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A square-well model for the structural and thermodynamic properties
of simple colloidal systems
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A model for the radial distribution functiog(r) of a square-well fluid of variable width previously
proposed| Yuste and Santos, J. Chem. Ph{€1, 2355 (1994)] is revisited and simplified. The

model provides an explicit expression for the Laplace transformgéf), the coefficients being

given as explicit functions of the density, the temperature, and the interaction range. In the limits
corresponding to hard spheres and sticky hard spheres, the model reduces to the analytical solutions
of the Percus—Yevick equation for those potentials. The results can be useful to describe in a fully
analytical way the structural and thermodynamic behavior of colloidal suspensions modeled as
hard-core particles with a short-range attraction. Comparison with computer simulation data shows
a general good agreement, even for relatively wide wells.2@1 American Institute of Physics.
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I. INTRODUCTION guish two situations with the same “stickines@’e., same
second virial coefficientand density, but different tempera-
ture and/or range.

In order to mimic the particle interaction in colloidal
systems in a more realistic way, a simple choice is to assume
%hat the particles interact via the square-wdiBW)
JHotentia 3-25

In the simplest model of a colloidal dispersion, the inter-
actions among théarge solute molecules and the excluded
volume effects of thésmal) solvent molecules, which lead
to intercolloidal solvation forces, are incorporated by treatin
the solute particles as hard sphe(dS) of diametero. This
allows one to take advantage of the analytical solution of th
Percus—YevickPY) integral equation for the HS potentiaf. %, r<o
On the other hand, it is well known that the solvent particles
(e.g., macromoleculg¢san induce an effective short-range
attraction between two colloidal particles due to an unbal- 0, r>\o,
anced osmotic pressure arising from depletion of the solvent
particles in the region between the two colloidal ofies. whereo is the diameter of the hard corejs the well depth,
This explains the widespread use of Baxter's model of sticky@nd (. —1)o is the well width. The equilibrium properties of
hard SphereﬁSH$7 to represent the properties of colloidal a SW fluid depend on the values of three dimensionless pa-
suspension&;1°This interaction model represents the attrac-rameters: the reduced number dengity=po®, the reduced
tive part of the potential as an infinitely deep, infinitely nar- temperaturel™* =kgT/e (kg being the Boltzmann constant
row well. In addition to the hard-core diameter the model ~and the width parametex. In the limits e~0 (i.e., T*
incorporates a “stickiness” parametet,\s (essentially the —) and/orax—1, the SW fluid becomes the HS fluid. In
deviation of the second virial coefficient from the HS value addition, the SHS fluitlis obtained by taking the limitg
that can be understood as a measure of the temperature: the® (.., T*—0) and\—1, while keeping the stickiness
smaller the temperature, the larger the stickiness. The SHBarameterrg,}f 12()\—1)(e1”*—1) constant. If we define
potential has the advantage of lending itself to an analyticain the original SW fluid a generalized stickiness parameter
solution in the PY approximatidrand in the mean spherical Tgv},=4()\3—1)(e1”*—1) as being proportional to the de-
approximation(MSA).?° On the other hand, the SHS poten- viation of the second virial coefficient from the HS vaRfe,
tial presents two limitations. First, the system of monodis-then at a given density* the parameter space can be taken
perse SHS is not thermodynamically stab#é’ however, as the plane £g},A). The SHS limit explores the line
this pathology, which is not captured by Baxter’s solution tO(Tgv},,)\zl) only, while the HS model corresponds to the
the PY equation, can be remedied by including some degregoint (rg,\)=(0,1). This geometrical picture illustrates
of polydispersity in the system. The most important limita-why the SW interaction model can be useful to uncover a
tion of the SHS model as a representation of a realistic shorimuch richer spectrum of values for the relevant parameters
range interaction lies in the fact that it is unable to distin-of the problem, even if the attraction range is relatively short.
Despite the mathematical simplicity of the SW potential,
9permanent address: Departamento dich) Universidad de Extremadura, NO analytical solution of the conventional integral equations

E-06071 Badajoz, Spain. Electronic mail: andres@unex.es for fluids (Yvon-Born-Green, hypernetted-chain, PY, ).is

o(r)=y —€, o<r<\o (1.1
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known?”?® The mean spherical model approximation of y(r) atr =X\ gives rise to a transcendent equation that must
Sharma and Sharrfiaprovides an analytical expression for be solved numerically. In fact, thexactsolution in the case
the structure factor, but it is not consistent with the hard-coref one-dimensional SW fluids involves a similar transcen-
exclusion constraint. Most of the available theoretical infor-dent equatiorf*4

mation about the SW fluid for variable width comes from The aim of this paper is to propose a simpler version of
perturbation theor§®~3 In general, perturbation theory is the model introduced by Yuste and Santos in Ref. 44. While
based on an expansion of the relevant physical quantities iwe keep the same functional structure®ft) and enforce
powers of the inverse temperature. For instance, the radighe conditionsg(o*)=finite and S(0)=finite, we replace
distribution functiong(r;p*,T*) of the SW fluid is ex- the transcendent equation stemming from the continuity of

pressed as y(r) atr=\o by a quadratic equation suggested by the SHS
N . .1 . limit. The resulting model therefore has a degree of algebraic
g(rip* T)=go(r;p*) +T* 2gu(r;p*)+ -+, (1.2 gimplicity similar to that of the PY solution for SH@ut

now the parameters have \a dependence beyond the one
captured by the stickiness coefficipand reduces to it in the
appropriate limit. The structural propertieggr) and S(q)
exhibit a fairly good agreement with MC simulatiotis,’
similar to that found in the original, more complicated ver-
sion of the modef* Nevertheless, it is in the calculation of
the thermodynamic propertigs/hich were not addressed in
Ref. 49 where the present model becomes especially advan-
tageous. In particular, the isothermal compressibility is ob-

tained as an explicit function of density, temperature, and

showed a general good agreement for the cases consider&fl_I V\f'dth' This aII_or\ivs uz tg geF thf dce:penderjce of .t:e
but the quality of the agreement worsened as smaller valugd'tica temperaltture c an flgnsr:typc .h orr;]parlsog vat
of A and/orT* were taken. The expectation that perturbationComputer simulation estimatEsshows that the model pre-

theory becomes less accurate as the well width and the terfictions for Tg (A) are remarkably good, even for values of

perature decrease has already been reported elsefiliére. * 35 Iarge a3 =1.75. On the other hand, the predicted val-
In fact, perturbation theory tends to overestimate the critical'®S OfPc () are typically 30%-45% smaller than the simu-
temperaturdl; , especially for small values of— 13334 lation ones, a fact that can be traced back to the sglu_non of
these limitations are significantly apparent in the SHS Iimitthe PY equation for SHS. We_ gl;o compare the predictions of
(A—1, T*—0), in which case the expansi¢h.2) becomes the mo‘?'e' f(_)r the_compresgblllty fgctor at=1.125 and)_\
meaningless. By following a completely different approach, _ 14 W7'th simulation dater™ and with the TL perturbation
Nezbed# proposed to approximateg(r) in the intervalo theory?” In both cases the model presents a better agreement

