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I. Introduction

I.1. Entropy-driven transitions

• The second law of thermodynamics implies that a system that is not isolated

tends to minimize its Helmholtz free energy

A = E − TS.

At constant temperature T , a system can lower its free energy either by decreas-

ing its internal energy E or by increasing its entropy S.

• As a consequence, a phase transition from a disordered to a more ordered phase

can only take place if the loss in entropy if compensated by the decrease in

internal energy.

If the internal energy of the system depends only on the temperature and not

on the density (as in hard-core systems), then a transition

Disordered state (high entropy)
∆S<0−−−−−→Ordered state (low entropy)

is forbidden.

• Does that mean that the freezing transition

Fluid−−−−−→Crystal

is not possible for hard spheres?
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• However, the freezing transition in hard-sphere systems can be observed in

molecular dynamics simulations.

TABLE I. Volume fractions at close packing (ηcp) and at freezing (ηf).

2D 3D 4D 5D

ηcp 0.907 0.740 0.617 0.465

ηf/ηcp 0.76 0.67 0.50 0.42

• The solution to the paradox lies in the fact that our intuitive concept of “order–

disorder” does not necessarily coincide with the statistical one.

• The crystal can have a higher entropy than the fluid (at the same density and

temperature). The entropy of the crystal decreases with respect to that of the

fluid because the density is no longer uniform, but on the other hand it increases

because the free-volume per particle is larger in the crystal than in the fluid.

At sufficiently large densities (η > ηf), the second effect dominates and the

equilibrium state is that of a crystal.

• The freezing transition in hard spheres (from “disorder” to “order”, intuitively

speaking) is an example of entropy-driven transitions (in contrast to energy-

driven ordering transitions).

• Another example of entropy-driven transition is the isotropic→ nematic tran-

sition in a three-dimensional system of thin hard rods. Here, the loss in orien-

tational entropy can be compensated (at large enough densities) by the gain in

translational entropy.
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I.2. Demixing

• Could a fluid binary mixture of (additive) hard spheres separate into two phases

of different composition due to entropic effects?
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• The mechanism usually invoked to expect demixing is osmotic depletion: If the

mole fraction x1 of the large spheres and the size ratio α ≡ σ2/σ1 are small

enough, the small spheres can induce an effective attraction between the large

spheres.
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• In addition to its intrinsic interest, the study of the demixing transition (or of

its existence) is relevant to the interpretation of experimental data on sterically

stabilized colloidal suspensions, in which the interactions between the colloidal

particles mimic those of a hard sphere system.

• Given a size ratio α ≡ σ2/σ1, the equilibrium state of a binary mixture is

characterized by the number densities ρ1 = N1/V , ρ2 = N2/V [or, equivalently,

by the total volume fraction η = η1+η2 and the mole fraction x1 = N1/(N1+N2)].

• The free energy of the mixture is

A(V, T, N1, N2) = V kBTa(ρ1, ρ2), (kBT = 1).

– Pressure: p = −∂A
∂V = −a +

∑
i ρi

∂a
∂ρi

,

– Chemical potentials: µi = ∂A
∂Ni

= ∂a
∂ρi

.

• If the equation of state of the mixture is known,

p = ρkBTZm(η, x1),

the free energy per unit volume can be reconstructed from

a = ρ



−1 +

∑

i

xi ln
(
ρiλ

d
i

)
+

∫ η

0

dη′
η′ [Zm(η′, x1)− 1]



 ,

λi = (thermal) de Broglie wavelength of species i,

d = dimensionality of the system.
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• The binary mixture becomes unstable with respect to demixing if the free energy

per unit volume a(ρ1, ρ2) ceases to be a convex function.

• A sufficient condition for spinodal instability is

a11a22 − a2
12 = 0 =⇒ spinodal line, aij ≡ ∂2a

∂ρi∂ρj
.

• If a spinodal instability exists, this implies that the binary mixture will phase

separate into two phases (A and B) of different composition. The coexistence

conditions for the two phases are

p(ρA
1 , ρA

2 ) = p(ρB
1 , ρB

2 )

µ1(ρ
A
1 , ρA

2 ) = µ1(ρ
B
1 , ρB

2 )

µ2(ρ
A
1 , ρA

2 ) = µ2(ρ
B
1 , ρB

2 )





=⇒ binodal line.
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I.3. A brief historical perspective

• Computer simulations (molecular dynamics or Monte Carlo) are not determinant

in elucidating the existence or not of the demixing transition because of severe

ergodicity problems, even for a ratio α = 1/3.

