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Abstract
Starting from a recent derivation of the energy production rates in terms of the number of translational and rotational degrees 
of freedom, a comparative study on different granular temperatures in gas mixtures of inelastic and rough disks or spheres 
is carried out. Both the homogeneous freely cooling state and the state driven by a stochastic thermostat are considered. It is 
found that the relaxation number of collisions per particle is generally smaller for disks than for spheres, the mean angular 
velocity relaxing more rapidly than the temperature ratios. In the asymptotic regime of the undriven system, the rotational-
translational nonequipartition is stronger in disks than in spheres, while it is hardly dependent on the class of particles in the 
driven system. On the other hand, the degree of component-component nonequipartition is higher for spheres than for disks, 
both for driven and undriven systems. A study of the mimicry effect (whereby a multicomponent gas mimics the rotational-
translational temperature ratio of a monocomponent gas) is also undertaken.

Keywords Inelastic and rough particles · Hard disks · Hard spheres · Homogeneous cooling state · Stochastic thermostat

1 Introduction

This paper is dedicated to the memory of Robert P. 
Behringer, who paved the way for a better understanding of 
dense granular matter. His long lasting influence and impact 
on the field can be appreciated in part from an excellent 
(posthumous) review paper [2].

While the basic model of a granular gas is a collection 
of inelastic and smooth hard disks or spheres, either mono-
disperse [5, 11, 19] or polydisperse [1, 9, 13–17, 28, 40, 
52, 55], the model can be significantly improved by incor-
porating the rotational degrees of freedom of the particles 
(assumed to be rough) [6, 8, 13, 18, 20, 27, 29, 31, 33–36, 
39, 42, 49, 50, 58, 60, 61, 65]. The aim of this paper is to 
employ kinetic-theory methods to compare the degrees of 
breakdown of energy equipartition in hard disks and spheres 
when both roughness and polydispersity are considered. Due 

to the angular motion inherent to roughness, the distinction 
between disks and spheres is not trivial. In contrast to spin-
ning disks on a plane, which have dtr = 2 translational and 
drot = 1 rotational degrees of freedom, spinning spheres 
in space have dtr = 3 translational plus drot = 3 rotational 
degrees of freedom.

In a recent work [38], we have presented a unified kinetic-
theory derivation (in terms of the number of degrees of 
freedom dtr and drot ) of the collisional rates of energy pro-
duction in multicomponent granular gases, so that previous 
results for disks [47] and spheres [48] are obtained by taking 
(dtr, drot) = (2, 1) and (dtr, drot) = (3, 3) , respectively. Those 
unified expressions will be applied here to study the granular 
temperature ratios in monodisperse and bidisperse gases of 
rough disks or spheres in homogeneous states, both undriven 
and driven. Experimental realizations of those states can be 
found, for instance, in Refs. [22, 25, 37, 54] and [7, 12, 21, 
23, 24, 26, 43, 54, 62, 64] for the undriven and driven cases, 
respectively.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the systems and presents the energy produc-
tion rates. This is followed by the application to the homo-
geneous cooling state (HCS) and to the state driven by a 
stochastic thermostat in Sects. 3 and 4, respectively. Sec-
tion 5 deals with the conditions for a mixture to mimic a 
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monocomponent gas in what concerns the temperature ratios 
(mimicry effect). Finally, the conclusions are presented in 
Sect. 6.

2  Energy production rates

Let us consider a dilute multicomponent granular gas made 
of hard disks or spheres of different masses {mi} , diameters 
{�i} , and moments of inertia {Ii} . We denote by �i and �i the 
translational and angular velocities, respectively, of a parti-
cle belonging to component i. In a binary collision between 
particles of components i and j, linear total momentum is 
conserved, as is the angular momentum of each particle with 
respect to the point of contact, but this is not enough to 
determine the postcollisional velocities in terms of the pre-
collisional ones and the unit vector �̂ pointing from the 
center of particle i to the center of particle j. To close the 
collision rules, it is frequently assumed that the normal and 
tangential components of the relative velocity 
�ij ≡ �i − �j − �̂ × (�i�i + �j�j)∕2 of the points of the par-
ticles at contact become, after collision, ��

