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Non-equilibrium phase transition in a binary mixture
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Abstract. – A non-equilibrium phase transition is identified from an exact solution of the
Boltzmann equation describing a binary mixture under shear flow in the tracer limit
(n1/n2¿ 1): there exists a critical value ac (which depends on the mass ratio m1/m2 and the
force constant ratios) of the shear rate such that limn1/n2→0 E1/E = 0 for a < ac (disordered
phase), while limn1/n2→0 E1/E 6= 0 for a > ac (ordered phase), where E1/E is the relative
contribution of the tracer species to the total energy. This phase transition is absent when
m1/m2 is sufficiently large and/or the strength of the interactions 2-2 is sufficiently larger than
that of 1-2.

The study of the properties of tracer particles immersed in a medium is a subject of great
interest. For instance, passive tracer particles are used to monitor the characteristics of
porous-media flows [1]. The so-called Milne problem, which deals with the diffusion of test
particles through a background species, has applications in fields such as radiation-transfer
problems [2], neutron transport theory [3], and rarefied-gas dynamics [4]. The diffusion of a
tagged particle in a concentrated colloidal suspension can also be regarded essentially as a
tracer problem [5].

Since the tracer limit corresponds to a situation in which the molar fraction x1 = n1/n of
the tracer species is negligible, one expects that the properties of the medium are not affected
by the presence of the tracer particles. Let us consider the relative contribution of the tracer
particles to the total energy of the system, E1/E. At equilibrium, equipartition of energy
implies that E1/E = x1, so that E1/E goes to zero in the tracer limit. Out of equilibrium,
the natural expectation is that E1/E ∼ x1 when x1 ¿ 1 and, consequently, the contribution
of the tracer species to the total energy is negligible. In this letter we present an example of
a violation of the above expectation. There exists a critical value ac of the non-equilibrium
control parameter a, such that limx1→0E1/E = 0 for a < ac (“disordered” phase), while
limx1→0E1/E 6= 0 for a > ac (“ordered” phase).

The system considered here consists of a gaseous binary mixture under shear flow. The
only hydrodynamic gradient is that of the flow velocity: ∂ui/∂rj = aδixδjy, a being the
constant shear rate, which is the relevant non-equilibrium parameter of the problem. The
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main transport property is the non-linear shear viscosity η, which is a function of the shear
rate and also of the parameters of the mixture, namely the mass ratio µ ≡ m1/m2, the molar
fraction ratio ν ≡ n1/n2, and the size ratio. The energy ratio is also an important property
and depends on the same parameters. Very recently, an exact solution of the set of two coupled
Boltzmann equations has been derived in the case of Maxwell molecules (i.e. an interaction
potential Vrs = κrsr

−4) [6]. In this work we are going to analyse in detail what happens in
the tracer limit (ν → 0).

In ref. [6] it was proved that the time evolution of the relevant second-degree velocity
moments is governed by a linear homogeneous set of 6 coupled first-order differential equations
with constant coefficients. The general solution is given in terms of the roots of the sixth-degree
characteristic polynomial with coefficients depending on a and ξ ≡ {µ, ν, γ11 ≡ [(κ11/2κ12)
(1 + µ)]1/2, γ22 ≡ [(κ22/2κ12)(1 + µ)/µ]1/2}. For long times, the dominant behaviour is
described by the two real roots, α and α′. In particular, the energy ratio is of the form

E1

E
=
AF (α, a, ξ) +BF (α′, a, ξ) exp[−2(α− α′)t]

A+B exp[−2(α− α′)t] , (1)

where A and B are constants depending on the initial conditions and the function F is the
ratio of a 4× 4 determinant and a 5× 5 determinant, whose explicit expression can be found
in the appendix of ref. [6]. After a relaxation time of the order of |α− α′|−1, the energy ratio
E1/E reaches a steady-state value F (αmax, a, ξ), where αmax(a, ξ) = max(α, α′). As long as
ν 6= 0, one has α 6= α′ for any value of the shear rate and ξ. If ν → 0, the sixth-degree equation
for α and α′ decouples into two cubic equations, whose real solutions are α0 = τ−1

