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1. - Introduction 

The simplest model of a granular fluid in the rapid-flow regime consists of a gas of 
(smooth) inelastic hard spheres (IHS) characterized by a constant coefficient of normal 
restitution a [l]. The inelasticity of collisions produces a decrease of the mean kinetic 
energy (or granular temperature) with a cooling rnte ( oc 1 - a 2. Interestingly, a cooling 
effect can also be generated in a gas of elastic hard spheres (EIIS) by the application 
of an effective drag force with a friction coefficient (1/2)(. At a macroscopic level of 
description, the hydrodynamic balance equations of mass, momentum, and energ1' for 
the IRS gas are (formally) identical to those for the frictional EHS gas. However, the 
microscopic dynamics is physically quite different in both systems: in the IHS gas i) the 
particles move freely between two successive collisions but ii) each colliding pafr loses 
energy upon collision; in the EHS case i) the particles lose energy between collisions 
due to the action of the drag force but ii) energy is conserved by collisions. This im­
plies that during a certain small t ime step, only the small fraction of colliding particles 
are responsible for the cooling of the system in the IHS case, whereas all the particles 
contribute to the cooling in the EHS case. Therefore, there is no reason in principle 
to expect that the relevant physical properties (e.g., the velocity distribution function) 
are similar for IHS and frictional EHS under the same conditions. For instance, in the 
so-called homogeneous cooling state the solutions to the respective Boltzmann equations 
for UIS and EHS differ: while the distribution function is a (time-dependent) Gaussian 
for EHS [2], deviations from a Gaussian (as exemplified by a non.zero kurtosis and by an 
overpopulated high-energy tail) are present in the case of IHS l3J. Notwithstanding this, 
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the differences between the homogeneous solutions for IRS and EIIS arc 11ot quantita­
tively important in the domain of thermal velocities and so it is still possible that both 
systems exhibit comparable departw·es from equilibrium in inhomogeneous slates where 
transport of momentum and/or energy is the relevant phenomenon. The investigation of 
this possibility is the main aim of this work. 

2. - Model of driven elastic hru.·d spheres 

The Boltzmann equation for a gas of inelastic ha.rd spheres (HTS) is [4, 5] 

(1) (Dt + v · \7)/ (v ) = a d-I J dv1Jdu8(g · u )(g · u ) [a- 2 f(v')f(vj) - /(v)f(vi)] 

= J (a)[f. J]. 

In this expression f( r . v: t) is the one-particle distribution function, a is the diameter of 
a sphere. d is th<' dimensionality of the system, 8 is the Heaviside step function, u is a 
unit vector directed along the centers of the two colliding spheres at contact, g = v - v1 

is the relative velocity, and a is the coefficient of normal restitution. The precollisional 
or restituiing velocities v' and v~ are given by 

(2) I 1 + (l'.( ~)~ v = v - - - g·a a. 
2a 

I l+a( ~)~ 
v 1 = v 1 + 2c;- g·a u . 

The collision operator for elastic hard spheres (EITS). J (1)[f. /]. is obtained from eqs. (1) 
and (2) by setting a = 1. 

The first d + 2 moments of the distribution function define the number density n, the 
nonequilibrium flow velocity u and the granular temperature T. The most important 
properties of J (a) [!, J] are those that determine the form of the macroscopic balance 
equations for mass, momentum and euergy, namely 

(3) j clv{l. v. mV2 }.J("')[/.f] = {O. o, -dnT(} , 

where mis the mass of a particle. V (r. l) = v - u(r , t) is the pecuHar velocity aud ((r. t) 
is the cooling rate due to the inelasticity of the collisions. Although il is a nonlinear 
functional of the distribution funct ion f (5 . 6], a simple estimate ( ::.:::; (o is obtained by 
replacing ~he ac~ual distribution function f by the local equilibrfom distribution / 0 = 

n(m/2nT)dl2 exp[- mV2 / 2T]. The result is (6, 7J 

(4) 