ij
⋅ �̂ = −�ij�ij ⋅ �̂ , 

�̂ × �
�
ij
= −�ij�̂ × �ij , where �ij and �ij are the coefficients of 

normal and tangential restitution, respectively, assumed here 
to be constant. The coefficient �ij ranges from �ij = 0 (per-
fectly inelastic particles) to �ij = 1 (perfectly elastic parti-
cles). In contrast, �ij ranges from �ij = −1 (perfectly smooth 
particles) to �ij = 1 (perfectly rough particles). It can be eas-
ily checked that the total (translational plus rotational) 
kinetic energy is a collisional invariant only if �ij = |�ij| = 1.

The mean values of the translational and rotational kinetic 
energies of particles of component i define the so-called 
(partial) granular temperatures, namely [48] T tr

i
= m⟨�2

i
⟩∕dtr , 

T rot

i
= Ii⟨�2

i
⟩∕drot , where, as said before, dtr and drot are the 

number of translational and rotational degrees of freedom, 
respectively, and a zero mean translational velocity has been 
assumed. Analogously, one can define the mean angular 
velocity of component i as �i = ⟨�i⟩ . The rates of change of 
the quantities �i , T tr

i
 , and T rot

i
 due to collisions with particles 

of component j can be written as 

where ��
ij

 are spin production rates, and �tr
ij
 and �rot

ij
 are energy 

production rates. While the exact determination of those 
quantities is not possible, a kinetic-theory approach (namely 
the Boltzmann equation) supplemented by a multitempera-
ture Maxwellian approximation [38, 47, 48] allows one to 

(1a)�t�i
||coll,j = −

��
ij

2�i

(
�i�i + �j�j

)
,

(1b)�tT
tr

i
||coll,j = −�tr

ij
T tr

i
, �tT

rot

i
||coll,j = −�rot

ij
T rot

i
,

express them in terms of the partial densities ( ni , nj ), tem-
peratures ( T tr

i
 , T rot

i
 , T tr

j
 , T rot

j
 ), mean angular velocities ( �i , 

�j ), and the mechanical parameters. The unified expressions 
for disks ( dtr = 2 , drot = 1 ) and spheres ( dtr = drot = 3 ) are 
[38] 

Here, �i ≡ Ii∕(mi�
2

i
∕4) is a reduced moment of inertia, 

mij ≡ mimj∕(mi + mj) is the reduced mass, �ij ≡
1

2
(�i + �j) , 

�ij ≡ 1 + �ij  ,  and  � ij ≡ (1 + �ij)�ij∕(1 + �ij)  ,  whe re 
�ij ≡ �i�j(mi + mj)∕(�imi + �jmj) . Equation (2b) general-
izes to the rough case results previously derived for smooth 
spheres [3, 15, 17, 55]. In the special case of a monocom-
ponent gas, Eqs. (2) become 

(2a)

��
ij

=
�ij

dtr

4mij� ij

mi�i
, �ij ≡

√
2�

dtr−1

2

� (dtr∕2)
nj�

dtr−1

ij

����T tr

i

mi

+
T tr

j

mj

,

(2b)

�tr
ij
=

�ij

dtr

2m2

ij

miT
tr

i

[
2

(
�ij +

drot

dtr
� ij

)
T tr

i

mij

−

(
�
2

ij
+

drot

dtr
�
2

ij

)(
T tr

i

mi

+
T tr

j

mj

)

−
drot

dtr
�
2

ij

(
T rot

i

mi�i
+

T rot

j

mj�j
+

�i�j�i ⋅�j

2drot

)]
,

(2c)

�rot
ij

=
�ij

dtr

4m2

ij
� ij

mi�iT
rot

i

[
T rot

i

mij

+
mi�i
mij

�i�j�i ⋅�j

4drot

−
� ij

2

(
T tr

i

mi

+
T tr

j

mj

+
T rot

i

mi�i
+

T rot

j

mj�j
+

�i�j�i ⋅�j

2drot

)]
.