<r<\o by a quadratic function of, within the context of than the perturbation theory, except for temperatures larger

the PY theory. The coefficients of the polynomial were thentan about twice the critical temperature. .
The paper is organized as follows. The model is intro-

determined analytically by imposing the continuity of the
y y oY e g y duced and worked out in Sec. Il, with some technicalities

cavity functiony(r)=g(r)e?("’keT and its first two deriva-
y y(n=g(r) being relegated to the appendices. Section Ill deals with the

tives atr = o. Notwithstanding the merits of this theory, its - o ) ;
main limitation is that it is only applicable for very narrow COmParison with simulation results and perturbation theory.

wells, typically A —1=<0.01234243 |n addition, Nezbeda's The paper ends with a brief discussion in Sec. IV.
theory fails to predict a thermodynamic critical point, except
at \=1, i2n which case Baxter’s solution for SHS is | tHe MODEL
recovered: . _
In order to provide a simple theory that, while including A- Basic requirements

the SHS case as a special limit, could also be applicable to  The radial distribution function(r) of a fluid is directly

SW fluids of variable width, Yuste and Santos proposed ge|ated to the probability of finding two particles separated
model by assuming an explicit functional form for the py 3 distance.* It can be measured from neutron- or x-ray
Laplace transformG(t) of rg(r).** That functional form giffraction experiments through the static structure factor

was suggested by the exact virial expansion of the radiag(q). Both quantities are related by Fourier transforms
distribution functio® and by the property lim., +g(r)

=finite. The parameters were subsequently determined as S(Q):1+Pf dre 19 g(r)—1]
functions of p*, T*, and A by imposing the condition

S(0)=finite, whereS(q) is the structure function, as well as G(t)—G(—t)
the continuity ofy(r) atr=\o. The structural properties =1-2mp , (2.1
predicted by the model showed a good agreement with MC t t=iq

simulation results, not only for narrow square wells, but eveRyhere is the number density and

for relatively wide ones X~1.5) up to densities slightly

above the critical densifit On the other hand, the model G(t) = fwdre*r‘rg(r) 2.2
was not fully analytical because the continuity condition of 0

wheregy(r;p*) is the radial distribution function of the ref-
erence HS fluid andy(r;p*) represents a first-order correc-
tion. Good analytical approximations fgg are known, such
as Wertheim—Thiele’s solution of the PY equatichyerlet—
Weiss parameterizatioi,or the generalized mean spherical
approximatiort>*° Thus, it is in the choice ofj; where dif-
ferent versions of perturbation theory essentially differ. A
few years ago, Tang and LTL)3*3" proposed an analytical
expression(in Laplace spacgefor g;, based on the MSA.
Comparison with Monte CarloMC) simulation dat&
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is the Laplace transform afy(r). The isothermal compress- So far, all the expressions apply to any density and any hard-

ibility of the fluid, k;=p~*(dp/dp)+, is directly related to core potential. As is well known, in the limit of zero density

the long-wavelength limit of the structure function, the cavity functiony(r)=g(r)e?("’*eT is equal to 1°° In the
special case of the SW potential, this translates into

x7=pkgTrr=35(0). 2.3
Thus, all the physically relevant information about the equi-
librium state of the system is containeddlr) or, equiva- limg(r)=(1+x)0(r—1)—x0(r—\), (2.11)
lently, in G(t). 7—0

Now, we particularize to the SW interaction potential,
Eqg.(1.1), sog(r)=0 forr<o. Henceforth, we will take the
hard-core diameter=1 as the length unit and the well \yherex=e'™—1. Equation(2.11) implies that
depthe/kg=1 as the temperature unit, so that the asterisks in
p* and T* will be dropped. It is convenient to define an

auxiliary functionF(t) through the relation
Y (t) throug lim F(1) = (14 %) (12473 —xe" A D\t 24173),

F(t)e ! 7—0
Gy=t— (2.12
1+127F(t)e !
= _ n-1 na—nt
nzl (—12n)" RO e 24 B. Construction of the model

where 7= (7/6)pa° is the packing fraction. Laplace inver- Any meaningful approximation of(t) for the SW po-
sion of Eq. (2.4 provides an useful representation of the tential must comply with Eqg2.7), (2.9), and(2.12. Let us
radial distribution function decomposé-(t) as

g(n=r"13 (129" M (r-mO(r-n), (25 _
n=1 F(t)=R(t)—R(t)e” 1t (2.13

wheref ,(r) is the inverse Laplace transform & (t)]" and

O(r) is Heaviside’s step function. Thus, the knowledge of

F(t) is fully equivalent to that of(r) or S(q). In particular, The model proposed by Yuste and Saftamnsists of as-

the value ofg(r) at contact,g(1"), is given by the suming the following rational forms foR(t) andR(t):
asymptotic behavior of (t) for larget

g(1")=f,(0)=lim t2F(t). (2.6)
tee R(t) = Ag+ At
Sinceg(1*) must be finite and different from zero, we get 14 S,t+S,t2+ S8
the condition (2.149
F(t)~t 2, t—o. (2.7 o
. . _ A+ At
On the other hand, according to EQ.1), the behavior of R(t)= i
G(t) for smallt determines the value &(0) 1+St+ S,t?+ Syt
I 1-s0)
G(t)=t" “+const- o t+o(t9). (2.8
7 These forms are compatible witB.12). In addition, condi-

Insertion of Eq(2.8) into the first equality of Eq(2.4) yields ~ tion (2.7) is satisfied by construction. In fact, the contact
the first five terms in the expansion &f(t) in powers Value is, according to Eq2.6)

Oft39,40
1 1. 1429 . 247
- T2 Y A
FO== g5, | 1Tt gt 5 70 5 g(1*):§1. .15
+O(t5). 2.9

