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A square-well model for the structural and thermodynamic properties
of simple colloidal systems

L. Acedo
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain
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A model for the radial distribution functiong(r ) of a square-well fluid of variable width previously
proposed@Yuste and Santos, J. Chem. Phys.101, 2355 ~1994!# is revisited and simplified. The
model provides an explicit expression for the Laplace transform ofrg(r ), the coefficients being
given as explicit functions of the density, the temperature, and the interaction range. In the limits
corresponding to hard spheres and sticky hard spheres, the model reduces to the analytical solutions
of the Percus–Yevick equation for those potentials. The results can be useful to describe in a fully
analytical way the structural and thermodynamic behavior of colloidal suspensions modeled as
hard-core particles with a short-range attraction. Comparison with computer simulation data shows
a general good agreement, even for relatively wide wells. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1384419#
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I. INTRODUCTION

In the simplest model of a colloidal dispersion, the int
actions among the~large! solute molecules and the exclude
volume effects of the~small! solvent molecules, which lea
to intercolloidal solvation forces, are incorporated by treat
the solute particles as hard spheres~HS! of diameters. This
allows one to take advantage of the analytical solution of
Percus–Yevick~PY! integral equation for the HS potential.1,2

On the other hand, it is well known that the solvent partic
~e.g., macromolecules! can induce an effective short-rang
attraction between two colloidal particles due to an unb
anced osmotic pressure arising from depletion of the solv
particles in the region between the two colloidal ones.3–6

This explains the widespread use of Baxter’s model of sti
hard spheres~SHS!7 to represent the properties of colloid
suspensions.8–19This interaction model represents the attra
tive part of the potential as an infinitely deep, infinitely na
row well. In addition to the hard-core diameters, the model
incorporates a ‘‘stickiness’’ parametertSHS

21 ~essentially the
deviation of the second virial coefficient from the HS valu!
that can be understood as a measure of the temperature
smaller the temperature, the larger the stickiness. The S
potential has the advantage of lending itself to an analyt
solution in the PY approximation7 and in the mean spherica
approximation~MSA!.20 On the other hand, the SHS pote
tial presents two limitations. First, the system of monod
perse SHS is not thermodynamically stable;21,22 however,
this pathology, which is not captured by Baxter’s solution
the PY equation, can be remedied by including some deg
of polydispersity in the system. The most important limit
tion of the SHS model as a representation of a realistic sh
range interaction lies in the fact that it is unable to dist

a!Permanent address: Departamento de Fı´sica, Universidad de Extremadura
E-06071 Badajoz, Spain. Electronic mail: andres@unex.es
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guish two situations with the same ‘‘stickiness’’~i.e., same
second virial coefficient! and density, but different tempera
ture and/or range.

In order to mimic the particle interaction in colloida
systems in a more realistic way, a simple choice is to assu
that the particles interact via the square-well~SW!
potential23–25

w~r !5H `, r ,s

2e, s,r ,ls

0, r .ls,

~1.1!

wheres is the diameter of the hard core,e is the well depth,
and (l21)s is the well width. The equilibrium properties o
a SW fluid depend on the values of three dimensionless
rameters: the reduced number densityr* 5rs3, the reduced
temperatureT* 5kBT/e (kB being the Boltzmann constant!,
and the width parameterl. In the limits e→0 ~i.e., T*
→`) and/orl→1, the SW fluid becomes the HS fluid. I
addition, the SHS fluid7 is obtained by taking the limitse
→` ~i.e., T* →0) andl→1, while keeping the stickines
parametertSHS

21 512(l21)(e1/T* 21) constant. If we define
in the original SW fluid a generalized stickiness parame
tSW

2154(l321)(e1/T* 21) as being proportional to the de
viation of the second virial coefficient from the HS value26

then at a given densityr* the parameter space can be tak
as the plane (tSW

21 ,l). The SHS limit explores the line
(tSW

21 ,l51) only, while the HS model corresponds to th
point (tSW

21 ,l)5(0,1). This geometrical picture illustrate
why the SW interaction model can be useful to uncove
much richer spectrum of values for the relevant parame
of the problem, even if the attraction range is relatively sho