(3a)�� =
2�

dtr

1 + �

1 + �
, � ≡

2�
dtr−1

2

� (dtr∕2)
n�dtr−1

√
T tr

m
,

(3b)

�tr =
�

dtr

{
1 − �2 +

2drot�(1 + �)

dtr(1 + �)2T tr

[
�(1 − �)

2

(
T tr +

T rot

�

+
m�2�2

4drot

)
+ T tr − T rot −

�m�2�2

4drot

]}
,

(3c)

�rot =
2�

dtr

�(1 + �)

(1 + �)2T rot

[
1 − �

2

(
T tr +

T rot

�

+
m�2�2

4drot

)
+ T rot − T tr +

�m�2�2

4drot

]
.
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It is interesting to remark that, in the case of smooth 
inelastic spheres, a similar multitemperature Maxwellian 
approximation has been used for isotropic mixtures [15] 
and for monocomponent granular fluids with horizontal-
vertical anisotropy [57]. Apart from that type of Max-
wellian approximation for the distribution of translational 
velocities, the derivation of Eqs. (2) and (3) is based on 
the assumption that the statistical correlations between 
translational and angular velocities can be neglected. On 
the other hand, couplings between � and � have been pre-
dicted theoretically and confirmed by simulations [6, 30, 
49, 60, 61] in the case of spheres ( dtr = drot = 3 ). Never-
theless, those couplings are relatively small; for instance, 
at � = 0.9 , one has �⟨𝜐2𝜔2⟩∕⟨𝜐2⟩⟨𝜔2⟩ − 1� < 0.08 and 
�⟨(� ⋅ �)2⟩∕⟨𝜐2𝜔2⟩ − 1

3
� < 0.05 both in the driven [60] and 

undriven [6, 30, 61] systems.

3  Undriven gas: homogeneous cooling state

In the HCS, time evolution of the mean values is due to col-
lisions only. In particular, �tT tr

i
= −�tr

i
T tr

i
 , �tT rot

i
= −�rot

i
T rot

i
 , 

where �tr
i
≡
∑

j �
tr

ij
 and �rot

i
≡
∑

j �
rot

ij
 . After a certain transient 

period, the gas reaches a long-time asymptotic regime where 
all temperatures decay with a common rate [3, 46, 59, 61], 
so that the temperature ratios are obtained from the condi-
tions �tr

1
= �tr

2
= ⋯ = �rot

1
= �rot

2
= ⋯ . Our goal now is to 

compare those ratios in the cases of hard disks and hard 
spheres. To that end, we will suppose a uniform mass distri-
bution in both types of particles, so that the reduced moment 
of inertia is �i =

1

2
 for disks and �i =

2

5
 for spheres.

3.1  Monocomponent system

Given the three energy scales T tr , T rot , and I�2, we can 
construct the following two dimensionless quantities: 
� ≡ T rot∕T tr and X ≡ I�2∕drotT

rot = ⟨�⟩ ⋅ ⟨�⟩∕⟨�2⟩ . Using 
Eqs. (3), one can obtain in a straightforward way a coupled 
set of nonlinear differential equations for the evolution of 
� and X:

where a star denotes division by the collision frequency � 
(i.e., �tr,∗ ≡ �tr∕� , etc.) and � =

1

2
∫ t

0
dt� �(t�) is the accumu-

lated number of collisions per particle. Taking into account 
that X < 1 , it can be easily checked that 2��,∗ − �rot,∗ is posi-
tive definite, thus implying that lim�→∞ X(�) = 0 . On the 
other hand, the evolution equation for �(�) admits a station-
ary solution, �s , given by the condition �tr,∗ = �rot,∗ , which 
yields the quadratic equation �s − 1 −

dtr

drot

(
�−1
s

− 1
)
= 2h , 

whose physical solution is 

(4)
1

2
�� ln � + �rot,∗ − �tr,∗ =

1

2
�� lnX + 2��,∗ − �rot,∗ = 0,

 
Figure 1 shows a density plot of the stationary tempera-

ture ratio �s as a function of the coefficients of restitution � 
and � in the cases of (a) uniform disks ( � =

1

2
 ) and (b) uni-

form spheres ( � =
2

5
 ). In both cases, the equipartition line 

�s = 1 (where h = 0 ) splits the plane (�, �) into two regions. 
In the lower region, the rotational temperature is higher 
than the translational one ( 𝜃s > 1 , h > 0 ), while the oppo-
site occurs in the upper region. Apart from those common 
features, we can observe that, in general, the breakdown of 
rotational-translational equipartition is higher in disks than 
in spheres.

