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The Letters to the Editor section is divided into three categories entitled Notes, Comments, and Errata. Letters to the Editor are
limited to one and three-fourths journal pages as described in the Announcement in the 1 January 2000 issue.
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Although not present in nature, fluids of hard hype
spheres in high dimensions (d>4) have attracted the atten
tion of a number of researchers over the last 20 years1–14

Among these studies, one of the most important outcom
was the realization by Freasier and Isbister1 and, indepen-
dently, by Leutheusser4 that the Percus–Yevick~PY!
equation15 admits an exact solution for a system of ha
spheres ind5odd dimensions. In the special case of a fiv
dimensional system (d55), the virial series representatio
of the compressibility factorZ[p/rkBT ~where p is the
pressure,r is the number density,kB is the Boltzmann con-
stant, andT is the temperature! is Z(h)5(n50

` bn11hn,
whereh5(p2/60)rs5 is the volume fraction (s being the
diameter of a sphere! andbn are~reduced! virial coefficients.
The exact values of the first four virial coefficients are2,10

b151, b2516, b35106, andb45311.18341(2). The fifth
virial coefficient was estimated by Monte Carlo integrati
to beb5.970.1 More recent and accurate Monte Carlo c
culations yieldb55843(4) andb65988(28).14 The exact
knowledge of the virial coefficientsb1–b4 and in some case
of the Monte Carlo values forb5 andb6 has been exploited
to construct several approximate equations of state~EOS!,
several of them being reviewed in Ref. 14.

One of the simplest proposals is Song, Mason, a
Stratt’s ~SMS!,7 who, by viewing the Carnahan–Starlin
~CS! EOS ford53 ~Ref. 16! as arising from a kind of mean
field theory, arrived at a generalization ford dimensions that
makes use of the first three virial coefficients. Baus and
lot ~BC! ~Ref. 6! proposed arescaled~truncated! virial ex-
pansion that explicitly accounts for the first four virial coe
ficients. A slightly more sophisticated EOS is therescaled
Padé approximant proposed by Maesoet al. ~MSAV!,12

which reads

ZMSAV~h!5
11p1h1p2h2

~12h!5~11q1h!
, ~1!

where p15(7762b4)/36, p25(5476211b4)/36, and q1

5(3802b4)/36. One of the most accurate proposals to d
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is the semiempirical EOS proposed by Luban and Michel10

These authors first introduce a functionz(h) defined by

ZLM~h!511
b2h$11@b3 /b22z~h!b4 /b3#h%

12z~h!~b4 /b3!h1@z~h!21#~b4 /b2!h2
.

~2!

Equation~2! is consistent with the exact first four virial co
efficients, regardless of the choice ofz(h). The approxima-
tion z(h)51 is equivalent to assuming a Pade´ approximant
@2,1# for Z(h). Instead, Luban and Michels observed that t
computer simulation data of Ref. 5,$Zsim(h i),i 51, . . . ,8%
~cf. Table I!, favor alinear approximation forz(h) and, by a
least-square fit, they foundz(h)51.074(16)10.350(96)h.
Another semiempirical EOS~not included in Ref. 14! was
proposed by Amoro´s et al. ~ASV!,8

ZASV~h!5 (
n50

4

bn11hn1
5h0

h02h
1Ch4F 1

~12h!4
21G . ~3!

This equation imposes a single pole at the close-pack
fraction h05A2p2/30. The parametersbn5bn25h0

2(n21)

are fixed so as to reproduce the first five virial coefficien
while C is determined by a fit to simulation data.5 By using
the presently known values ofb4 and b5 and minimizing
( i 51

8 @12ZASV(h i)/Zsim(h i)#2 one findsC5276.88. Finally,
Padé approximants @2,3# and @3,2# have also been
considered.14

All the previous EOS rely upon some extra informatio
such as known virial coefficients and simulation data. On
other hand,~approximate! integral equation theories15 pro-
vide the correlation functions describing the structure of
fluid. From these functions one can obtain the EOS, t
usually adopts a different form depending on the route f
lowed. As said above, the PY integral equation has an e
solution for a system of hard spheres in odd dimensions
particular, the analytical expressions of the EOS obtain
from the virial route,ZPY-v(h), and from the compressibility
route, ZPY-c(h) are known ford55.1,4,11,14 Nevertheless,
these two EOS are highly inconsistent with each other.1,14
0 © 2000 American Institute of Physics
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This inconsistency problem is also present with lower
mensions~except in the one-dimensional case, where the
theory becomes exact!, but to a lesser extent. This le
Freasier and Isbister1 to conclude that ‘‘the PY approxima
tion for hard cores is an increasingly bad approximation
the dimensionality of the system grows larger.’’