(5) 

d + 2 ( ?) (o(r . t ) = 11o(r, t)~ 1 - O'- , 
_ 87r(d-J)/20 d-J ( T) l /2 

110 
= (d + 2)r(d/ 2) n m 

According to the arguments of sect. 1, our model consists of the replacement 

J (a>IJ. f] ---> .B(a)J !1>1J. /J + ~(o(a) ! · (V !), 
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where (3(a) is a positive constant to be determined. The model (5) complies ·with the 
properties (3) , except that the true cooling rate is replaced by the local equilibrium 
estimate ( 4). According to eq. (5), the gas of inelastic hard spheres is replaced by an 
"equivalent" gas of elastic hard spheres subjected to the action of a drag force F drag = 
-(m(o/2)V proportional to the peculiar velocity with a friction constant that depends 
on the local density and temperature. This drag force mimics the cooling effect due to 
dissipative collisions in the underlying granular system. The parameter (3 accounts for the 
fact that, in principle, the gas of EHS that more efficiently succeeds in capturing the main 
properties of the granular gas is made of particles with a diameter a' = (31/(d-l)a that 
does not necessarily coincide with the diameter er of the inelastic spheres. Alternatively, 
we can view (3 as a correction factor to modify the collision rate of the equivalent system 
of EHS. A comparison between the transport coefficients of IHS [7,8] and those of the 
"equivalent" EHS [9] suggests the choice 

(6) 
1 

/3(a) = 2(1 + a) . 

3 . - Simulations 

In order to test the model (5) in inhomogeneous states far from equilibrium, we have 
carried out computer simulations of the Boltzmann equation by means of the DSMC 
method [10] in both systems (IHS and EHS) for the simple shear fl.ow problem. In the 
simple shear flow [l, 11], the gas is enclosed between two inflnite parallel plates located 
at y = ±L/2 and moving with velocities ±U /2 along the x-axis. When a particle crosses 
one of the plates it is re-entered through the opposite plate by applying the standard 
Lees-Edwards boundary conditions [12J. This produces a viscous heating effect that 
tends to increase the temperature of the system, whereas the inelastic cooling (in the 
UIS system) or the drag force (in the EHS system) tend to decrease the temperature. 
Eventually, a nonequilibrium steady state (NESS) is reached when both effects cancel 
each other. If the size of the system is large enough as to avoid clustering effects, the 
r ESS is characterized by uniform density and temperature, and a linear velocity profile 
U x (y) = ay, where a = U / L is the constant shear rate. 

As a test case, we have considered three-dimensional systems with L = 2.5>., where 
>. = ( .J2rina2 )-1 is the average mean free path of the IHS gas (n being the average 
density), and U = 10v0 , where v0 = J2T0/m is the initial thermal velocity (To being the 
initial temperature). The shear rate is then a= 4r01, where r0 = >./v0 is the initial mean 
free time of the IRS gas. The coefficient of restitution for the IRS gas has been taken as 
a = 0.9. As for the EHS gas, its collision rate has been reduced by a factor (3 = 0.95, 
in agreement with eq. (6). In both cases the viscous heating effect dominates during 
the transient regime until the .NESS is reached. In the simulations we have considered 
a number N = 104 of simulated particles, a width layer oL = 0.05..\ and a time step 
ot = 10-3ro JTo/T. 

Figure l(a) shows the velocity and temperature profiles at times t/To 
0.13, 0.5, 1, 1.5, 2 for both systems, starting from an initial condition of total equilib-
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Pig. 1. (a) Velocity and temperature profiles. (b) Time evolut,ioo of the temperature and the 
shear stress. 

ri11m. I3y time t = 2ro (what corresponds to about 2.4 collisions per inelastic particle) 
the velocity profile is practically linear and the temperature profile is almost unHorm. 
However. the global lcmperature keeps growing in time uutil it. reaches a stationary value 
T ~ 146To for t ~ !Oro (i.e. after about 48 collisions per inelastic particle). The time 
evolution ofT/ To aud of - Pxy/nTo (where Pxy is the shear stress) is shown in fig. l(b) 
for an initial condition of local equiUbrium, so that the system is initially prepared with 
a linear velocity profile. The NESS value of the shear stress represents an effective shear 
viscosity about 14% smaller than the Navier-Stokes value corresponding to a = 0.9. Fig­
ure 1, along with a more comprehensive comparison that will be reported elsewhere [9], 
shows that the equivalent EHS system succeeds in capturing the main nonequilibrium 
transport properties of the underlying IHS system. 

