
EUROPHYSICS LETTERS 20 March 1995 

.,j Europhys. Lett., 29 (9), pp. 693-698 (1995) 
I 

On the Validity of a Variational Principle for 
Far-from-Equilibrium Steady States. 

A SANTOS(*), V. GARz6 (*) and J. J. BREY(**) 

(*) Departamento de Fisica, Universidad de Extremadura - E-06071 Badajoz, Spain 
(**) Fisica Te6rica, Universidad de Sevilla - E-41080 Sevilla, Spain 

(received 18 October 1994; accepted in final form 23 February 1995) 

PACS. 47.50+d - Non-Newtonian fluid flows. 
PACS. 05.20.Dd - Kinetic t,heory. 
PACS. 05.60+w - Transport processes: theory. 

Abstract. - It is shown that an ,exact solution of the non-linear Boltzmann equation does not 
verify the variational principle for non-equilibrium steady states proposed by Evans and 
Baranyai (Phys. Rev. Lett., 67 (1991) 2597). Therefore, the principle does not provide a basis for 
the understanding of far-from-equilibrium steady states. 

A few years ago, Evans and Baranyai (EB) [1] proposed a variational principle to 
characterize non-equilibrium steady states. The EB principle is formulated for systems 
arbitrarily far from equilibrium and reduces to the principle of minimum-entropy produc­
tion [2] for near-equilibrium situations. To support their hypothesis, Evans and Baranyai 
provided simulation data for a thermostatted dense fluid under uniform shear flow. Within 
statistical uncertainties, the data agreed with the predictions of the principle. 

Given the essential role that a variational principle would play in the development of a 
general theory for far-from-equilibrium systems, it is very important to investigate the 
validity of the EB principle. In a previous paper [3], we used the BGK model kinetic 
equation [4] to analyse it, and found significant, although small, deviations. Nevertheless, 
since the BGK equation is a simplified model of the Boltzmann equation, no definitive 
conclusion about the validity of the principle was obtained. The aim of this letter is to carry 
out a similar analysis, but now using the non-linear Boltzmann equation, and without 
introducing any kind of approximation. In this way, the calculations we present here can be 
considered as exact in the context of kinetic theory. 

As in ref. [1] and [3], we consider a fluid under uniform shear flow. This state is 
macroscopically characterized by a constant density, n, a spatially homogeneous 
temperature, T, and a linear profile of the x-component of the velocity field along the 
y-direction, i.e. ui (r) = aijrj, aij = aaix<Sjy• where a is the constant shear rate. Besides, in 
order to compensate for the viscous heating effects and obtain a steady state, a drag force of 
the form - a Vis introduced [5]. Here V = v - u is the peculiar velocity and the thermostat 
parameter a is determined from the condition that the temperature remains constant. 

In short, the EB principle states [1] that the average of the phase-space compression 
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factor, A, which is a measure of the rate of change of the volume of space phase [5], is a local 
maximum with respect to variations of endogenous variables. Following again ref. [1] and [3], 
we will consider the fourth velocity moment 

K4 = f dV(Vi + v: + Vf )j(r, v, t) (1) 

as the endogenous variable, f(r, v, t) being the one-particle distribution function. The idea 
now is to compute A for systems having different prescribed values of K4 and check whether 
it has a maximum in the absence of constraints on K4• To constrain the value of K4, another 
nonconservative force, this time proportional to the cube of the components of the peculiar 
velocity, is introduced. Therefore, each particle in the system is subjected to an external 
force F with components 

i = x, y, z. (2) 

As said above, the parameters cc and f3 are adjusted to keep both the temperature and K4 
fixed at prescribed values. For our discussion it will be convenient to take a and f3 as 
independent variables, instead of a and K4• Aside from a constant factor, the phase-space 
compression factor for our system reads [5] 

( 
3kB T ) A(a, (3) = - cc + --;;;;:-f3 . (3) 

The EB principle implies that 

.A(a) = ( aA ) I = o 
0(3 a {3=0 

(4) 

for arbitrary shear rates. 
Our goal is to exactly evaluate .A(a) for a low-density gas. We start from the Boltzmann 
equation describing the thermostatted uniform shear flow state with a constrained value of 
K4 [6]: 

a 1 a 
-aV: -f- - -(ccV:. + [3vY)f= J[ + f] 

y avx m oVi i i J' ' 
(5) 

where J[f, f] is the Boltzmann collision operator. From this equation it follows that the 
velocity moments 

Mk ,,._ ,,._ = _!._I dVVk1 V~Vkaji(V) 
l•"'l•"'d x y z ' . n (6) 
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obey the hierarchy 

where 

(8) 

Now we expand the several quantities in powers of f3 by writing 

a(a, {3) = a 0 (a) + a 1 (a)f3 + ... , (9a) 
,..... 