Once the stationary solution (�,X) = (�s, 0) of the HCS 
is established, it is convenient to analyze its stability. Lin-
earization of the evolution equations (4) yields the solution 

(5a)

�s =

√[
h +

1

2

(
1 −

dtr

drot

)]2
+

dtr

drot
+ h +

1

2

(
1 −

dtr

drot

)
,

(5b)h ≡
dtr(1 + �)2

2drot�(1 + �)2

⎡
⎢⎢⎣
1 − �2 −

1 −
drot

dtr
�

1 + �
(1 − �2)

⎤
⎥⎥⎦
.

Fig. 1  Density plot of the stationary value �s of the temperature ratio 
� ≡ T rot∕T tr in the HCS [see Eqs. (5)] for a uniform disks ( � =

1

2
 ) and 

b uniform spheres ( � =
2

5
 ). The contour lines correspond to �s = 1 

(thick solid line), �s = 2−1, 2−2, 2−3,… , and �s = 2, 22, 23,…
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 where ��(�) ≡ �(�) − �s and 

As expected on physical grounds, both eigenvalues �1 and 
�2 are positive definite, what confirms the linear stability 
of the stationary solution (�,X) = (�s, 0) with respect to 
homogeneous perturbations. The quantities 1∕�1 and 1∕�2 
are the characteristic relaxation times (measured as the 
number of collisions per particle) associated with the evo-
lution of ��(�) (if X0 = 0 or 𝜆1 < 𝜆2 ) and X(�) , respectively. 
Both relaxation times are plotted in Fig. 2 as functions of 
the coefficient of tangential restitution at the representative 
value � = 0.8 . It can be observed that, except for very small 
roughness ( −1 ≤ 𝛽 ≲ 0.84 ), one has 1∕𝜆2 < 1∕𝜆1 . This justi-
fies the non-hydrodynamic character of the angular velocity 
in a hydrodynamic description [31]. As for the difference 
between disks and spheres, Fig. 2 also shows that, in general, 
disks require a smaller number of collisions than spheres to 
reach the stationary state. The only exception is the interval 
− 0.69 ≲ 𝛽 ≲ − 0.54 , where 1∕�1 is larger for disks than for 
spheres.

(6a)��(�) = ��0e
−�1� −

�12
�2 − �1

X0

(
e−�1� − e−�2�

)
,

(6b)X(�) = X0e
−�2� ,

(7a)�1 =
2�

dtr

(
1 + �

1 + �

)2(
1

�s
+

drot

dtr
�s

)
,

(7b)�2 =
2

dtr

1 + �

1 + �

[
2 + (1 + �)

1 + �∕�s
1 + �

]
,

(7c)�12 =
2�s
dtr

1 + �

(1 + �)2

[
2� + 1 − � +

drot

dtr
(1 + �)��s

]
.

3.2  Binary system

As a representative multicomponent gas, let us consider here 
a binary system that has already reached the asymptotic HCS. 
The conditions �tr

1
= �rot

1
= �tr

2
= �rot

2
 provide the three inde-

pendent temperature ratios ( T rot

1
∕T tr

1
 , T tr

2
∕T tr

1
 , and T rot

2
∕T rot

1
 ) 

for arbitrary values of the 11 dimensionless parameters of the 
system ( n2∕n1 , m2∕m1 , �2∕�1 , �1 , �2 , �11 , �12 , �22 , �11 , �12 , and 
�22 ). For the sake of concreteness, we will consider an equi-
molar mixture ( n2∕n1 = 1 ) where all the particles are uniform 
( �i =

1

2
 and 2

5
 for disks and spheres, respectively) and made of 

the same material (i.e., �ij = � and �ij = � ). Moreover, the size 
of the large particles is assumed to be twice that of the small 
particles ( �2∕�1 = 2 ), so that m2∕m1 = 2dtr.