The value ofS(0) is related to the coefficients tf andt® by
In order to ease the proof that the HS and SHS cases are

dGF(t)‘ included in Eq.(2.14), it is convenient to introduce the new
N dté ‘ B ] parametersAE:127;A0, Li=—129[Aoc(N—1)+ A —A],
=0 and L,=—127A;(A—1). With these changes, EqR.13
—1+89n+27° (2.10  and(2.14 can be recast into

24 doF(t
5(0)=g773 v

6
dt®

t=0
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1 1+A+[Li+Ly(A=1) ' =AN-1)Jt—[A+Ly(A—1) ‘t]e O~

F(t)=- , 2.1
® 127 1+ S;t+St2+ Sqt3 (219
|
where we have already taken into account the property lim A=x, limL,=x\(A—1). (2.21
F(0)=—1/125, according to Eq(2.9. The model(2.16 7—0 7—0

contains six parameters to be determined. The exact expan-

sion (2.9) imposes four constraints among them. Thus, weln the original formulation of the modéf, the parameteA
can express four of the parameters in terms of, for instancévas assumed to be independent of density, soAkak. As
A andL,. The result is for L,, it was determined by imposing tliexac) continuity
condition of the functiory(r) atr=N\,2"**which implies

1 1
— _ 2
Li=15g,| 1T 27201 AL, g ) =(1+x)g(\"). (2.22
—EU(3+2?\+)\2)A'}, 2.17 The implementation of this condi_tion in the mod@.16
2 leads to a transcendent equation that must be solved
3 numerically** In this paper we will be concerned with a
S, = 7| Z 4 2(14N D)L, S|mplgr version of the model in which the strong cond_mon
1+2n| 2 (2.22 is replaced by a weaker one. To that end, let us intro-
1 duce a parameter as
—§(3+2)\+)\2)A’}, (2.18
1L S, -
1 7'=1—2 L—z—g . ( . 39
Sy=r————{—1+9+2[1-27A(1+N)]L,
2(1+27) From (2.21) and(2.23 it follows that
—[1-7(1+0)2]A), (2.19
lim7=[12A(A—1)] % 2.2
1 (1_77)2 1 ) 7]*}07 [ ( )] ( 4)
ST152,| 12y 2D ML
1 The definition(2.23) is suggested by the fact that, as proved
+1—2[4+ 20— n(3\2+ 2)\+l)]A’], (2.20 in Appendix B of Ref. 44, Eq(2.22 is equivalent tor

=rT1gys IN the SHS limit, namelyx—o, A—1, X(A—1)
where A’=A(A—1)2. These four parameters are linear =(12rgy9 =finite. Therefore, we may expect that a
functions of A andL,. Taking into account Eq(2.10, the  simple prescription for [such thatr—*—12x(A—1) in the
value of S(0) can be expressed as a quadratic functioA of SHS limit] can be a good substitute for the transcendent
andL,. Its explicit expression is given in Appendix A. equation arising from(2.22), at least for relatively narrow

Two additional constraints are still needed to determinewells.

A andL,. First, note that in the zero-density limit we have Sincel,, S,, and S; are linear functions ot,. Eg.
L,—1,S,—0,S,—finite, S;— — (127) ~L. Thus, Eq(2.16  (2.23 shows thatr is the ratio of two quadratic functions of
is consistent with Eq(2.12) provided that L,. This relation is easily inverted to get

1t aintapn®+agn®+ (1+29)[1+ Byt B+ Ban+ Ban']1H?
=
125(yo+ yin+ v21°)

: (2.25

where the expressions of the coefficients B;, andy, as  of density, so they take values needed to satisfy the require-

functions of\, A, andr are given in Appendix A. ment(2.12). Those values are simply
So far, we are free to fix as a function ofyp, x, and ,
by following any criterion we wish. In particular, we can A=X, T=[12A(A—=1)] "~ (2.26

enforce Eq(2.22, as _done in Ref. 44. énqlogously, the pa- Note that thisr is only slightly different from the parameter
rameterA(z,x,\) (which was tqken aA—.x in Ref. 44 can Tgw Introduced below Eq(1.1), both of them becoming
be frfeely chosen. In the simplified version of the model wejqentical to7gusin the limit \— 1. The choice2.26 closes
consider here, we assume that bétlnd = areindependent  the construction of the model. The pair distribution function
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FIG. 1. FunctionA(r) defined by Eq(2.28 for A\=1.1 and\ =1.125 and
for the temperature¥=0.5 (solid lineg, 0.67 (dashed lines and 1(dotted
lines).

in Laplace space is given by Eq2.4) and(2.16), where the
expressions for the coefficients d&17—-(2.20, (2.25, and
(2.26. The model provides the quantity(t) as an explicit
function of the Laplace variable the packing fractiory, the
well width A, and the temperature parametesze’—1.
Since the poles dfF(t) are the roots of a cubic equation, the
inverse Laplace transforms ¢fF(t)]" are analytically de-
rived and then the radial distribution function is readily ob-
tained from the representati@@.5). From Eq.(2.26), it fol-

Square-well model for colloidal systems 2809

ourg(r) from the exact radial distribution function 25(r) »
for small densities. Of course, the linear growth of this de-
viation with increasing density is valid in this low-density
regime only, as comparison with simulation values at finite
densities showgcf. Figs. 4 and k

Appendix C shows that the model reduces to Wertheim—
Thiele’s and Baxter’s analytical solutions of the PY equation
in the HS and SHS limits, respectively. If we consider the
parameter spack—7 !, then the HS potential corresponds
to the liner~ =0 (in which case the physical properties are
independent of\), while the SHS potential corresponds to
the lineA=1 (the physical properties being-dependent
What our model does is to extend the above picture to the
entire planer”1=0, A=1, without compromising the math-
ematical simplicity present in the analytical solutions of the
PY integral equation for HS and SHS.

IIl. COMPARISON WITH SIMULATION AND OTHER
THEORIES

A. Structural properties

The structural properties obtained from the original ver-
sion of the modeli.e., with L, determined by solving the
transcendent equation stemming from E222] were pro-
fusely compared with simulation datd>*”in Ref. 44. We

lows that the relationship between the temperature and thieave checked that the simplified version of the model pre-

parameterr is

T=UIn[1+7 Y12 —1)]. (2.27

The predictions of our model to first order in the packing
fraction are compared with the exact results in Appendix B
As an illustrative example, Fig. 1 shows the quantity

1g(r)— r
A(r)= fim = 901~ Gexacl ), (2.29

n—07 Oexactl)
for A=1.1 and\=1.125 and for the temperaturds=0.5,
0.67, and 1. The functioA (r) is different from zero in the
interval 1<r <\ only, where our model slightly overesti-

mates the value of(r). Note that the relative deviation of

S(q)

0.6 i . . . .
0 2 4 6 8 10 12

FIG. 2. Structure factorS(q), corresponding to a SW fluid with=1.1,
7=0.07, andT ~1=0.92. The circles and triangles are MC data taken from

Fig. 3 of Ref. 47. The lines are the result predicted by the present model

(—), the PY equation for SHS-¢ -), the TL perturbation theor{ - -), and
the PY equation for H%- - - - -).

sented herdcf. (2.29, (2.26)] gives results very close to
those of the original model, especially for narrow wells.
Consequently, we will present only a brief comparison with
simulations in this subsection.