Despite the mathematical simplicity of the SW potenti
no analytical solution of the conventional integral equatio
for fluids ~Yvon-Born-Green, hypernetted-chain, PY, . . .! is
5 © 2001 American Institute of Physics
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known.27,28 The mean spherical model approximation
Sharma and Sharma29 provides an analytical expression fo
the structure factor, but it is not consistent with the hard-c
exclusion constraint. Most of the available theoretical inf
mation about the SW fluid for variable width comes fro
perturbation theory.30–38 In general, perturbation theory i
based on an expansion of the relevant physical quantitie
powers of the inverse temperature. For instance, the ra
distribution function g(r ;r* ,T* ) of the SW fluid is ex-
pressed as

g~r ;r* ,T* !5g0~r ;r* !1T* 21g1~r ;r* !1•••, ~1.2!

whereg0(r ;r* ) is the radial distribution function of the ref
erence HS fluid andg1(r ;r* ) represents a first-order corre
tion. Good analytical approximations forg0 are known, such
as Wertheim–Thiele’s solution of the PY equation,1,2 Verlet–
Weiss parameterization,27 or the generalized mean spheric
approximation.39,40 Thus, it is in the choice ofg1 where dif-
ferent versions of perturbation theory essentially differ.
few years ago, Tang and Lu~TL!36,37 proposed an analytica
expression~in Laplace space! for g1 , based on the MSA
Comparison with Monte Carlo~MC! simulation data41

showed a general good agreement for the cases consid
but the quality of the agreement worsened as smaller va
of l and/orT* were taken. The expectation that perturbati
theory becomes less accurate as the well width and the
perature decrease has already been reported elsewher33,34

In fact, perturbation theory tends to overestimate the crit
temperatureTc* , especially for small values ofl21.33,34All
these limitations are significantly apparent in the SHS lim
(l→1, T* →0), in which case the expansion~1.2! becomes
meaningless. By following a completely different approa
Nezbeda42 proposed to approximaterg(r ) in the intervals
<r<ls by a quadratic function ofr, within the context of
the PY theory. The coefficients of the polynomial were th
determined analytically by imposing the continuity of th
cavity functiony(r )[g(r )ew(r )/kBT and its first two deriva-
tives atr 5s. Notwithstanding the merits of this theory, i
main limitation is that it is only applicable for very narro
wells, typically l21&0.01.23,42,43 In addition, Nezbeda’s
theory fails to predict a thermodynamic critical point, exce
at l51, in which case Baxter’s solution for SHS
recovered.42

In order to provide a simple theory that, while includin
the SHS case as a special limit, could also be applicabl
SW fluids of variable width, Yuste and Santos propose
model by assuming an explicit functional form for th
Laplace transformG(t) of rg(r ).44 That functional form
was suggested by the exact virial expansion of the ra
distribution function45 and by the property limr→s1g(r )
5finite. The parameters were subsequently determined
functions of r* , T* , and l by imposing the condition
S(0)5finite, whereS(q) is the structure function, as well a
the continuity ofy(r ) at r 5ls. The structural properties
predicted by the model showed a good agreement with
simulation results, not only for narrow square wells, but ev
for relatively wide ones (l'1.5) up to densities slightly
above the critical density.44 On the other hand, the mode
was not fully analytical because the continuity condition
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y(r ) at r 5ls gives rise to a transcendent equation that m
be solved numerically. In fact, theexactsolution in the case
of one-dimensional SW fluids involves a similar transce
dent equation.44,46