• In 1964, Lebowitz and Rowlinson proved that, within the Percus-Yevick approx-

imation (which is exactly solvable), hard spheres (d = 3) of arbitrary size ratio

mix in all proportions in the fluid phase.

• Moreover, the extremely accurate Boubĺık-Mansoori-Carnahan-Starling-Leland

(1970) equation of state (d = 3) also predicts no demixing.

• The general belief was that mixtures of hard spheres never phase separate, until

Biben and Hansen (1991), by numerically solving the Ornstein-Zernike equation

with the Rogers-Young closure, gave strong evidence of phase separation for

α <∼ 0.2.

• Frenkel and Louis (1992) found a demixing transition in a simple lattice model

of binary hard-core mixture (d = 2). This model can be mapped onto a

one-component lattice gas with attractive nearest neighbor interactions (Ising

model).

Fig. 1 of Frenkel-Louis’ paper
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• By using a density functional theory, Cuesta (1996) found spinodal instability

in a binary mixture of parallel hard cubes (d = 3) with α <∼ 0.1.

• Coussaert and Baus (1998) proposed an equation of state for the mixture (d = 3)

that incorporated the exact first five virial coefficients (B4: 1996, B5: 1998).

From there, they obtained demixing, but at such high pressures (pσ3
1 ∼ 103),

that the fluid–fluid transition was metastable relative to freezing of the mixture

into a partially ordered solid phase.

Fig. 3 of Coussaert-Baus’ paper
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I.4. Our approach

• In order to see the entropy-driven demixing transition in action, it seems that

one has to use very sophisticated theories (integral equations for the pair correla-

tion functions, effective one-component fluid theories with complicated depletion

interactions, high-order virial coefficients, . . . ) or very artificial models (lattice

models, parallel hard cubes, . . . ).

• It would be desirable to have systems in which the entropic effects responsible

for a fluid–fluid transition were so “exaggerated”, that any reasonably simple

equation of state should be able to predict demixing. From this approach, we

could also learn some “regularities” of the transition that might be overlooked

in treatments dealing with the elusive case of (three-dimensional) hard spheres.

• What is “closer” to a system of hard spheres: a system of hard cubes or a system

of hard hyperspheres?

• H. L. Frisch and J. Percus, High dimensionality as an organizing device for

classical fluids, Phys. Rev. E 60, 2942 (1999):

[In high spatial dimensionality], fluctuations are reduced by high effective

coordination number, so, e.g., interfaces tend to be even sharper, and one

generally expects clean caricatures of any thermodynamic phenomenology

that indeed extends to higher dimensionality.
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II. Equation of state for hard-sphere mixtures

II.1 From a one-component fluid to a mixture. A simple

recipe

• Given a multi-component hard-sphere system (in d dimensions) of diameters

{σi}, mole fractions {xi}, and packing fraction η, the compressibility factor

Zm ≡ p/ρkBT is related to the contact values of the pair correlation functions,

gm
ij (σij), by

Zm(η, {xi}) = 1 + 2d−1η
∑

i,j

xixj

σd
ij

〈σd〉g
m
ij (σij), σij =

σi + σj

2
, 〈σn〉 ≡ ∑

i

xiσ
n
i .

• Suppose we have a good equation of state Zs(η) for the single component case.

Can we infer from this a “good” equation of state for the multi-component

system? Zs(η) ⇒ Zm(η, {xi})

• van der Waals one-fluid theory:

Zm(η, {xi}) = Zs(ηeff({xi})), ηeff({xi}) = η
∑

i,j

xixj

σd
ij

〈σd〉 .

• However, this is inconsistent with the exact property (binary case)

Zm(η, x1)
σ2/σ1→0−−−−−→ x1Zs(η) +

x2

1− η
.
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• Our proposal [A.S., S. B. Yuste, M. López de Haro, Mol. Phys. 96, 1 (1999)]

consists of

1. gm
ij (σij) depends on {σk} and {xk} only through the parameter

γij ≡ σiσj

σij

〈σd−1〉
〈σd〉 ,

2. gm
ij (σij) is a linear function of γij (Percus-Yevick approximation in 3D):

gm
ij (σij) =

1

1− η
+

[
gs(σ)− 1

1− η

]
γij.