The structure of a fluid is usually determined by neutron-
or x-ray scattering experiments, which measure the structure
factor S(q). This quantity is directly related to the Laplace
transformG(t) by Eqg.(2.1) and so can be obtained explicitly
in our model. In 1984, Huangt al*’ performed MC simu-
lations of SW fluids withA =1.1 to reproduce the main fea-
tures of the structure factor of micellar suspensions. Figure 2
shows S(q) obtained from simulaticH for A=1.1, T~*
=0.92, andn»=0.07, as compared with our model, the PY
solution for SHwith the conventional choice afg, as the
stickiness parametgr the Tang—Lu (TL) perturbation
theory>®3" and the PY solution for hard spheres. The devia-
tions of the simulation data from the PY—HS curve are es-
sentially a measure of effects associated with the nonzero
values of the square-well width and of the inverse tempera-
ture. These are qualitatively described by the TL perturbation
theory, except for small wave numbers. This region is well
represented by the PY—SHS curve and by our model, but the
latter is better near the first maximum. The value of the criti-
cal temperature foh=1.1 can be estimated to Be.~0.5
[cf. Table [. Consequently, the case considered in Fig. 2
corresponds to a rather hot gas. That is why the simulation
data are not too far from the HS valu@xcept in the region
g=3). In order to highlight the differences that can be ex-
pected at a smaller temperature, the cise0.5 is consid-
ered in Fig. 3. Now, the structure factor predicted by our
model and by the PY—SHS solution is very different from
that predicted by the TL perturbation theory, the latter being
very close to the PY-HS solution. This is not surprising, since
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S(q)

0.0 0.5 1.0 1.5 2.0

yr
FIG. 3. Structure factors(q), corresponding to a SW fluid with=1.1, . .
7=0.07, andT'=0.5. The lines are the result predicted by the present modef /G- 5. Plot ofg(1™) as a function of I for A =1.125 and three densities:
(—), the PY equation for SH§ ), the TL perturbation theorg - -), and ~ P=04 (), p=0.6 (J), andp=0.8 (¢). The symbols represent MC data
the PY equation for H$- - - - -). taken from Ref. 33 (I#0) and from Ref. 52 (I/=0). The dotted lines
are the results obtained from the model of Ref. 44, the solid lines are the
results given by the present model, and the dashed lines are the predictions
from the TL perturbation theory.
in any perturbation theory the quantities are expanded in

powers ofT ! and obviously the valug =2 is beyond its
range_of applicability. On the ot_her hand, the curves corre-predicts alinear increase gf1*) [cf. Eq. (1.2] that clearly
sponding to the PY-SHS solution and our model are relat, =
. . . deviates from the MC data. On the other hand, the tempera-
tively close(except for a slight phase shifeas expected from N .
L . ture dependence af(1") is well described by both the
the fact that the well width is rather small. Moreover, since .. IR )
o original and the simplified versions of the model, except at
the stickiness parameter has been chosen so as to reprod —
the correct second virial coefficient, the PY—-SHS solution '
does a generally good job at this very low density.
Now, we consider the radial distribution function itself. . :
. . B. Thermodynamic properties
As a representative example of a width not extremely small,
we take the casa=1.125, for which MC simulations are The compressibility equation of state is obtained from
available®® Figure 4 shows)(r) for A\=1.125 at the thermo- Egs. (2.3) and (Al). This route is preferable to the virial
dynamic statedf =1, p=0.8. As seen in the figure, the origi- route because the latter is known to yield an unphysical criti-
nal model of Ref. 44 exhibits a remarkable agreement wittcal behavior in the SHS limR® From Eq.(2.3), we have
the simulation data. We also observe that our present model D .
captures reasonably well the behaviorgtffr) at this high Z(W,T)Eﬁ= 7;*1J' dy’ x711(5'.7), 3.1
density, while the TL approximation predicts a too small con- P¥e 0
tact value ofg(17). The contact values are plotted in Fig. 5 where the density dependencexafis given in our model by
as a function of I for A=1.125 andp=0.4, 0.6, and 0.8. Egs. (A1) and (2.25. Although this dependence is known
At 1/T=0 the system corresponds to HS and then our modedxpiicitly, it does not allow us to perform the integration in
and the TL theory reduce to Wertheim—Thiele’s solution ofEq. (3.1) analytically, so the compressibility factdris ob-
the PY equation, which tends to Underestimtm+) at hlgh tained by numerical integration_
densities. As the inverse temperature increases, the TL theory Before delving into the thermodynamic predictions of

our model, let us compare it with the original 8fién the
case of a moderately narrow well, namaly 1.125. Figure

5 T ' ' T 6 shows the density dependence of the inverse susceptibility
for T=0.5, 0.67, and 0.9. As the temperature increases, our
ar N\ ] simplified model is seen to overestimate the compressibility
3 ] of the fluid, especially for large densities. On the other hand,
= at T=0.5 (which is practically the critical temperature, cf.
?02_ | Table |), both versions of the model yield undistinguishable
results. This is quite encouraging, since it is in the domain of
1 o] low temperatureqor, equivalently, high stickinegswhere
B - our model is expected to correct the deficiencies of perturba-
0 . . . . tion theories and become useful.
1.0 12 L4 1.6 138 20 One of the advantages of our simplified model is that it

r . A ; :
allows us to derive explicit expressions for the coordinates of

FIG. 4. Radial distribution functiorg(r), corresponding to a SW fluid with  the critical point. The spinodal line is the locus of points

N=1.125,p=0.8, andT=1. The circles represent MC datRef. 33, the : T : :
dotted line is the result obtained from the model of Ref. 44, the solid line isWhere the isothermal compre55|blllty dlverges. Equation

the result given by the present model, and the dashed line is the predictio%l) Clearly ShOWS_ that’(T: S(O)—’OO if anq Only i_f I-2_
from the TL perturbation theory. —o0. Thus, according to Eq(2.25, the spinodal line is
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given by a solution to the quadratic equatiog+ y,7n The critical temperaturd is obtained by setting= 7. in