Figure 3 shows the three independent temperature ratios as 
functions of the roughness parameter � for a few characteristic 
values of the inelasticity parameter � . The rotational-transla-
tional temperature ratio T rot

1
∕T tr

1
 has a behavior qualitatively 

Fig. 2  Plot of the relaxation times 1∕�1 (thick blue lines) and 1∕�2 
(thin red lines) versus � at � = 0.8 in the HCS [see Eqs. (7)] for uni-
form disks (solid lines) and uniform spheres (dashed lines) (color fig-
ure online)

(a)

(b)

(c)

Fig. 3  Plot of the temperature ratios a T rot

1
∕T tr

1
 , b T tr

2
∕T tr

1
 , and c 

T rot

2
∕T rot

1
 versus � in the HCS for equimolar binary mixtures of uni-

form disks (solid lines) or uniform spheres (dashed lines) with 
�2∕�1 = 2 , m2∕m1 = 2dtr , �ij = � , and �ij = � = 0.5 (thick blue lines), 
0.7 (medium red lines), and 0.9 (thin black lines) (color figure online)
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similar to that of the monodisperse case (see Fig. 1) in the 
sense that T rot

1
∕T tr

1
< 1 if � is larger than a certain threshold 

value and � belongs to a certain �-dependent interval around 
� ≈ 0 , whereas T rot

1
∕T tr

1
> 1 otherwise. Also, the departure 

from rotational-translational equipartition ( T rot

1
∕T tr

1
= 1 ) 

is generally stronger for disks than for spheres. In contrast, 
Fig. 3b, c show that the translational and rotational compo-
nent-component ratios exhibit a stronger nonequipartition 
effect in the case of spheres than in the case of disks.

4  Driven gas: stochastic thermostat

Let us consider now a homogeneous dilute granular gas sub-
ject to a stochastic volume force �wn (also called a thermostat), 
which injects translational kinetic energy to the particles and 
has the properties of a Gaussian white noise [1, 41, 56, 63], 
i.e., ⟨�wn

i
(t)⟩ = � , ⟨�wn

i
(t)�wn

j
(t�)⟩ = �m2

i
�2

0
�ij�(t − t�) , where 

indices i , j refer to particles, � is the dtr × dtr unit matrix, and 
�2

0
 measures the strength of the stochastic force. This kind of 

forcing can model, for example, the energy input to grains 
immersed in a gas in turbulent flow.

Since the stochastic force acts on the translational degrees of 
freedom only, the time evolutions of the mean angular veloci-
ties ( �i ) and the rotational temperatures ( T rot

i
 ) are governed 

by collisions only. On the other hand, �tT tr

i
= mi�

2

0
− �tr

i
T tr

i
 . 

The conditions for a stationary state are �i = � , �rot
i

= 0 , and 
mi�

2

0
= �tr

i
T tr

i
.

4.1  Monocomponent system

Apart from X ≡ I�2∕drotT
rot and � ≡ T rot∕T tr , the stochas-

tic thermostat introduces a third dimensionless parameter, 
Y ≡ m�2

0
∕�T tr , which can be seen as a (time-dependent) 

reduced measure of the noise strength. Instead of Eq. (4), now 
we have

As in the undriven case, 2��,∗ − �rot,∗ is positive definite, so 
that lim�→∞ X(�) = 0 . Moreover, �rot,∗ = 0 and Y − �tr,∗ = 0 
give the stationary values

Note that �wn
s

 is independent of � , dtr , and drot . However, it 
depends on the reduced moment of inertia � , so that it is 
slightly larger for uniform disks ( � =

1

2
 ) than for uniform 

spheres ( � =
2

5
 ). Since �wn

s
≤ 1 , this implies that, in contrast 

(8)

1

2
�� ln � + �rot,∗ − �tr,∗ + Y =

1

2
�� lnX + 2��,∗ − �rot,∗

=
1

2
�� ln Y +

3

2

(
Y − �tr,∗

)
= 0.

(9)

�wn
s

=
1 + �

2 + �−1(1 − �)
, Ys =

1 − �2

dtr
+

2drot

d2
tr

(1 − �)�wn
s
.

to the HCS case, the degree of rotational-translational non-
equipartition is higher in spheres than in disks.