• Consequently,

Zm(η, {xi}) = 1+[Zs(η)− 1] 21−d∆0({xi})+
η

1− η

[
1−∆0({xi}) +

1

2
∆1({xi})

]
,

∆n({xi}) ≡ 〈σd+n−1〉
〈σd〉2

d−1∑
m=n

(d + n− 1)!

m!(d + n− 1−m)!
〈σm−n+1〉〈σd−m〉.

• How good is the above prescription?

– It is consistent with the exact property in the limit σ2/σ1 → 0.

– In 1D, it yields the exact result Zm(η, {xi}) = Zs(η).

– In 2D and 3D, it gives excellent results when one takes any accurate equation

of state Zs(η) for the single component case.

• What about 4D and 5D?
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II.2 Comparison with numerical and simulation results for

4D and 5D

• Third and fourth virial coefficients for d = 4 and σ2/σ1 = 1/2 [E. Enciso, N. G.

Almarza, M. A. González, and F. J. Bermejo, submitted to Phys. Rev. E]:
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• Compressibility factor for three equimolar mixtures in 4D and 5D [M. González,

J. Alejandre, and M. López de Haro, submitted to J. Chem. Phys.]:
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III. Demixing in binary mixtures of hard

hyperspheres

• Spinodal curves (upper panels: lines) and binodal curves (upper panels: sym-

bols; lower panels: lines). The filled symbols are the critical consolute points

[S. B. Yuste, A. S., and M. López de Haro, Europhys. Lett. (in press)].
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• Some observations

– Our simple equation of state leads to an analytical expression for the free

energy of the mixture in 4D and 5D. From here, we find spinodal instability

for any size ratio.

– The pressure of the critical point does not decrease monotonically as the

asymmetry increases.

3D 4D 5D

pcσ
d
1

∣∣
min

∼ 103 ≈ 300 ≈ 120

α|min ≈ 0.3 ≈ 0.4 ≈ 0.6

– There is a remarkable similarity between the binodal curves represented in

the pσd
i –η1 and in the µi–η1 planes (with λi = σi). If we eliminate the

parameter η1, how do the binodal curves look in the µi–pσ
d
i plane?
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• Binodal curves in the µ1 vs pσd
1 plane for d = 3 (circles: σ2/σ1 = 1/5, squares:

σ2/σ1 = 1/10), d = 4 and d = 5 . Note that for each size ratio the binodal curve

is restricted to p ≥ pc.
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• For a given dimensionality, the binodal lines corresponding to different size ratios

seem to lie on a common line: “universality” property!
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• Binodal curves in the µi vs pσ4
i plane for a 4D system.
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• The curves µ1 = F1
(
pσd

1

)
and µ2 = F2

(
pσd

2

)
seem to probe different different

regions of the plane but otherwise overlap reasonably well.
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IV. Concluding remarks

• The geometrical effects of osmotic depletion become more important as the di-

mensionality increases in much the same way that in 3D they are more important

for parallel hard cubes than for hard spheres.

• The universal behavior of the binodal lines is not an artifact of our equation of

state or of a high dimensionality. It reveals the existence of a certain geometri-

cal regularity that might characterize the entropy driven transitions. One could

then state that all binary hard (hyper)sphere mixtures belong to the same uni-

versality class since, for fixed d, there are some properties such as the binodal

curves in which the asymmetry is to a certain extent irrelevant.

• We also find an upper quasi-universality: for the range of common values, the

universal curve in 3D lies close but somewhat above the universal curve in 4D,

and in turn this latter lies above the one in 5D. All three curves approach straight

lines of slopes 0.44 (d = 3), 0.45 (d = 4), and 0.43 (d = 5) in the region of their

higher values.

• It is likely that the demixing fluid–fluid transition in 4D and 5D is metastable

with respect to a fluid–solid transition. However, since the pressure at the freez-

ing transition for the single component fluid does not change appreciably with

the dimensionality, while the demixing critical pressure decreases as d increases,

there might be a threshold dimensionality dth above which the fluid–fluid tran-

sition in hard hypersphere mixtures becomes stable.
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