+ v,7°=0. This equation has two real solutions, (7), Eq. (2.27). If <7, the smallest rooty_(7), does not de-
only if 7is a smaller than a critical value, given by fine the vapor branch of the spinodal line because it is also a
Jan root of the numerator of Eq2.25, and soL, remains finite
7_(;1: 12 3tA+2 22)‘ . (3.2 at nz_n,(r). There_fore, o_nly t_he liquid branch of the spin-
9—2N+A\ odal line, (1), exists. It is given by

(LA A2 VI— A3+ M) 7 1 4(9— 20 A2 7 2+ 53+ A7 1= 1—N+\2

7+(T) (3.3

" A[A(2+3N A2+ 037 1-an]

|

The critical density isp.= 7.(7c), i.e., indistinguishable fronT and 7, is slightly smaller thany,. .
- In the illustrative case ofA=1.125, we haveT
1 3 1_4_ 2 ’ [
e 2(8HA)7e —1-AN (3.4 0502324, 7=0.11299, T,=0.502269, and 7y,
© AL+ 3N+ AZHND) AN ] =0.10980. The existence ling=p; «T), and the liquid

] ] ] ] branch of the spinodal lingg=p,(T), are shown in Fig. 7
As \ increases] increases, whiley, decreases. Equations o, \ =1.125.

(3.2—(3.4) generalize ton>1 the results predicted by the Recently, it has been suggestethat, while the critical

PY solution for SHS point is in general very sensitive to the range of the interac-
961122413 tion, the _s_econd virial coefficient has a fairly constant value
.= , at the critical temperaturd3,(T.)~ — 7. In the case of the
7r1-12 SW interaction, computer simulatidfi$® show that the
3 (3.5  value of the second virial coefficierB,(T)=—2n[x(\3
7'0_1:3(2+ \/5)210_24, 770:_\/5_220_1213_ —1)—1]/3.:?1tT=TC is muchséess sensitive to the widih
2 than the critical temperatuf&>®Moreover, the PY—SHS so-

The lack of a vapor branch of the spinodal line is alution predicts B(To) = —(2+32)7/6=—1.047. Thus,

feature that our model inherits from the PY—SHS soluffon. by assuming thaB,(T.) is independent ok and is equal to
our model also has in common with the SHS limit. as WeIIits value in the SHS limit, the criterion of Ref. 55 allows one

as with the solution of the PY equation for finitg® the O estimate the critical temperature as

existence of regions in the temperature—density plane, inside

which the physical quantities cease to take real values. Ac-  Te= 1IN 1+3(2+2)/4(\%-1)]. (3.6
cording to Eq.(2.29, this happens when 48,7+ 8,7
+ B33+ Bam*<0. Let us cally(T) (i=1,...,4) thefour Since the model presented in this paper is constructed as

roots of the quartic equation13, 7+ B,7°+ B3>+ B4n*  a simple generalization of Baxter’s solution of the PY equa-
=0, with the convention that, whenever they are regl, tion for SHS, we expect its predictions for the critical values
< 7,<17n3<7,. It turns out that the roots,(T) and ,(T)  of the temperatureT), the density p.), and the compress-
are real only ifr is smaller than a certain threshold valgg

(or, equivalently, if T<Ty,); they define a dome-shaped
curve with an apex at a densityy,= 71(Tw) = 72(Tih) -
Analogously, the other two roots;;(T) and 74(T), are real
only if 7<74 (T<Tg) and define another dome-shaped
curve with an apex a,= 73(T{,) = 74(Ty,) . Consequently,
the parameter., becomes complex inside the intervals
71(T) < n<m5(T) (for T<Ty) and 53(T) < 7<n4(T) (for
T<Tg). However, the existence of the second region is a
mathematical artifact since it affects unphysically high den-
sities. For instance, fok=1.125 we haveT;,=0.535 147
and 74,=0.786 92, this density being larger than the one
corresponding to the close packing valug,= V2716
=0.740. In fact, in the SHS limit\— 1) the second region
collapses into the liney=1 and disappears. On the other

hand, the regio T)<n<n,(T) is inside the curv
giony(T) <7< 72(T) ¥ FIG. 6. Density dependence of the inverse isothermal susceptibility for

~ 7]¢(T) and persists in the SHS limit. In the latter case, the: 1.125 and three temperatures. The dashed lines are the results obtained

threshold values co_in_cide With_ the critical ones, 'eth from the model of Ref. 44 and the solid lines are the results from the present
=7, Nn=7c. For finite N, Ty, is smaller but practically model.
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TABLE I. Critical constants of the square-well fluid for several values of the
width parameten.

A Te Pec Z. Source
1 o 0.232 0.379  PY equatio(Ref. 7)
1.1 0.455 0.219 0.372 This work

0.461 Eq.(3.6) (Ref. 55
1.125 0.502 0.216 0.370  This work

0.512 Eq.(3.6) (Ref. 55

0.594 0.46 0.42 Perturbation thedffgef. 33
0.587 0.71 0.74 Perturbation thediitef. 39

1.25 0.764 0.370 0.29 Computer simulatigef. 48
0.729 0.203 0.360 This work
0.766 Eq.(3.6) (Ref. 59

0.913 0.34 0.43 Perturbation thedffgef. 33

0.850 0.48 0.47 Perturbation theditef. 39
1.375 0.974 0.355 0.30 Computer simulatiétef. 48

0.960 0.193 0.349  This work

1.046 Eq.(3.6) (Ref. 59

1.11 0.34 0.39 Perturbation theoffgef. 33

1.08 0.36 0.40 Perturbation theoffgef. 34

15 1.219 0.299 0.30 Computer simulatigref. 48
1.209 0.184 0.339 This work
1.367 Eq.(3.6) (Ref. 55

1.205 0.200 0.37 PY equatiqRRef. 59

1.35 0.31 0.36 Perturbation theoffgef. 33

1.33 0.29 0.37 Perturbation theoffgef. 34
1.625 1.479 0.177 0.330 This work

1.738 Eq.(3.6) (Ref. 55

1.70 0.27 0.38 Perturbation theoffgef. 33

1.61 0.26 0.36 Perturbation theotigef. 34

1.75 1.811 0.284 0.35 Computer simulatigef. 48
1.777 0.170 0.322  This work
2.164 Eq.(3.6) (Ref. 55

2.04 0.25 0.38 Perturbation theoffgef. 33

1.93 0.24 0.36 Perturbation theotiref. 34
1.85 2.036 0.165 0.317 This work

2.550 Eq.(3.6) (Ref. 55

2.33 0.25 0.37 Perturbation theoffgef. 33

2.23 0.23 0.35 Perturbation theotfgef. 34

2 2.764 0.225 0.32 Computer simulatiRef. 48
2.466 0.159 0.310 This work
3.208 Eq.(3.6) (Ref. 55

2.88 0.24 0.37 Perturbation theoffgef. 33
2.79 0.23 0.35 Perturbation theotigef. 34

37,=0.0976.