The aim of this paper is to propose a simpler version
the model introduced by Yuste and Santos in Ref. 44. Wh
we keep the same functional structure ofG(t) and enforce
the conditionsg(s1)5finite and S(0)5finite, we replace
the transcendent equation stemming from the continuity
y(r ) at r 5ls by a quadratic equation suggested by the S
limit. The resulting model therefore has a degree of algeb
simplicity similar to that of the PY solution for SHS~but
now the parameters have al dependence beyond the on
captured by the stickiness coefficient! and reduces to it in the
appropriate limit. The structural propertiesg(r ) and S(q)
exhibit a fairly good agreement with MC simulations,33,47

similar to that found in the original, more complicated ve
sion of the model.44 Nevertheless, it is in the calculation o
the thermodynamic properties~which were not addressed i
Ref. 44! where the present model becomes especially adv
tageous. In particular, the isothermal compressibility is o
tained as an explicit function of density, temperature, a
well width. This allows us to get thel dependence of the
critical temperatureTc* and densityrc* . Comparison with
computer simulation estimates48 shows that the model pre
dictions forTc* (l) are remarkably good, even for values
l as large asl51.75. On the other hand, the predicted va
ues ofrc* (l) are typically 30%–45% smaller than the sim
lation ones, a fact that can be traced back to the solution
the PY equation for SHS. We also compare the prediction
the model for the compressibility factor atl51.125 andl
51.4 with simulation data33,49 and with the TL perturbation
theory.37 In both cases the model presents a better agreem
than the perturbation theory, except for temperatures la
than about twice the critical temperature.

The paper is organized as follows. The model is int
duced and worked out in Sec. II, with some technicalit
being relegated to the appendices. Section III deals with
comparison with simulation results and perturbation theo
The paper ends with a brief discussion in Sec. IV.

II. THE MODEL

A. Basic requirements

The radial distribution functiong(r ) of a fluid is directly
related to the probability of finding two particles separat
by a distancer.50 It can be measured from neutron- or x-ra
diffraction experiments through the static structure fac
S(q). Both quantities are related by Fourier transforms

S~q!511rE dr e2 iq•r@g~r !21#

5122pr
G~ t !2G~2t !

t U
t5 iq

, ~2.1!

wherer is the number density and

G~ t !5E
0

`

dr e2rt rg~r ! ~2.2!
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2807J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 Square-well model for colloidal systems
is the Laplace transform ofrg(r ). The isothermal compress
ibility of the fluid, kT5r21(]r/]p)T , is directly related to
the long-wavelength limit of the structure function,

xT[rkBTkT5S~0!. ~2.3!

Thus, all the physically relevant information about the eq
librium state of the system is contained ing(r ) or, equiva-
lently, in G(t).

Now, we particularize to the SW interaction potenti
Eq. ~1.1!, sog(r )50 for r ,s. Henceforth, we will take the
hard-core diameters51 as the length unit and the we
depthe/kB51 as the temperature unit, so that the asterisk
r* and T* will be dropped. It is convenient to define a
auxiliary functionF(t) through the relation

G~ t !5t
F~ t !e2t

1112hF~ t !e2t

5 (
n51

`

~212h!n21t@F~ t !#ne2nt, ~2.4!

whereh[(p/6)rs3 is the packing fraction. Laplace inve
sion of Eq. ~2.4! provides an useful representation of t
radial distribution function

g~r !5r 21(
n51

`

~212h!n21f n~r 2n!Q~r 2n!, ~2.5!

wheref n(r ) is the inverse Laplace transform oft@F(t)#n and
Q(r ) is Heaviside’s step function. Thus, the knowledge
F(t) is fully equivalent to that ofg(r ) or S(q). In particular,
the value of g(r ) at contact, g(11), is given by the
asymptotic behavior ofF(t) for large t

g~11!5 f 1~0!5 lim
t→`

t2F~ t !. ~2.6!

Sinceg(11) must be finite and different from zero, we g
the condition

F~ t !;t22, t→`. ~2.7!

On the other hand, according to Eq.~2.1!, the behavior of
G(t) for small t determines the value ofS(0)

G~ t !5t221const1
12S~0!

24h
t1o~ t2!. ~2.8!

Insertion of Eq.~2.8! into the first equality of Eq.~2.4! yields
the first five terms in the expansion ofF(t) in powers
of t,39,40

F~ t !52
1

12h S 11t1
1

2
t21

112h

12h
t31

21h

24h
t4D

1O~ t5!. ~2.9!