22 ϕ(aτ22),
α′0 = [(1 + µ)2τ12/2]−1[ϕ(a(1 + µ)2τ12/2)− µζ], where ϕ(x) ≡ 2

3 sinh2[ 16 cosh−1(1 + 9x2)] and
ζ ' 0.648. In the above equations, τrs ∝ n−1

s [κrs(mr +ms)/mrms]−1/2 is an effective mean
free time of a particle of species r for collisions with particles of species s. In particular,
τ12/τ21 = ν and τ12/τ22 = [(2κ22/κ12)µ/(1+µ)]1/2. Henceforth, we take τ22 as unit of time. It
can be easily seen that, for a given choice of the force constants, αmax = α0 if µ is larger than a
certain threshold value µth, which is the solution of τ12(µ) = 2/(1+µ)2. On the other hand, if
µ < µth, αmax = α′0 for shear rates larger than a critical value ac(µ). The µ-dependence of ac

is shown in fig. 1 for three choices of the force constants. The critical shear rate goes to infinity
both when µ goes to 0 and to µth. As a consequence, there exists a minimum value for ac that
depends on the choice of the force constants. The threshold mass ratio µth is smaller than 1
in the three cases of fig. 1, but it can be larger than 1 if κ12 is sufficiently larger than κ22.

Let us discuss the physical consequences of the existence of ac(µ). If ν ¿ 1, the function
F (α, a, ξ) becomes

F (α, a, ξ) ≈ ν D(α, a)
∆0(α, a) +∆1(α, a)ν

, (2)

where the dependence on µ, γ11, and γ22 is implicitly assumed on the right-hand side. The
general expressions of D, ∆0, and ∆1 are too lengthy to be written down here. For the sake
of illustration, we give their expressions for the case µ = 1

2 and γ11 = γ22 = 1:

D(α, a) = 2ζ(2α+ 1)2(3α+ 2ζ + 2)2 + [6(α− ζ)2 − (2ζ − 1)(ζ − 2)]a2, (3)

∆0(α, a) = (2α+ 1)2[(3α+ 2ζ)(3α+ 2ζ + 2)2 − 3a2], (4)

∆1(α, a) = (2ζ − 1)
[
2(2α+ 1)(3α+ 2ζ)(3α+ 2ζ + 2)− a2

(
6α+ 2ζ +

3
2

)]
. (5)
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Fig. 1. Fig. 2.

Fig. 1. – Plot of ac as a function of µ for three choices of the force constant ratios: a) γ22 = 1,

b) κ12 = κ22, and c) κrs ∝ (mrms)
1/2. The arrows indicate the location of the corresponding

threshold values µth.

Fig. 2. – Plot of the order parameter E1/E vs. a/ac in the tracer limit (ν → 0) for κ11 = κ12 = κ22

and several values of µ: a) µ = 0.5, b) µ = 0.3, and c) µ = 0.1.

Equations (2)-(5) hold for α as well as for α′. Furthermore, α and α′ are still functions of a
and ν: α(a, ν) ≈ α0(a) + α1(a)ν and a similar relation for α′(a, ν) holds. Here we omit the
explicit expressions of α1 and α′1. By taking the tracer limit in eq. (2), one gets

lim
ν→0

1
ν
F (α(a, ν), a, ν) =

D(α0(a), a)
∆0(α0(a), a)

, (6a)

lim
ν→0

F (α′(a, ν), a, ν) =
D(α′0(a), a)

∆01(a) +∆1(α′0(a), a)
≡ F0(a), (6b)

where ∆01(a) ≡ α′1(a) (∂∆0(α, a)/∂α) |α=α′0(a)
. In eq. (6b), use has been made of the fact that