050}
049
048}

047 ]

0.0 0.1 0.2 0.3 0.4
p

FIG. 7. Liquid branch of the spinodal lingsolid line) and existence line

(dashed lingfor A =1.125, according to the present model. The model does

L. Acedo and A. Santos

FIG. 8. Density dependence of the compressibility factorNfer1.125 and
three temperatures. The circles are the results of computer simuléehs

33), the solid lines are the results from our model, and the dashed lines are
the TL perturbation theory predictioriRef. 37.

ibility factor (Z.) to be more reliable for small values uf

—1 than for wide wells. However, to the best of our knowl-
edge, the simulation estimates for those quantities are only
available forn=1.25® and so we cannot make a compari-
son for smaller widths. Table | shows the valuesTgf p.,
andZ. for several values ok, as estimated from computer
simulations’® and as predicted by the model, by £8.6), by
perturbation theory>**and by the PY integral equaticf.

Comparison with MC simulation data shows that the
critical temperature predicted by our model, E8.2), tends
to be smaller than the correct value, while Vliegenthart and
Lekkerkerker’s criteriort? as well as second-order perturba-
tion theory>3* tend to overestimate it. What is indeed re-
markable is the fact that Eq3.2) provides the best agree-
ment with computer simulations for=<1.75 [except at\
=1.25, in which case E(3.6) is bettel. In the case of the
critical value of the compressibility factor, the best agree-
ment corresponds to our model, except\at 1.75, where
Chang and Sandler’s perturbation theory gives a better result.
On the other hand, the critical densities predicted by our
model are around 30%—-45% smaller than the simulation val-
ues, a discrepancy that can be traced back to the solution of
the PY equation for SHS. Since the computer simulations
and all the theories share the property thats a monotoni-
cally decreasing function ok, we can conclude that the
correct value of, in the limit A\ —1 is certainly larger than
the simulation valuep.=0.370 at\ =1.25, while Baxter's
solution yieldsp.=0.232. Thus, we can expect this failure to
reproduce accurately the critical density also present in the
PY approximation for finite.. This is confirmed by the re-
sults of a numerical solution of the PY equation fer
=1.5"* which gives a value op, rather close to the one
obtained here.

Now, let us compare the general density dependence of
the compressibility factor predicted by the model with avail-
able computer simulations. We start with the smallest value
of \ that, to our knowledge, has been analyzed in simula-
tions, namelyA=1.1253 Figure 8 showsZ(p) for A
=1.125 andr=0.5, 0.67, and 1. Strictly speaking, the curve
representing the model at the lowest temperature corresponds

not give real values for the physical quantities inside the gray region enf0 T=T=0.502 rather than t@=0.5. This is because at

closed by the existence line.

T=0.5 there exists a small density interval aroupgd
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1.8 could impose certain continuity conditions on the cavity

L6 function y(r)=g(r)e?("’*eT at the points where the poten-

14 tial is singular’! alternatively, one could require thermody-

) namic consistency among the virial, compressibility, and en-
o 12 ergy routes. Of course, other choices are possible. In the
N 10 original formulation of the modelA was assumed to be in-

08 dependent of densitfhence A= x) and the second condition
: R was the continuity ofy(r) atr=>X\o, giving rise to a tran-
0.6 scendent equation that needed to be solved numerically. On
0.4(1)0 o1 03 03 o4 the other hand, in.this paper we have .simply assumed that
) ) ; ) ) both A and 7 are independent of density, E(R.26). The
assumption forr is expected to be especially adequate for
][:'G-tg- De”i}?’egegﬁzdgpsgsoignzs‘?%?gfgszi:”:%/q fﬁ?églffgrf é-:‘laafri‘tftied _harrow potentials, since in the SHS limit the role ofis
n(:glre:urraprec;;namiés resultef. 49, thepsolid lines arepthe results from the (i)layeq by the parametegH$=[12><(A— 1)] 1’ \,NhICh 1S 1n-
present model, and the dashed lines are the TL perturbation theory predil€€d independent of density. With these choicesAfand 7
tions (Ref. 37. the problem remains fully algebraic and all the parameters
can be expressed in terms of the solution of a quadratic equa-
tion, in analogy with what happens in Baxter’s solution of
the PY equation for SHSIn fact, the model includes such a

=0.22 [cf. Fig. 7] where the model gives complex values.
The next width we consider is=1.4, for which extensive solution as a limit case. Given the scarcity of simulation

molecular dynamics simulations are availafitethe results results for narrow wells, we have been forced to carry out a

for T=1.25, 1.43, 2, and_ 5 are plotted in Fig. 9. We ObserVecomparison for cases with=1.125. In spite of that, the
that, except at the highest temperaturéeb=( for A

results show a very good general performance of the struc-
=1.125,T=2 for A=1.4), our model presents a better gen- v 9 g P

| ith the simulation d h he TL tural and thermodynamic properties predicted by the model,
E;?ioig{ﬁsgsim with the simulation data than the perturE:orrecting the inadequacy of the perturbation theory predic-

tions in the low-temperature domain. It is interesting to note
that the model provides an explicit expression of the critical
IV. CONCLUDING REMARKS temperature as a function of the well width, Eg§.2), which

The main objective of this paper has been to propose ai$ accurate even for rather wide wells.
analytical model that could be useful to describe the struc-  The results of this paper could also be useful in connec-
tural and thermodynamic properties of systems, such as colion with a recently proposed extension of the law of corre-
loidal dispersions, composed of particles effectively interactsponding states for systems, such as colloidal suspensions,
ing through a hard-core potential with a short-rangethat have widely different ranges of attractive interactihs.
attraction. As the simplest interaction that captures both feaGiven an interaction potentigd(r) = ¢ef(r) + ¢au(r), where
tures, we have considered the square-wWBW) potential — @repandeq, are the repulsivénot necessarily hard-corand
(1.1). On the one hand, perturbation theory becomes unreliattractive parts, respectively, one can defingeaperature-
able when the rang&—1 of the attraction is small, espe- dependenteffective hard-core diameter,
cially at low temperatures, i.e., when a certain degree of -
“stickiness” among the particles becomes important. On the a:j dr[1—e ¢rednkeT], 4.1
other hand, the widely used sticky-hard-sphe3elS inter- 0
action model combines temperature and well width in onean effective well depth,
parameter only, thus lacking the flexibility to accommodate
additional changes in width and/or temperature. Our ap- e=—o(ry), de(r)
proach intends to fill the gap between these two theories. dr

