velocities } . \begin{aligned}
J[\mathbf{v} \mid f, f]= & \frac{5 \nu_{0}}{8 \pi n} \int d \mathbf{v} \int d \widehat{\sigma} \\
& \times\left[\alpha^{-1} f\left(\mathbf{v}^{\prime \prime}\right) f\left(\mathbf{v}_{1}^{\prime \prime}\right)-f(\mathbf{v}) f\left(\mathbf{v}_{1}\right)\right]
\end{aligned}
$$

Inelastic "cooling"

"Granular" temperature: $T=\frac{m}{3 n} \int d \mathrm{v} V^{2} f(\mathrm{v})$

$$
\frac{m}{3 n} \int d \mathbf{v} V^{2} J[\mathbf{v} \mid f, f]=-\zeta(\alpha) T
$$

$$
\zeta(\alpha) \text { : "Cooling" rate }
$$

$$
J_{r}=\sum_{s=0}^{r} C_{r, s}(\alpha) M_{s} M_{r-s}
$$

- We have evaluated the coefficients $C_{r, s}(\alpha)$ associated with the moments through 4th degree.
- 2nd degree: 2 linear coeffs. (cooling rate and momentum transfer rate).
- 3rd degree: 2 linear coeffs. (energy transfer rate and an extra relaxation rate).
- 4th degree: 3 linear coeffs. (relaxation rates) plus 5 nonlinear coeffs.

Cooling rate

$$
\zeta(\alpha)=\nu_{0} \frac{5}{12}\left(1-\alpha^{2}\right)
$$

Homogeneous Cooling State

$$
\begin{gathered}
\partial_{t} f(\mathrm{v}, t)=J[\mathbf{v} \mid f, f] \\
\partial_{t} T=-\zeta(\alpha) T
\end{gathered}
$$

HOS \Rightarrow Similarity solution:

$$
f_{\mathrm{hcs}}(\mathrm{v}, t)=[T(t)]^{-3 / 2} F(v / \sqrt{T(t)})
$$

Homogeneous Cooling State

Navier-Stokes transport coefficients

Shear viscosity: $\eta_{0}(\alpha)=\frac{p}{\nu_{0}} \frac{4}{(1+\alpha)^{2}}$

Burnett transport coefficients

$$
\begin{gathered}
P_{x x}^{(2)}-P_{y y}^{(2)}=\varpi_{2} \frac{\left[\eta_{0}(\alpha)\right]^{2}}{p}\left(\frac{\partial u_{x}}{\partial y}\right)^{2}+\cdots \\
P_{z z}^{(2)}-P_{y y}^{(2)}=\left(4 \varpi_{2}-\varpi_{6}\right) \frac{\left[\eta_{0}(\alpha)\right]^{2}}{p}\left(\frac{\partial u_{x}}{\partial y}\right)^{2}+\cdots \\
\varpi_{2}=2, \quad \varpi_{6}=8
\end{gathered}
$$

Paradigmatic nonequilibrium state: Uniform Shear Flow (USF)

$$
\partial_{t} T=\underbrace{\frac{2}{3} a\left|P_{x y}\right|}_{\begin{array}{c}
\text { Viscous } \\
\text { heaing }
\end{array}}-\underbrace{\zeta(\alpha) T}_{\begin{array}{c}
\text { Inelastic } \\
\text { cooling }
\end{array}}
$$

Independent parameters $\left\{\begin{array}{l}\alpha \\ a^{*} \equiv a / \nu_{0}=\mathrm{const}\end{array}\right.$

2nd-degree moments: Rheological properties Nonlinear Shear Viscosity

2nd-degree moments: Rheological properties Nonlinear Shear Viscosity

2nd-degree moments: Rheological properties Nonlinear Shear Viscosity

2nd-degree moments: Rheological properties Normal Stress Difference

2nd-degree moments: Rheological properties Normal Stress Difference

Singular Behavior of Shear Flow Far from Equilibrium

A. Santos and V. Garzó

Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
J. J. Brey

Area de Física Teórica, Universidad de Sevilla, E-41080 Sevilla, Spain
J. W. Dufty

Department of Physics, University of Florida, Gainesville, Florida 32611

Elastic case

FIG. 2. Shear rate dependence of the steady state value of the moment $\left\langle\xi^{4}\right\rangle$ relative to its Maxwell-Boltzmann value $\left\langle\xi^{4}\right\rangle_{0}$. The arrow indicates the location of the critical shear rate a_{c}.

4th-degree reduced moments: Time evolution

There are 8 relevant 4th-degre moments $\left\{\mathcal{M}_{i}\right\}$ which obey a coupled set of linear, inhomogeneous differential equations. In matrix form,

$$
\left.\frac{1}{\nu_{0}} \partial_{t} \mathcal{M}_{i}+\mathcal{L}_{i j}\left(a^{*}, \alpha\right) \mathcal{M}_{j}=\widehat{C}_{i}\right)
$$

The evolution of $\left\{\mathcal{M}_{i}\right\}$ is governed by the eigenvalues of the 8×8 matrix $\mathcal{L}_{i j}$

4th-degree reduced moments: Time evolution

4th-degree reduced moments: Time evolution

4th-degree reduced moments: Time evolution

4th-degree reduced moments: Phase diagram

4th-degree reduced moments: Stationary values

4th-degree reduced moments: Stationary values

BGK-like kinetic models

- Model 1 (Brey, Moreno, Dufty; 1996): two parameters fitted to reproduce $\zeta(\alpha)$ and $\eta_{0}(\alpha)$.
- Model 2 (Brey, Dufty, Santos; 1999): two parameters fitted to reproduce $\zeta(\alpha)$ and $\eta_{0}(\alpha)$.
- Model 3 (Dufty, Baskaran, Zogaib; 2004): three parameters fitted to reproduce $\zeta(\alpha)$, $\eta_{0}(\alpha)$, and $\kappa_{0}(\alpha)$.

BGK-like kinetic models

- All the models reproduce the exact rheological properties.
- None of them describe the singular behavior of the fourth-degree moments with increasing shear rate.
- For comparison, let's restrict ourselves to $\alpha \geq 0.5$ and the locus $T=$ const.

BGK-like kinetic models

Conclusions (1)

- The collisional moments through fourth degree have been exactly evaluated for inelastic Maxwell particles.
- This allows one to get the α-dependence of the cooling rate, as well as of the Navier-Stokes and Burnett transport coefficients.
- The rheological properties in the USF become less and less sensitive to α as the shear rate a^{*} increases.

Conclusions (II)

- On the other hand, the underlying velocity distribution is highly influenced by α, as exemplified by the fourth-degree moments.
- The latter diverge for shear rates larger than a critical value $a_{c}^{*}(\alpha)$, what indicates a slow algebraic decay of the velocity distribution.
- The Brey-Moreno-Dufty kinetic model reproduces reasonably well some of the properties of inelastic Maxwell particles (although not so well those of inelastic hard spheres).

THANKS!

$\left(P^{*}\right)_{k x}\left[\left(a^{*}, 1.\right)-\left(p^{*}\right)_{y y^{(a+}}^{\left(a^{*}, 1 .\right)}\right.$