4. - Kinet ic modeling 

4'1. BGK and ES models . - The mapping IRS--+ EIIS allows one to take advantage 
of the existence of simple kinetic models for EHS to extend them straightforwardly to 
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IRS. For instance-, rousidcr the so-called ellipsoidal statistical (ES) model llJ , 13] 

(7) 

where 

(8) 

J(l>[J. !] ----4 -vo(l - €)(! - ! "). 

1 
R = - (pl - €P) . 

1 -c 
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P being the pressure tensor. The parameter c ~ d- 1 can be freely chosen. The choice 
€ = d-1 makes the ES model reproduce the correct value Pr = (d- l) / d of the PrandtJ 
number. The simplest choice. however. is c = 0. in which case R = pl, the reference 
function le = Jo becomes the local equilibrium distribution and the ES model reduces 
to the well-know11 BGI< model. 

In the spirit of (5), the extension of the ES model to IRS is 

(9) 
1 8 

J<0 >[J, J] ----4 -,B(a)vo(l - c)(f - f ,) + 2(o(a) av· (V f ). 

In particular, setting r: = 0 we get a s implified version of the BGI<-like model for IRS 
that was proposed in ref. [6]. This BGK model is easy to solve for the simple shear Bow 
problem considered in sect. 3. The thin solid li11es in fig. l (b) represent lhe evolution of 
the temperaltu-e and lhe shear stress according to such a solut ion. As can be observed, 
the BGK solution exhibits an excellent agreement with the DSl\IC results for both IRS 
and EHS. 

4·2. Mixlnres . The same idea behind (5) can be extended to a multi-component 
g1.·anular gas [9]. [11 t he special case where a.11 the species have the sarnc flow velocity 
(ui = u). ow- model becomes 

with 

(11) {3 .. = ] + lYij 
tJ 2 ' 

/(\ (d- t)/ 2 ( ,.,,_ ) 112 ( ·T· ) :i/2 _ v L-1f 2 d-1 .1., m, J 2 
(ii - r(l + d/2) niµj,O"ii mi l+ mjri (l-a.;i), 

where T; is the granular temperature of species i and µii = (1 + rn.; / m,; )- 1
• The 

model (10) preserves Lhe first d + 2 collision integrals of IHS in the leading Sonine ap­
proximation with u ; = u . The important poinL is Lhat the approximation (10) allows 
one to t ransfer any given kinetic model 

(12) ( 1)( ] (1) Jij Ji. f j - J(ij 
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for elastic mixtures [l l ) into an equivalent model for inelastic mixtures: 

(13) J~':'",) [! · ! ·] __, f{~<:;,) = 1+O'.ij 1«~) + (ij !_ . [( - ·)!·) 
•3 ' ' 3 •J 2 '3 2 fJv v u , • · 

5. - Conclusion 

In summary, we have shown that the noncquilibrium transport properties of a Boltz­
mann gas of inelastic hard spheres ca.n be satisfactorily captlll'ed by an equivalent gas of 
clasLic hard spheres driven by a dissipative drag force F c1 ra.g = - {m(0/2)V , where (o(a) 
is the (local equilibritm1) cooling rate. Desides, the elastic particles must reduce their 
collision rate by a factor /J(o.) ~ {1/ 2){1 +a.) in order lo .. disguise., as a granular gas. 
While lhe '·equivalent .. system of EHS does not retain finer details of the t rue IHS gas 
(e.g., high-energy tails, velocity correlations .... ), it is able Lo account for those phenom­
ena (e.g., inelastic clustering) that can be described at a hydrodynamic level. Finally, 
we have exploited the possibility of reverting the mapping lHS --+ EHS to construct ki­
netic models for granular gases as natural extensions of k11own kinetic models originally 
proposed for elastic particles. 
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