The model presented in this paper is based on the one ) _
proposed in Ref. 44, where the functioRét) andﬁ(t) de- and a(temperature-depende¢réffective well width,
fined by Eqs(2.4) and(2.13 were approximated by rational A=[1+ (B3 —1)(1—ekeT) 11153, (4.3
forms, Eq.(2.14). The parameters in these functions are con-
strained to yield a finite value for the isothermal compress-Where
ibility by Egs. (2.17—(2.20. This still leaves two free pa- 3 [
rametersA and 7, the latter being defined in E42.23, as Bj :—3f drr1—e ¢(ksT], (4.9
unknown functions of the packing fractiom, the tempera- o0
ture parameterxzem*—l, and the well width\. Apart is the reduced second virial coefficient. Then, according to
from their zero-density limit92.21) and (2.24), two extra  the extended law of corresponding stat&#e compressibil-
conditions are needed to fix those parameters and close tlitg factor for a wide range of colloidal materials is a function
construction of the model. Thus, depending on the physicabf only the reduced temperatuf& =kgT/e, the reduced
situation one is interested in and/or on the degree of simplicdensity p* =po®, and the range parametex, i.e., Z
ity one wants to keep in the model, it is possible to choose=F(T*,p*,\), where the functiorF is hardly sensitive to
different criteria to determiné\ and 7. For instance, one the details of the potential. As a consequence, an accurate

-0, (4.2

r=ry
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20 T T T width \ for several interaction potentiaf& The prediction of
our model, Egs(2.27) and (3.2), is also plotted. The ex-
tended law of corresponding states work very well up\to
=<1.3. For larger interaction ranges the values pffor the
generalized Lennard-Jones and the hard-core Yukawa poten-
tials tend to lie slightly above those corresponding to the SW
interaction.
In the near future, we plan to extend the model presented
in this paper in two directions. First, the case of a mixture of
0.0 s s . particles interacting through SW potentials with different
10 12 1.4 16 values ofo, €, and\ will be analyzed. This generalization
A must be such that one recovers the cases of a mixture of hard
FIG. 10. Dependence of the reduced critical temperature on the effectivg’plﬁlere&4 a mixture of sticky hard spherégand a monodis-
well width, as obtained from computer simulations for several interactionperse SW system in the appropriate limits. As a second ex-
|00temi<':1|SFtQ quugrg-g;egsolid circll_es) d(RLef- 486 gard-core Y_uklawa(gpfn tension, we will study the case of an interaction model made
e oo o SR ottt O & hard core pus a square shouder plus a square wel, o
colloid—colloid interaction(up triangle$ (Refs. 26,61, and an effective in- which, in addition to the conventional gas-liquid phase tran-

teraction for nonadditive mixtures of asymmetric hard sphedesvn tri-  Sition, a liquid—liquid transition in the supercooled phase
angles (Refs. 26,62,68 The solid line is the prediction of our model, Eqs. appear$®-58
(2.27 and(3.2.
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APPENDIX A: SOME EXPLICIT EXPRESSIONS
1. Expression for S(0)

In this Appendix we list some of the expressions that are derived from the model. The long-wavelength value of the
structure factor is obtained by using the mo@&IL6) in the general expressid2.10. The result is

1
S(0)= W{S—Zon[l+(2+)\)A’ —3(1+N)L,]+ 277 15—6(14— N+ 1N2—A3— A4 L, + 1201+ N +\?)L3
7

+(50+ 160 + 2702203 A4 A’ —30(5+ 4N+ 3N2)A'L,

+ 153+ 20+ A2 A'2]— 29[ 10+ 3(7— 53N — 132+ TAS— 8N L,— 60(1+N)(1— 4N+ A2)(1+ N+ A?)L3

+(19+ 5N +ONZ— N3+ ANHA +3(11- 670 — 1142 — 66N 3— 14+ IN°) AL, +3(3+ 2N+ N\2)(1+7h+3\2

“AA 2]+ 5121+ N+ N2+ 1IN — AN Lo+ 2400 3(1+ N+ N2)L3+2(7+ 8N+ IN2+ 1003 — 4N H A

—12(1+3N+6N2+ 23+ 17N+ ON%) A Lo+ 3(3+ 20+ A2) (1+ 20+ 302+ 4N 3)A' 2], (A1)
where we have made use of E¢8.17—(2.20.

2. Expressions for the coefficients in Eq. (2.25)

Equation(2.23 reduces to a quadratic equation foy. Its physical solution is given by E2.25, where

a;=2A"(24+N\)+ H(1+4N+N2—3A") 7 L, (A2)
a;=3+A (7T+2N =3\ — [ 7+ N+ 1602+ A'(23+ 15N + 15\ 2+ 7\%) |7 1, (A3)
ag=—2—2A"(1+2N+3\2) + 7+ N—2A2+ A" (7T+ 15N+ 202+ 13+ 604 ] 7 1, (A4)
B1=—4—4A" (2+N\)+3(5+2N—\2+3A" )7 13772, (A5)

Br=6+6A"(3+2N+A2)+4A2(2+N)%2— 93+ N)+ A’ (59+5IN+3N2—5A3) + 12A72(2+\) ] 7 1+ [ 31+ 8\
F 18— AN3 N 12A7 (5+ M) +9A 2] 772, (AB)
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Ba=—4—12A"(L+N+\2)—4A'2(2+N)(1+ 20 +3N\2)+ [ 3(4+ N+ N2+ A’ (29+ 360 + 30N 2+ 7TA3— 3N + A’ 2(17

+ 43N+ 3002+ N2 AH ] 71— {29+ 13N + 2702+ 7A3— AN*+ A’ (68+ 80N + 80N 2+ 1613+ 7TA4+\5)

+3A2(13+ 13\ +A2=3\3)]7 2,

Ba=[1+A"(L+2N+3\D) 2 7+ N +4N2+2A" (7
+ 15N+ 15N2+5N3+ 60 + A'2(1+ 2N +3N2) (7
+ 150 +3N2 =A%) ]7 1+ 549+ 38\ + 9N 2+ 8\ 3
+ 1604+ 2A"(49+ 88\ + 11202+ 80N 3+ 35\ 4
—4AN%) + A’2(49+ 138\ + 21N 2+ 1243+ 27\ 4

+18\5+18)]7 2, (A8)
Yo=1l+N—5m 1, (A9)
Y1=2(1+N =\ = §(3+A\%) 7 1, (A10)
Yo=N[— 4N+ 3(2+ 3N+ N2+ N3 771 (A1)

The other root is incompatible witt2.21) and then must be
discarded.