As in the HCS case, it is instructive to analyze the time evo-
lution of �� ≡ � − �wn

s
 , �Y ≡ Y − Ys and X near the stationary 

state. After linearizing Eq. (8), one obtains 

 where 

The dependence on � of the reciprocal eigenvalues 1∕�± 
and 1∕�wn

2
 is shown in Fig. 4 at � = 0.8 . Comparison with 

Fig. 2 shows that the relaxation toward the stationary values 
is much faster in the driven gas than in the undriven one. 
Although 1∕𝜆+ < 1∕𝜆wn

2
 if 𝛽 ≲ −0.74 , one has 1∕𝜆− > 1∕𝜆wn

2
 

for all � , so that the reduced angular velocity X tends to zero 
much more rapidly than �� and �Y  . Finally, in agreement 
with the undriven case, we can observe that the relaxation 

(10a)

��(�) +
�± − �wn

1

�31
�Y(�) =

(
��0 +

�± − �wn
1

�31
�Y0

)
e−�±�

−
�±�

wn
s
X0

�wn
2

− �±

(
e−�±� − e−�

wn

2
�
)
,

(10b)X(�) = X0e
−�wn

2
� ,

(11a)�± =
1

2

[
�wn
1

+ 3Ys ±

√
(�wn

1
− 3Ys)

2 + 8�wn
s
�31

]
,

(11b)�wn
1

=
2�

dtr

(
1 + �

1 + �

)2(
1

�wn
s

+
drot

dtr
�wn
s

)
,

(11c)�wn
2

=
8

dtr

1 + �

1 + �
, �31 =

3drot�

d2
tr

(
1 + �

1 + �

)2

Ys.

Fig. 4  Plot of the relaxation times 1∕�− (thick blue lines), 1∕�+ 
(medium red lines), and 1∕�wn

2
 (thin black lines) versus � at � = 0.8 in 

systems driven by a stochastic thermostat [see Eqs. (11)] for uniform 
disks (solid lines) and uniform spheres (dashed lines) (color figure 
online)
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times (as measured by the number of collisions per particle) 
are shorter for disks than for spheres.

4.2  Binary system

In the case of a binary mixture driven by a stochastic ther-
mostat, the three independent temperature ratios ( T rot

1
∕T tr

1
 , 

T tr

2
∕T tr

1
 , and T rot

2
∕T rot

1
 ) in the steady state are obtained by 

the conditions �rot
1

= �rot
2

= 0 and �tr
1
T tr

1
∕m1 = �tr

2
T tr

2
∕m2 . 

Again, we choose here an equimolar mixture ( n2∕n1 = 1 ) 
with �i =

1

2
 and 2

5
 for disks and spheres, respectively, �ij = � , 

�ij = � , �2∕�1 = 2 , and m2∕m1 = 2dtr.
The temperature ratios are shown in Fig. 5 as functions 

of the roughness parameter � for the same values of � as in 
Fig. 3. The rotational-translational temperature ratio T rot

1
∕T tr

1
 

exhibits a very weak dependence on � and is hardly sensitive 
to whether the particles are disks or spheres. While in the 

monocomponent case the degree of rotational-translational 
nonequipartition is slightly higher in spheres than in disks, 
from Fig. 5a one can observe that this ceases to be true for 
large enough roughness in the case of mixtures. As for the 
translational and rotational component-component ratios, 
the equipartition breakdown is clearly stronger for spheres 
than for disks, in analogy to what happens in the undriven 
case (see Fig. 3).

5  Mimicry effect

As illustrated by Figs. 3 and 5, in the long-time asymp-
totic regime each component of a mixture has in general 
a different translational ( T tr

1
≠ T tr

2
≠ ⋯ ) and rotational 

( T rot

1
≠ T rot

2
≠ ⋯ ) temperature, both in the driven and the 

undriven states, even if all the coefficients of restitution and 
all the reduced moments of inertia are equal ( �ij = � , �ij = � , 
�i = �ij = � ). In general, if the particle mass densities are 
similar, the bigger particles have larger temperatures. This is 
exemplified in a high-component mixture of smooth spheres 
( dtr = 3 , �ij = −1 ) with mi ∝ �3

i
∝ i and a sufficiently steep 

size composition ni ; in that case, the temperature of the big-
ger spheres follows the scaling law T tr

i
∝ m

�

i
 , with � ≃ 1.85 

and 1.22 for the undriven and driven systems, respectively 
[3].