.• (0) (1) 
Mki. "'z, k/a, {3) = Mki. "'z, lea (a) + Mki. "'z, lea (a) f3 + ... , (9b) 

Jk1,"2.lea(a, f3) = J~~;"2,lea(a) + J~11;"2,lea(a)f3 + ··· · (9c) 

The coefficients in these expansions are nonlinear functions of the shear rate. Inserting these 
expansions into eq. (7) one gets a set of hierarchies, one for each order in {3. Those 
corresponding to the two lowest orders are 

(0) ao (k k k ) (O) - J(O) 
ak1Mk -1 i.. + 1 i.. + - 1 + 2 + a Mk i.. i.. - k i.. k ' 1 '""',l ,IV,j m }t"'°_l,IV.j lt""'lt 3 

(10) 

0 > ao (k k k ) (1) a 1 k k k )M(O) ak1Mk1 -1,"2+1,k3 + - 1 + 2 + a Mk1 ,"2,ka + -( 1 + 2 + a ki,"2,ka + 
m m 

(11) 

Equation (10) is the moment hierarchy for the unconstrained state. Once its solution is 
known, eq. (11) gives the moments to first order in {3. Then, the coefficients a 0 and a 17 which 
are the quantities needed to get the first two terms of the {3-expansion of A, are. determined 
from the constant-temperature condition, i.e. M2, o, 0 + M 0, 2, 0 + M 0, o, 2 = 3kB T /m. There­
fore, the moments we are interested in are those appearing in the above expression. Thus far 
the description is general, valid for any interaction potential. In order to get explicit results, 
we will restrict ourselves to Maxwell molecules (i.e. particles interacting via an r - 4 

potential). In that case, Jki. "'z, lea can be expressed in terms of moments of degree equal to or 
less than k1 + k2 + k3• In particular, 

J2 o o = - v(M2 o o - _E_) '' '' mn 
(12a) 

and 

J - -vM 1, 1, 0 - 1, 1, 0' (12b) 
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where p = nkB T is the pressure and v is an effective collision frequency. In the special case of 
Maxwell molecules, the hierarchies (10) and (11) can be exactly solved in a recursive way. In 
order to evaluate .A(a), it is sufficient to obtain the second-degree moments (k1 + ~ + k3 = 2) 
from eq. (11). In this way, one easily gets 

M(l) - - 1 (2a: M(O) + 2M(O) ) 0, 0, 2 - 1 2 1 0, 0, 2 0, 0, 4 ' 
+ a:o 

(13a) 

(1) 1 M(O) 2M(O) ) Mo 2 o = - (2a:1 o 2 o + o 4 o , 
' ' 1+2a:0 ' ' ' ' 

(13b) 

M 0 > - -
1 (aM0 > + 2a: Meo> + Meo> + Meo> ) 1, 1, 0 - 1 2 0, 2, 0 1 1, 1, 0 3, 1, 0 1, 3, 0 ' 

+ a:o 
(13c) 

(1) 1 M(l) M(O) 2 (0) ) M2 o o = - (2a 1 1 o + 2a:1 2 o o + M4 o o . 
' ' ("""1 + 2a 0 ' ' ' ' ' ' 

(13d) 

Here and below we take units such that v = 1, m = 1, and 2kB T /m = 1. From the 
consistency condition M~.1i. 0 + MJ,1~. 0 + MJ,1i. 2 = 0, it is now a matter of straightforward 
calculations to get the expression of a 1, and from it compute .A = - a 1 - 3 /2. The result is 

.A= - M4 o o +Moo 4 - - + (1 + 6a:o) Mo 4 o - - -2 · 1 + 2a:0 [ co> co> 3 ( co> 3 ) 
3 1+6a:0 ' ' ' ' 2 ' ' 4 