The value ofS(0) is related to the coefficients oft5 andt6 by

S~0!5
24

5
h3F6

d5F~ t !

dt5
U

t50

2
d6F~ t !

dt6
U

t50
G

2118h12h2. ~2.10!
-

in

f

So far, all the expressions apply to any density and any h
core potential. As is well known, in the limit of zero densi
the cavity functiony(r )[g(r )ew(r )/kBT is equal to 1.50 In the
special case of the SW potential, this translates into

lim
h→0

g~r !5~11x!Q~r 21!2xQ~r 2l!, ~2.11!

wherex[e1/T21. Equation~2.11! implies that

lim
h→0

F~ t !5~11x!~ t221t23!2xe2(l21)t~lt221t23!.

~2.12!

B. Construction of the model

Any meaningful approximation ofF(t) for the SW po-
tential must comply with Eqs.~2.7!, ~2.9!, and~2.12!. Let us
decomposeF(t) as

F~ t !5R~ t !2R̄~ t !e2(l21)t. ~2.13!

The model proposed by Yuste and Santos44 consists of as-
suming the following rational forms forR(t) and R̄(t):

R~ t !5
A01A1t

11S1t1S2t21S3t3
,

~2.14!

R̄~ t !5
Ā01Ā1t

11S1t1S2t21S3t3
.

These forms are compatible with~2.12!. In addition, condi-
tion ~2.7! is satisfied by construction. In fact, the conta
value is, according to Eq.~2.6!

g~11!5
A1

S3
. ~2.15!

In order to ease the proof that the HS and SHS cases
included in Eq.~2.14!, it is convenient to introduce the new
parametersA[212hĀ0 , L1[212h@Ā0(l21)1A12Ā1#,
and L2[212hĀ1(l21). With these changes, Eqs.~2.13!
and ~2.14! can be recast into
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F~ t !52
1

12h

11A1@L11L2~l21!212A~l21!#t2@A1L2~l21!21t#e2(l21)t

11S1t1S2t21S3t3
, ~2.16!
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where we have already taken into account the prop
F(0)521/12h, according to Eq.~2.9!. The model~2.16!
contains six parameters to be determined. The exact ex
sion ~2.9! imposes four constraints among them. Thus,
can express four of the parameters in terms of, for insta
A andL2 . The result is

L15
1

112h F11
1

2
h12h~11l1l2!L2

2
1

2
h~312l1l2!A8G , ~2.17!

S15
h

112h F2
3

2
12~11l1l2!L2

2
1

2
~312l1l2!A8G , ~2.18!

S25
1

2~112h!
$211h12@122hl~11l!#L2

2@12h~11l!2#A8%, ~2.19!

S35
1

112h H 2
~12h!2

12h
2F1

2
~l11!2hl2GL2

1
1

12
@412l2h~3l212l11!#A8J , ~2.20!

where A8[A(l21)2. These four parameters are line
functions ofA and L2 . Taking into account Eq.~2.10!, the
value ofS(0) can be expressed as a quadratic function oA
andL2 . Its explicit expression is given in Appendix A.

Two additional constraints are still needed to determ
A andL2 . First, note that in the zero-density limit we hav
L1→1, S1→0, S2→finite, S3→2(12h)21. Thus, Eq.~2.16!
is consistent with Eq.~2.12! provided that
n
a-

w

ty

n-
e
e,

e

lim
h→0

A5x, lim
h→0

L25xl~l21!. ~2.21!

In the original formulation of the model,44 the parameterA
was assumed to be independent of density, so thatA5x. As
for L2 , it was determined by imposing the~exact! continuity
condition of the functiony(r ) at r 5l,27,51 which implies

g~l2!5~11x!g~l1!. ~2.22!

The implementation of this condition in the model~2.16!
leads to a transcendent equation that must be so
numerically.44 In this paper we will be concerned with
simpler version of the model in which the strong conditi
~2.22! is replaced by a weaker one. To that end, let us int
duce a parametert as

t[
1

12S L1

L2
2

S2

S3
D . ~2.23!