In this context, an interesting question [47] is whether 
it is possible to couple the densities, sizes, and masses of 
the particles in such a way that all the components reach a 
common translational temperature ( T tr

i
= T tr ) and a common 

rotational temperature ( T rot

i
= T rot ). In that case, the tem-

perature ratio T rot

i
∕T tr

i
= T rot∕T tr would be the same as that 

of a monocomponent gas and one can say that the mixture 
mimics the monocomponent system.

Setting �ij = � , �ij = � , �i = � , T tr

i
= T tr , T rot

i
= T rot , and 

�i = � in Eqs. (2b) and (2c), we obtain

According to  Eq.  (12) ,  the HCS condit ions 
�tr
1
= �tr

2
= ⋯ = �rot

1
= �rot

2
= ⋯ decompose into �tr

11
= �rot

11
 

(which actually is the monocomponent condition) plus 
R1 = R2 = ⋯ (which establish constraints on densities, 
diameters, and masses for the mimicry effect). In the driven 
case, Eq. (12) shows that �rot

i
= 0 implies �rot

11
= 0 (mono-

component condition), while �tr
1
T tr

1
∕m1 = �tr

2
T tr

2
∕m2 = ⋯ 

imply R1∕m1 = R2∕m2 = ⋯ . It is remarkable that those 
mimicry conditions are independent of the coefficients of 
restitution ( � and � ), the reduced moment of inertia ( � ), 
and, in the case of the driven system, the noise strength ( �2

0
).

(12)�tr,rot
i

= �tr,rot
11

Ri, Ri ≡
∑
j

nj�
dtr−1

ij

n1�
dtr−1

1

√
2m1mj

mi(mi + mj)
.

(a)

(b)

(c)

Fig. 5  Plot of the temperature ratios a T rot

1
∕T tr

1
 , b T tr

2
∕T tr

1
 , and c 

T rot

2
∕T rot

1
 versus � in systems driven by a stochastic thermostat for 

equimolar binary mixtures of uniform disks (solid lines) or uniform 
spheres (dashed lines) with �2∕�1 = 2 , m2∕m1 = 2dtr , �ij = � , and 
�ij = � = 0.5 (thick blue lines), 0.7 (medium red lines), and 0.9 (thin 
black lines) (color figure online)
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To fix ideas, let us consider a binary mixture. The con-
ditions R1 = R2 (undriven system) and R1∕m1 = R2∕m2 
(driven system) yield

where � = 0 and 1
2
 in the undriven and driven cases, respec-

tively. Equation (13) represents the constraint on n2∕n1 , 
�2∕�1 , and m2∕m1 for the mimicry effect. By solving a linear 
equation in the case of disks ( dtr = 2 ) or a quadratic equation 
in the case of spheres ( dtr = 3 ), it is possible to express �2∕�1 
as explicit functions of n2∕n1 and m2∕m1 . If m2∕m1 ≈ 1 , one 
has �2∕�1 − 1 = k(m2∕m1 − 1)∕(dtr − 1) with independ-
ence of the density ratio, where k = 3

2
 and 7

2
 for undriven 

and driven gases, respectively. It is interesting to notice that 
the mass ratio m2∕m1 must be larger than a lower bound 
(corresponding to �2∕�1 → 0 ) and smaller than an upper 
bound (corresponding to �2∕�1 → ∞ ). More specifically, 
𝜇0(n2∕n1) < m2∕m1 < 1∕𝜇0(n1∕n2) , where

for undriven gases, while �0(x) is the positive real root of 
the quartic equation 22dtr−3�3