∆0(α′0(a), a) = 0. If αmax = α0, the right-hand side of eq. (6a) is the temperature ratio T1/T ,
where T1 is a partial “temperature” measuring the mean kinetic energy per tracer particle.
This ratio was first obtained in an analysis of tracer diffusion under shear flow [7]. On the other
hand, if αmax = α′0, the temperature ratio diverges to infinity and the energy ratio becomes
finite. Therefore, limν→0E1/E = F0(a) if µ < µth and a > ac(µ), being zero otherwise.
This shows that a qualitatively different behaviour is found in the tracer limit depending
on whether the control parameter a is larger or smaller than ac. As a approaches ac from
above, α′1(a) ∼ (a − ac)−1, so that F0(a) ∼ (a − ac). By borrowing the usual terminology
of equilibrium phase transitions [8], one can identify the energy ratio E1/E as an “order”
parameter. If a < ac(µ), the system evolves in time towards a “disordered” phase, for which
E1/E = 0. On the other hand, if a > ac(µ), the system tends to an “ordered” phase, where
E1/E 6= 0. The phase transition at a = ac(µ) only takes place if the mass ratio is smaller
than the threshold value µth. Figure 1 can then be interpreted as a phase diagram: the points
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lying above the curve ac(µ) represent states belonging to an ordered phase. The remaining
points correspond to a disordered phase. In fig. 2 we plot the order parameter vs. a/ac for
several values of µ in the case κ11 = κ12 = κ22. The fact that the order parameter goes to zero
when a− ac → 0+ indicates that the transition is of second order. We observe that the order
parameter for a given value of a/ac > 1 increases as the mass ratio decreases. For large shear
rates, E1/E tends to the asymptotic value {1 + µ/[1 − (1 + µ)2τ12/2]}−1. Thus, the tracer
contribution to the total energy can be even larger than that of the excess component.

It is tempting to consider an analogy with the transition in a ferromagnetic system. In this
sense, the shear rate a plays the role of the (inverse) temperature, the energy ratio E1/E plays
the role of the magnetization, and the density ratio ν plays the role of the external magnetic
field. By exploiting the above analogy, one can define the following critical exponents [8]:
E1/E ∼ ν1/δ, a = ac; E1/E ∼ (a − ac)β , ν = 0; ∂(E1/E)/∂ν ∼ |a − ac|−γ , ν = 0. Near
the critical point, the “equation of state” has the form E1/E ≈ K(a − ac) + [K2(a − ac)2 +
K ′ν]1/2, K and K ′ being positive constants. Consequently, δ = 2, β = 1, γ = 1. This
equation is consistent with a Landau free energy Φ(a − ac, ν;E1/E) = −ν(E1/E) − (K/K ′)
(a − ac)(E1/E)2 + (1/3K ′)(E1/E)3. It is interesting to remark that when τ12 ≥ 2/(1 + µ)2,
the critical value ac becomes infinite and the phase transition disappears. In this case, the
system is analogous to a paramagnetic system.

In summary, we have analysed the tracer limit of an exact solution [6] of the Boltzmann
equation for a binary mixture of Maxwell molecules under shear flow. This solution applies
to arbitrary values of the shear rate a and the parameters of the mixture, namely the molar
fraction ratio ν ≡ n1/n2, the mass ratio µ ≡ m1/m2, and the force constant ratios κ22/κ12

and κ11/κ12. Quite surprisingly, the relative contribution of the tracer species to the total
properties of the mixture does not tend to zero as ν → 0 when the system is sufficiently far
from equilibrium. That happens for shear rates larger than a critical value ac, which depends
on the mass and force constant ratios. The value of ac becomes infinite if µ and/or κ22/κ12

are sufficiently large.
In this problem, the shearing motion induces viscous heating and, consequently, the tem-