APPENDIX B: LOW-DENSITY BEHAVIOR OF THE
MODEL

In the low-density limit, Eqs(2.17—(2.20 become, re-
spectively,

Li=1-37[1-x(\*= 1)1+ O(7?), (B1)

S$1=0(n), (B2)

S=—H1-x(\*=1)]+O(7), (B3)

1 1

== 15, T 3[1 XN+ 0(n). (B4)
To first order in density, Eq2.25 gives

Ly=xA(A—=1)+ L& 5+ 0(5?), (B5)
where

L= —3AA—1){1+x(A—1)][1—2\—\?

—4xN(1+MN)]}). (B6)

Substitution into Eq(2.16) yields, after some algebra,

Ci+2C,(A—1
! 2( )
t3
_ _ 2
, CotCir 11+cz(>\ 1) ]e_()‘_l)t]n
t

+0(7%),
where we have called

(B7)

(A7)
[
Co=—3x(1+x)(A\?>—1), (B8)
Ci=2x(1+x)(N—1)%(1+2\N), (B9)
LY
Co=3"7" 5x(2—8>\3+ AN —2x3(A—1)2
X (2+4N+3N\?)—3x3(\%2—1)2 (B10)

The expression for the exact radial distribution function,
Oexacl!'), to first order in density was derived by Barker and
Henderson for the case<2.*° The corresponding expres-
sion for Fq,ac(t) can be found in Ref. 44. From E@B7),
one easily gets

1
9(r) —Gexacll = F[Cz(r_1)2+cl(r_1)+co]

X[O(r—1)—0(r—\)]p+O(5?).
(B11)

Thus, the differencéto first order in densityis nonzero in
the interval I>r >\ only. In particular

9(17) ~Gexacl 1) =Con+ O(7°), (B12)
wheré®
Jexacf17)=1+x+ g+§(15—16x3+6x4)
—2X%(N—1)(4+4N+N\?—3\%)
+3x3(N%2—1)?| 5+ O(7%?). (B13)

Note that the relative coefficiei,/(1+x) vanishes in the
SHS limit. As mentioned in Sec. Il, the model presented in
this paper does not enforce the verification of E2j22). In
fact, Eq.(B11) implies that

g )= (1+x)g(\ ")

=\ [Co(A=1)?+Cy(N=1)+ Col 7+ O(7?)

X(A—1)
= [A(11-X—\?)

—X(A—1)(N+2)(3+10n—3\?)

+6x2(N—1)2(1+ 3N +2\2) ] p+ O(7?). (B14)

Finally, from Eg. (A1) or, equivalently, inserting Eg.
(B11) into Eq.(2.1), we get
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S(0) = Seyacf 0) =2X(A —1)?[ 7+ 23\ + 3002 — 4N 3— 204
—X(A—1)(25+ 84\ + 78\ 2+ 2\3— 9\ %)
+182(N2—1)2(1+2\) ] 92+ O(7°),

(B15)
where

Sexacf0)=1—8[1—x(A\3—1)]p+2[17—x(A—1)(19
+ 19N+ 19N 2+ 5IN3— 3N —3A5%) — 2x?(\
—1)2(8+ 16N —3\2—38\3—19\%)

+183(\2—1)%]1 9%+ O(%%). (B16)

APPENDIX C: THE HARD-SPHERE AND
STICKY-HARD-SPHERE LIMITS

1. Hard spheres

The SW potential becomes equivalent to the HS poten-

tial if =1 at any nonzero temperatufeor if T— at any
width \. Let us first consider the latter limit. Making=0 in
Egs.(A2)—(Al1l), one gets

L. Acedo and A. Santos

1+ 3y
3 7
ST 1v2y 9
s 1T7 c7
21+27
(1-9)? 8

S= T 1t 27)

This is precisely the form adopted I5(t) in the analytical
solution of the PY equation for hard sphetés®®*°The ex-
pression forS(0), Eq.(Al), simply reduces to
_-pf

(1+27)%
The case\ =1 is not considered in this subsection, as it
is a particular case of the SHS limit.

S(0) (C9

2. Sticky hard spheres

Let us now take the limix—o, N—1, with x(A\—1)

@1=0, @;=3, a3=~2, €D _finite in the model proposed in this paper. In that limit the
B1=—4, B,=6, Bz=—4, B,=1, (C2)  parameterr is finite, cf. Eq.(2.26, while A’=0. Equations
(A2)—(A11) become
Yo=1+N\, y1=2(1+N—\?), y3=—4\2 (c3
o a;=71 a,=3-27"1, az=—-2+27"1, (C10
As a consequence, E.25 implies thatL,=0. Thus, Eq.
(2.16 becomes B1=—4+27 =372 By=6—67 1+37 2
1 1+L4t ,832—44-67'71—27'72, ,8421—27'71—#%7'72, (C1D
F()=—15- WL (C4 - - 7 -1
7 1+ Sit+ Spto+ Sqt Yo=2—§T °, v1=2—57 , y3=—4+37 . (Cl2
with Therefore, Eq(2.25 reduces to
|
1- 5 (1+2[(A— >+ 21— 7)1 = Ep(2=59) 7 21— (1= p)(1+ 29— 7Y
L= . (C13

- 24y

Taking the limitA\ — 1 in Eq.(2.16), we get

1 1+Lt+L,t?

F(t)=——— , C14
® 127 1+ St +S,t2+ Sot8 R
with
1+ 6y
R ET TR T (€19
3 7 67

ST 012, T 12, 2 (€16

11-n 1-49
ST 3Tv2y 1v2gt (c17
(1-9? 1-79 €18

ST T Top(1t2g) 14272

(1= n)(1+2n) — H(1+4n—149") 7 !

This coincides with the analytical solution of the PY equa-
tion for sticky hard spheres?®’9From Eq.(A1) we have

_ (1-7)?
(1+279)?

Of course, the results for hard spheres are recovered in the
high-temperature limit £ 1—0).

S(0) [1— 7+ 129L,]% (C19
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