As is well known, the CS EOS for three-dimension
hard spheres16 plays a prominent role in liquid state theory.15

While originally derived from the observation that the n
merical values of the known virial coefficients came rema
ably close to fitting a simple algebraic expression,16 the CS
equation is usually viewed as a suitable linear combina
of the compressibility and virial EOS resulting from the P
theory,15 namely,

ZCS~h!5a (d)ZPY-c~h!1~12a (d)!ZPY-v~h! ~4!

with a (3)5 2
3. Since, as it happened in the cased53, both

PY routes keep bracketing the true values in the cased55,14

it seems natural to wonder whether the simple interpola
formula ~4! works in this case as well. This question w
addressed by Gonza´lez et al.,11 who kept the valuea (5)5 2

3.
The main goal of this Note is to propose a different cho
for a (5). The virial coefficients corresponding toZCS(h) are
bn

CS5a (d)bn
PY-c1(12a (d))bn

PY-v . By using the known val-
ues ofb4–b6 one gets, however, conflicting estimates for t
mixing parametera (5), namely, a (5).(b42b4

PY-v)/(b4
PY-c

2b4
PY-v).0.68, a (5).(b52b5

PY-v)/(b5
PY-c2b5

PY-v).20.02,
and a (5).(b62b6

PY-v)/(b6
PY-c2b6

PY-v).0.40. On the other
hand, minimization of( i 51

8 @12ZCS(h i)/Zsim(h i)#2 yields
a (5)50.62. By simplicity, here I take the rational numb
a (5)5 3

5 and propose the corresponding EOS~4!.
Table I compares the MSAV, LM, ASV, and CS EO

with available computer simulations.5 This table comple-
ments Table II of Ref. 14, whereZMSAV , ZASV , andZCS ~the
latter being proposed in this Note! were not included. In
general, the accuracy of the EOS with adjusted virial coe
cients improves as the degree of complexity increases. M
specifically, the average relative deviations from the simu
tion data are, from worse to better, as follows: 4.7% (Z[3,2]),
3.7% (ZSMS), 3.0% (Z[2,3]), 2.3% (ZBC), 0.4% (ZMSAV),
0.17% (ZLM), and 0.15% (ZASV). Concerning the two PY
EOS, both are quite poor, with average relative deviati
equal to 7.1% (ZPY- v) and 4.2% (ZPY-c). The most interest-
ing point, however, is that the CS-like EOS~4! ~with the

TABLE I. Compressibility factorZ as obtained from simulation and from

Eq. ~1! ~MSAV!, Eq. ~2! ~LM !, Eq. ~3! ~ASV!, and Eq.~4! with a (5)5
3
5

~CS, this work!.

rs5 Simulationa MSAV LM ASV CS

0.2 1.653~1! 1.653 1.653 1.653 1.653
0.4 2.624~3! 2.617 2.618 2.618 2.616
0.6 4.008~6! 4.003 4.009 4.007 4.000
0.8 5.997~11! 5.964 5.986 5.979 5.964
1.0 8.748~16! 8.720 8.770 8.758 8.731
1.1 10.523~20! 10.488 10.553 10.548 10.510
1.15 11.589~22! 11.490 11.560 11.561 11.520
1.18 12.217~24! 12.133 12.204 12.219 12.168
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choice a (5)5 3
5) presents an excellent agreement with t

simulation data~the average relative deviation being 0.3%!,
only slightly inferior to that of the semimpirical EOSZLM

andZASV . This is especially remarkable if one considers th
only the first three virial coefficients ofZCS are exact, a
circumstance also occurring in the case of the original
equation.16 The choicea (5)5 2

3,
11 on the other hand, yields

an average relative deviation of 0.5%.
Let me conclude with some speculations. It seems in

esting toconjectureabout the existence of possible ‘‘hid
den’’ regularities in the PY theory for hard hyperspher
explaining the paradox that, although the virial and the co
pressibility EOS strongly deviate from each other, a sim
linear combination of themmight be surprisingly accurate
Since the adequate value of the mixing parameter isa (3)

5 2
3 for d53 and a (5)5 3

5 for d55, it is then tempting to
speculatethat its generalization tod dimensions might be
a (d)5(d11)/2d,17 so thata (`)5 1

2 in the limit of high di-
mensionality, in contrast to other proposals.13 For d57 the
above implies that, whileZPY-v and ZPY-c would dramati-
cally differ, the recipe~4! with a (7)5 4

7 couldbe very close to
the true EOS. The confirmation or rebuttal of this expec
tion would require the availability of simulation data ford
57, which, to the best of my knowledge, are absent
present.
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