0
(1 + �0) = (1 − x�2

0
)2 for driven 

gases.
Figure 6 shows the area (in the case of disks) or vol-

ume (in the case of spheres) ratio (�2∕�1)dtr as a func-
tion of the mass ratio m2∕m1 , as obtained from Eq. (13) 
in the equimolar case ( n2∕n1 = 1 ). If m2 < m1 , one has 
(𝜎2∕𝜎1)

dtr < m2∕m1 , i.e., m2∕𝜎
dtr
2

> m1∕𝜎
dtr
1

 , while the 

(13)
n2

n1
=

�
dtr−1

12

(
m1

m2

)�√
m1

m2

− �
dtr−1

1

(
m2

m1

)�√
m1+m2

2m1

�
dtr−1

12

(
m2

m1

)�√
m2

m1

− �
dtr−1

2

(
m1

m2

)�√
m1+m2

2m2

,

(14)�0(x) =
x + 2dtr−2

�
2dtr−2 −

√
22(dtr−2) + 2(1 + x)

�

x2 − 22dtr−3

opposite happens if m2 > m1 . Therefore, the mimicry 
effect requires that the smaller particles have a higher 
particle mass density than the large spheres, this property 
holding for any n2∕n1 . The disparity in the particle mass 
density is stronger for disks than for spheres and in driven 
than in undriven systems. In fact, for equimolar mixtures, 
the windows of mass ratios are 0.094 < m2∕m1 < 10.657 , 
0.236 < m2∕m1 < 4.236, 0.398 < m2∕m1 < 2.510,  a n d 
0.544 < m2∕m1 < 1.839 for undriven spheres, undriven 
disks, driven spheres, and driven disks, respectively. It is 
worth mentioning that a recent work [32] shows a good 
agreement between theory and computer simulations for 
the mimicry effect in undriven hard spheres.

6  Conclusions

In this paper we have carried out a comparative study on the 
partition of the mean kinetic energy among different classes 
of degrees of freedom in multicomponent granular gases 
of disks or spheres. Both undriven (HCS) and driven (sto-
chastic thermostat) states have been considered. The starting 
point has been a recent unified derivation (within a Max-
wellian approximation) of the energy production rates [38] 
in terms of the number of translational ( dtr ) and rotational 
( drot ) degrees of freedom.

The main conclusions are the following ones: (1) the 
number of collisions per particle needed to reach station-
ary values for the temperature ratios is generally smaller for 
disks than for spheres and in the driven system than in the 
undriven one; (2) except in the HCS near the quasi-smooth 
limit, the relaxation time for the mean angular velocity is 
much shorter than for the temperature ratios; (3) while in 
the driven case the rotational-translational temperature ratio 
is very similar for disks and spheres, in the undriven case 
disks typically present a stronger rotational-translational 
nonequipartition than spheres; (4) on the other hand, the 
degree of component-component nonequipartition is higher 
for spheres than for disks, both for driven and undriven sys-
tems; (5) under certain conditions, a multicomponent gas 
can mimic a monocomponent gas in what concerns the 
rotational-translational temperature ratio; (6) this mimicry 
effect requires the smaller component to have a higher par-
ticle mass density than the larger component, this property 
being more pronounced in the driven system than in the 
undriven one and for disks than for spheres; (7) interestingly, 
a mixture mimicking a monocomponent gas in the undriven 
state loses its mimicry property in the driven steady state (no 
matter the intensity of the stochastic force), and vice versa.

Before closing this paper, it is worth remarking that our 
analytic results have been obtained within the framework of 
the standard collision model where both coefficients of res-
titution are constant. However, more realistic models, with 

Fig. 6  Plot of the area or volume ratio (�2∕�1)dtr versus the mass ratio 
m2∕m1 for the mimicry effect in equimolar binary mixtures of disks 
(solid lines) or spheres (dashed lines). The thick blue and thin red 
curves correspond to the undriven and driven systems, respectively. 
The dotted straight line represents the points (�2∕�1)dtr = m2∕m1 of 
equal particle mass density (color figure online)
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the coefficients of restitution depending on the normal and 
tangential components of the impact velocity �ij , have been 
proposed in the literature [4, 5, 44, 45, 51]. Notwithstanding 
this, the experimental measurement of the normal coefficient 
of restitution at very small impact velocities is challeng-
ing [10], some independent experiments [22, 53] providing 
evidence on a sharp decrease at small impact velocities, in 
contrast to what happens with viscoelastic spheres [5, 44].
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