From ~2.21! and ~2.23! it follows that

lim
h→0

t5@12xl~l21!#21. ~2.24!

The definition~2.23! is suggested by the fact that, as prov
in Appendix B of Ref. 44, Eq.~2.22! is equivalent tot
5tSHS in the SHS limit, namelyx→`, l→1, x(l21)
[(12tSHS)

215finite. Therefore, we may expect that
simple prescription fort @such thatt21→12x(l21) in the
SHS limit# can be a good substitute for the transcend
equation arising from~2.22!, at least for relatively narrow
wells.

Since L1 , S2 , and S3 are linear functions ofL2 . Eq.
~2.23! shows thatt is the ratio of two quadratic functions o
L2 . This relation is easily inverted to get
L25
211a1h1a2h21a3h31~112h!@11b1h1b2h21b3h31b4h4#1/2

12h~g01g1h1g2h2!
, ~2.25!
ire-

r

on
where the expressions of the coefficientsa i , b i , andg i as
functions ofl, A, andt are given in Appendix A.

So far, we are free to fixt as a function ofh, x, andl
by following any criterion we wish. In particular, we ca
enforce Eq.~2.22!, as done in Ref. 44. Analogously, the p
rameterA(h,x,l) ~which was taken asA5x in Ref. 44! can
be freely chosen. In the simplified version of the model
consider here, we assume that bothA andt are independent
e

of density, so they take values needed to satisfy the requ
ment ~2.12!. Those values are simply

A5x, t5@12xl~l21!#21. ~2.26!

Note that thist is only slightly different from the paramete
tSW introduced below Eq.~1.1!, both of them becoming
identical totSHS in the limit l→1. The choice~2.26! closes
the construction of the model. The pair distribution functi



e

b-

t

ng
B

i-
f

e-
ty
ite

–
on
he
s
re
to

the
-
he

er-

re-

ls.
ith

n-
ture
e
y

-
e 2

Y

ia-
es-
ero
ra-
ion
ell
the

iti-

. 2
tion

x-

ur
m
ing
ce

om
od

2809J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 Square-well model for colloidal systems
in Laplace space is given by Eqs.~2.4! and~2.16!, where the
expressions for the coefficients are~2.17!–~2.20!, ~2.25!, and
~2.26!. The model provides the quantityG(t) as an explicit
function of the Laplace variablet, the packing fractionh, the
well width l, and the temperature parameterx[e1/T21.
Since the poles ofF(t) are the roots of a cubic equation, th
inverse Laplace transforms oft@F(t)#n are analytically de-
rived and then the radial distribution function is readily o
tained from the representation~2.5!. From Eq.~2.26!, it fol-
lows that the relationship between the temperature and
parametert is

T51/ln@11t21/12l~l21!#. ~2.27!

The predictions of our model to first order in the packi
fraction are compared with the exact results in Appendix
As an illustrative example, Fig. 1 shows the quantity

D~r !5 lim
h→0

1

h

g~r !2gexact~r !

gexact~r !
, ~2.28!

for l51.1 andl51.125 and for the temperaturesT50.5,
0.67, and 1. The functionD(r ) is different from zero in the
interval 1,r ,l only, where our model slightly overest
mates the value ofg(r ). Note that the relative deviation o

FIG. 1. FunctionD(r ) defined by Eq.~2.28! for l51.1 andl51.125 and
for the temperaturesT50.5 ~solid lines!, 0.67~dashed lines!, and 1~dotted
lines!.

FIG. 2. Structure factor,S(q), corresponding to a SW fluid withl51.1,
h50.07, andT2150.92. The circles and triangles are MC data taken fr
Fig. 3 of Ref. 47. The lines are the result predicted by the present m
~—!, the PY equation for SHS (•••), the TL perturbation theory~- - -!, and
the PY equation for HS~- • - • -!.
he

.

our g(r ) from the exact radial distribution function isD(r )h
for small densities. Of course, the linear growth of this d
viation with increasing density is valid in this low-densi
regime only, as comparison with simulation values at fin
densities shows@cf. Figs. 4 and 5#.