perature increases in time. To compensate for this effect, a thermostat external force is usually
introduced. It is important to notice that in the special case of Maxwell molecules an exact
equivalence between the solutions of the Boltzmann equation with and without a thermostat
exists [6]. In order to understand the physical origin of the phenomenon studied in this letter,
it is useful to interpret α0 as the thermostat parameter needed to get a stationary value for the
temperature T2 of the excess component. This parameter scales with the collision frequency
τ−1
22 . The tracer particles are subjected to two competing effects. On the one hand, T1 tends

to increase in time due to viscous heating. On the other hand, the collisions with the excess
particles tend to approximate T1 to T2. Analogously to α0, α′0 (that scales with τ−1

12 ) may
also be interpreted as the minimum value of the thermostat parameter that is necessary to
get a stationary value of T1. Thus, if α0 < α′0, T1/T2 grows infinitely in time. This situation
occurs if τ12 < 2τ22/(1 + µ)2 and the shear rate is large enough (i.e. a > ac). Although the
temperature ratio T1/T2 goes to infinity when α0 < α′0, the energy ratio E1/E2 reaches a finite
value.

The different qualitative behaviour of the system depending on whether a < ac or a > ac can
be interpreted as a (second-order) non-equilibrium phase transition. Below (above) the critical
shear rate, the ordered (disordered) phase is unstable, the relaxation time going to infinity
at criticality. In equilibrium critical phenomena [8], the appearance of an order parameter is
associated with a broken symmetry. The natural question is: which symmetry is broken in
our problem? Near equilibrium, E1/E scales with ν (when ν is small), so that ν−1E1/E is
invariant under the transformation ν → λν. We may call this invariance property generalized
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equipartition of energy. This invariance is broken in the ordered phase, since the mean kinetic
energy per tracer particle is very much larger than the one corresponding to the excess particles.

Usually, when one studies the tracer limit in the context of the Boltzmann equation, one
assumes that the excess component 2 is not disturbed by collisions with particles of the
tracer component 1 and that the self-collisions among tracer particles can be neglected [9].
Consequently, the velocity distribution functions f2 and f1 obey a closed Boltzmann equation
and a Boltzmann-Lorentz equation, respectively. These assumptions are justified by the fact
that the mean free times are well separated (τ11 À τ12 and τ21 À τ22) and implicitly by what
we have called generalized equipartition of energy. Nevertheless, although the existence of a
critical shear rate ac can be predicted from a Boltzmann-Lorentz description [7], our results
show that for a > ac the above equipartition fails and, consequently, collisions of type 1-1 affect
f1 and collisions of type 2-1 affect f2, despite being much less frequent than collisions of types
1-2 and 2-2, respectively. In this sense, the tracer problem in the ordered phase is essentially as
complex as the general one in an arbitrary mixture. The strength of this phenomenon increases
as m1/m2 or κ22/κ12 decrease. Obviously, identical conclusions can be drawn if one considers
other quantities of the system, such as the shear viscosity and the viscometric functions. In
particular, if one defines an intrinsic shear viscosity [10] [η] = limν→0(η − ηs)/ηsν, where η
and ηs are the shear viscosities of the mixture and the solvent, respectively, then [η] goes to
infinity when a > ac.

To the best of our knowledge, the phenomenon described here has not been previously
reported in the literature. Since it arises from an exact solution of the Boltzmann equation for
a binary mixture, there is no doubt about its existence. The price paid for having an exact
description is the restriction to Maxwell molecules and to the low-density regime. However,
we expect that the result is not an artifact but it may appear in dense systems as well as
for more general interactions. The transition occurs at shear rates for which non-Newtonian
effects are generally very important. For instance, if κ11 = κ12 = κ22 and m2 = 10m1, the
shear viscosity at ac is about 94% smaller than its Navier-Stokes value. It is worth pointing
out that when one does not consider atomic particles but mesoscopic ones, such as colloids
or micelles, the shear rates required to observe non-Newtonian effects become attainable in
laboratory conditions.
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