-3a:o0 +2a:o) 1,3,o 3,1,0 + - +9a5 + a:o ' 
( 

M(O) + M(O) 3 ) 3 2 l 
a 2 1+2a:0 

(14) 

where use has been made of the expressions for the unconstrained second-degree moments. 
By substituting the explicit shear-rate dependence of the fourth-degree moments recently 
derived [7], it turns out that .A is different from zero for all nonvanishing values of the shear 
rate a. In particular, in the limit of small a it is easily found that 

3 7v' - 8 
.A(a) = - a:o, 

5 v' 
(15) 

where v ' = 1.873 is an eigenvalue of the linearized Boltzmann equation associated to 
fourth-degree moments. Since for small shear rates a: 0 = a2 /3, it follows that .A= 0.55a2

• 

Therefore, the EB principle is only verified to first order in the shear rate, i.e. in the 
N avier-Stokes approximation. In other words, it has the same range of validity as the 
well-known principle of minimum-entropy production [2]. It is worth mentioning that in the 
case of the BGK model equation .A(a) vanishes up to third order in a (super-Burnett 
approximation). More concretely, we found that .A BGK = 31a4 /3 [3]. This different behavior is 
due to the discrepancies in the fourth moments for the unconstrained system [8]. In fact, 
eq. (14) also holds for the BGK model equation. 

In order to deeper analyse the foundations of the EB principle, we have also studied the 
/3-dependence of the shear viscosity r; = - 2M1, 1, 0 /a. There are at least two reasons which 
render this study interesting. First, the shear viscosity is the most relevant physical 
quantity characterizing the nonequilibrium behavior of the system. Secondly, since both A 
and r; are proportional to the entropy production in the N avier-Stokes regime, the 
comparison of their behaviours provides a test of whether the average of the phase-space 
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Fig. 1. - Shear rate dependence of).. as obtained from the Boltzmann equation (solid line) and from the 
BGK equation (dashed line). 

r· 
Fig. 2. - Shear rate dependence Of YJ 1 as obtained from the Boltzmann equation (solid line) and from the 
BGK equation (dashed line). 

compression factor really plays a special role upon formulating a variational principle to 
describe the steady state. The f3 expansion of YJ is 

YJ = YJo + YJ1f3 + ... , (16) 

where 

Y/o = (1 + 2ao)-2' (17) 

2 [M(O) + M(O) + M(O) - ~ - ~Al 
Y/1 = 3aoO + 2ao)2 4,o,o 0,4,o o,o,4 4 2 . (18) 

In the small shear rate limit, 

49197v 12 
- 79268v 1 

- 14700 O 
22 2 

Yl =3 a = a 
·i l 12005v 12 0 • • 

(19) 

On the other hand, from the BGK equation one gets YJ raK = - 3a 2 [3]. Therefore, while for 
the BGK equation a variational principle based on A is better than one based on YJ, in the 
sense that the former leads to results that are exact up to a higher order in the shear rate, 
such a difference does not exist in the case of the Boltzmann equation. Even more, the 
discrepancies found from the Boltzmann equation to a 2 order are larger for A than for YJ· Of 
course, these results are restricted to variations of the fourth moment K4 • 

Figures 1and2 show the functions .A(a) and Y/l (a), respectively. Both the Boltzmann and 
the BGK expressions have been plotted. From fig.1 is again verified that, for finite values of 
the shear rate, the EB principle is more accurate to describe the solution of the BGK model 
equation than the solution of the Boltzmann equation. Nevertheless, the opposite happens 
when the shear viscosity is considered. It must also be noticed that the Boltzmann equation 
leads to an expression for Yj 1 that monotonically increases with a, while Yj rGK presents a 
minimum around a = 0.2. 

In summary, we have analysed the EB variational principle for the phase-space 
compression factor from a solution of the non-linear Boltzmann equation for uniform shear 
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flow. The results presented here are exact to all orders in the shear rate. We have proved 
that the EB principle is not obeyed by the Boltzmann equation beyond the N avier-Stokes 
order. Consequently, the principle cannot be considered as a solid basis to develop a general 
theory of far-from-equilibrium steady states. In particular, it is not clear why the 
phase-space compression factor A should be a good candidate for the formulation of a 
variational principle. 
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