Appendix C shows that the model reduces to Wertheim
Thiele’s and Baxter’s analytical solutions of the PY equati
in the HS and SHS limits, respectively. If we consider t
parameter spacel –t21, then the HS potential correspond
to the linet2150 ~in which case the physical properties a
independent ofl), while the SHS potential corresponds
the line l51 ~the physical properties beingt-dependent!.
What our model does is to extend the above picture to
entire planet21>0, l>1, without compromising the math
ematical simplicity present in the analytical solutions of t
PY integral equation for HS and SHS.

III. COMPARISON WITH SIMULATION AND OTHER
THEORIES

A. Structural properties

The structural properties obtained from the original v
sion of the model@i.e., with L2 determined by solving the
transcendent equation stemming from Eq.~2.22!# were pro-
fusely compared with simulation data33,41,47 in Ref. 44. We
have checked that the simplified version of the model p
sented here@cf. ~2.25!, ~2.26!# gives results very close to
those of the original model, especially for narrow wel
Consequently, we will present only a brief comparison w
simulations in this subsection.

The structure of a fluid is usually determined by neutro
or x-ray scattering experiments, which measure the struc
factor S(q). This quantity is directly related to the Laplac
transformG(t) by Eq.~2.1! and so can be obtained explicitl
in our model. In 1984, Huanget al.47 performed MC simu-
lations of SW fluids withl51.1 to reproduce the main fea
tures of the structure factor of micellar suspensions. Figur
shows S(q) obtained from simulation47 for l51.1, T21

50.92, andh50.07, as compared with our model, the P
solution for SHS~with the conventional choice oftSW

21 as the
stickiness parameter!, the Tang–Lu ~TL! perturbation
theory,36,37 and the PY solution for hard spheres. The dev
tions of the simulation data from the PY–HS curve are
sentially a measure of effects associated with the nonz
values of the square-well width and of the inverse tempe
ture. These are qualitatively described by the TL perturbat
theory, except for small wave numbers. This region is w
represented by the PY–SHS curve and by our model, but
latter is better near the first maximum. The value of the cr
cal temperature forl51.1 can be estimated to beTc'0.5
@cf. Table I#. Consequently, the case considered in Fig
corresponds to a rather hot gas. That is why the simula
data are not too far from the HS values~except in the region
q&3). In order to highlight the differences that can be e
pected at a smaller temperature, the caseT50.5 is consid-
ered in Fig. 3. Now, the structure factor predicted by o
model and by the PY–SHS solution is very different fro
that predicted by the TL perturbation theory, the latter be
very close to the PY-HS solution. This is not surprising, sin

el
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in any perturbation theory the quantities are expanded
powers ofT21 and obviously the valueT2152 is beyond its
range of applicability. On the other hand, the curves co
sponding to the PY–SHS solution and our model are re
tively close~except for a slight phase shift!, as expected from
the fact that the well width is rather small. Moreover, sin
the stickiness parameter has been chosen so as to repro
the correct second virial coefficient, the PY–SHS solut
does a generally good job at this very low density.

Now, we consider the radial distribution function itse
As a representative example of a width not extremely sm
we take the casel51.125, for which MC simulations are
available.33 Figure 4 showsg(r ) for l51.125 at the thermo-
dynamic stateT51, r50.8. As seen in the figure, the orig
nal model of Ref. 44 exhibits a remarkable agreement w
the simulation data. We also observe that our present m
captures reasonably well the behavior ofg(r ) at this high
density, while the TL approximation predicts a too small co
tact value ofg(11). The contact values are plotted in Fig.
as a function of 1/T for l51.125 andr50.4, 0.6, and 0.8.
At 1/T50 the system corresponds to HS and then our mo
and the TL theory reduce to Wertheim–Thiele’s solution
the PY equation, which tends to underestimateg(11) at high
densities. As the inverse temperature increases, the TL th

FIG. 3. Structure factor,S(q), corresponding to a SW fluid withl51.1,
h50.07, andT50.5. The lines are the result predicted by the present mo
~ !, the PY equation for SHS~¯!, the TL perturbation theory~- - -!, and
the PY equation for HS~- • - • -!.

FIG. 4. Radial distribution function,g(r ), corresponding to a SW fluid with
l51.125, r50.8, andT51. The circles represent MC data~Ref. 33!, the
dotted line is the result obtained from the model of Ref. 44, the solid lin
the result given by the present model, and the dashed line is the predi
from the TL perturbation theory.
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predicts a linear increase ofg(11) @cf. Eq. ~1.2!# that clearly
deviates from the MC data. On the other hand, the temp
ture dependence ofg(11) is well described by both the
original and the simplified versions of the model, except
1/T52.

B. Thermodynamic properties

The compressibility equation of state is obtained fro
Eqs. ~2.3! and ~A1!. This route is preferable to the viria
route because the latter is known to yield an unphysical c
cal behavior in the SHS limit.53 From Eq.~2.3!, we have

Z~h,T![
p

rkBT
5h21E

0

h
dh8 xT

21~h8,T!, ~3.1!

where the density dependence ofxT is given in our model by
Eqs. ~A1! and ~2.25!. Although this dependence is know
explicitly, it does not allow us to perform the integration
Eq. ~3.1! analytically, so the compressibility factorZ is ob-
tained by numerical integration.

Before delving into the thermodynamic predictions
our model, let us compare it with the original one44 in the
case of a moderately narrow well, namelyl51.125. Figure
6 shows the density dependence of the inverse susceptib
for T50.5, 0.67, and 0.9. As the temperature increases,
simplified model is seen to overestimate the compressib
of the fluid, especially for large densities. On the other ha
at T50.5 ~which is practically the critical temperature, c
Table I!, both versions of the model yield undistinguishab
results. This is quite encouraging, since it is in the domain
low temperatures~or, equivalently, high stickiness! where
our model is expected to correct the deficiencies of pertur
tion theories and become useful.

One of the advantages of our simplified model is tha
allows us to derive explicit expressions for the coordinates
the critical point. The spinodal line is the locus of poin
where the isothermal compressibility diverges. Equat
~A1! clearly shows thatxT5S(0)→` if and only if L2

→`. Thus, according to Eq.~2.25!, the spinodal line is

el

s
on

FIG. 5. Plot ofg(11) as a function of 1/T for l51.125 and three densities
r50.4 (s), r50.6 (h), andr50.8 (L). The symbols represent MC dat
taken from Ref. 33 (1/TÞ0) and from Ref. 52 (1/T50). The dotted lines
are the results obtained from the model of Ref. 44, the solid lines are
results given by the present model, and the dashed lines are the predic
from the TL perturbation theory.
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given by a solution to the quadratic equationg01g1h
1g2h250. This equation has two real solutions,h6(t),
only if t is a smaller than a critical valuetc given by

tc
21512

31l12A2l

922l1l2
. ~3.2!
s
e

a
.
el

si
A

d

ed

ls

s
n

ne

er

th
The critical temperatureTc is obtained by settingt5tc in
Eq. ~2.27!. If t,tc , the smallest root,h2(t), does not de-
fine the vapor branch of the spinodal line because it is als
root of the numerator of Eq.~2.25!, and soL2 remains finite
at h5h2(t). Therefore, only the liquid branch of the spin
odal line,h1(t), exists. It is given by
h1~T!5
~11l1l2!A12 1

6~31l!t211 1
144~922l1l2!t221 1

12~31l3!t21212l1l2

l@ 1
3~213l1l21l3!t2124l#

. ~3.3!
ac-
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e
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The critical density ishc5h1(tc), i.e.,

hc5

1
12~31l3!tc

21212l1l2

l@ 1
3~213l1l21l3!tc

2124l#
. ~3.4!

As l increases,Tc increases, whilehc decreases. Equation
~3.2!–~3.4! generalize tol.1 the results predicted by th
PY solution for SHS7

h15
A926t211t22/21t2123

7t21212
,

~3.5!

tc
2153~21A2!.10.24,hc5

3

2
A222.0.1213.

The lack of a vapor branch of the spinodal line is
feature that our model inherits from the PY–SHS solution53

Our model also has in common with the SHS limit, as w
as with the solution of the PY equation for finitel,54 the
existence of regions in the temperature–density plane, in
which the physical quantities cease to take real values.
cording to Eq.~2.25!, this happens when 11b1h1b2h2

1b3h31b4h4,0. Let us callh i(T) ( i 51, . . . ,4) thefour
roots of the quartic equation 11b1h1b2h21b3h31b4h4

50, with the convention that, whenever they are real,h1

<h2<h3<h4 . It turns out that the rootsh1(T) andh2(T)
are real only ift is smaller than a certain threshold valuet th

~or, equivalently, if T,Tth); they define a dome-shape
curve with an apex at a densityh th5h1(Tth)5h2(Tth).
Analogously, the other two roots,h3(T) andh4(T), are real
only if t,t th8 (T,Tth8 ) and define another dome-shap
curve with an apex ath th8 5h3(Tth8 )5h4(Tth8 ). Consequently,
the parameterL2 becomes complex inside the interva
h1(T),h,h2(T) ~for T,Tth) andh3(T),h,h4(T) ~for
T,Tth8 ). However, the existence of the second region i
mathematical artifact since it affects unphysically high de
sities. For instance, forl51.125 we haveTth8 50.535 147
and h th8 50.786 92, this density being larger than the o
corresponding to the close packing valuehcp5A2p/6
.0.740. In fact, in the SHS limit (l→1) the second region
collapses into the lineh51 and disappears. On the oth
hand, the regionh1(T),h,h2(T) is inside the curveh
5h6(T) and persists in the SHS limit. In the latter case,
threshold values coincide with the critical ones, i.e.,t th

5tc , h th5hc . For finite l, Tth is smaller but practically
l

de
c-

a
-

e

indistinguishable fromTc andh th is slightly smaller thanhc .
In the illustrative case of l51.125, we have Tc

50.502 324, hc50.112 99, Tth50.502 269, and h th

50.109 80. The existence line,r5r1,2(T), and the liquid
branch of the spinodal line,r5r1(T), are shown in Fig. 7
for l51.125.

Recently, it has been suggested55 that, while the critical
point is in general very sensitive to the range of the inter
tion, the second virial coefficient has a fairly constant va
at the critical temperature,B2(Tc)'2p. In the case of the
SW interaction, computer simulations48,56 show that the
value of the second virial coefficientB2(T)522p@x(l3

21)21#/3 at T5Tc is much less sensitive to the widthl
than the critical temperature.26,55Moreover, the PY–SHS so
lution predicts B2(Tc)52(213A2)p/6.21.04p. Thus,
by assuming thatB2(Tc) is independent ofl and is equal to
its value in the SHS limit, the criterion of Ref. 55 allows on
to estimate the critical temperature as

Tc51/ln@113~21A2!/4~l321!#. ~3.6!

Since the model presented in this paper is constructe
a simple generalization of Baxter’s solution of the PY equ
tion for SHS, we expect its predictions for the critical valu
of the temperature (Tc), the density (rc), and the compress

FIG. 6. Density dependence of the inverse isothermal susceptibility fol
51.125 and three temperatures. The dashed lines are the results ob
from the model of Ref. 44 and the solid lines are the results from the pre
model.
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FIG. 7. Liquid branch of the spinodal line~solid line! and existence line
~dashed line! for l51.125, according to the present model. The model d
not give real values for the physical quantities inside the gray region
closed by the existence line.

TABLE I. Critical constants of the square-well fluid for several values of
width parameterl.

l Tc rc Zc Source

1 0a 0.232 0.379 PY equation~Ref. 7!
1.1 0.455 0.219 0.372 This work

0.461 Eq.~3.6! ~Ref. 55!
1.125 0.502 0.216 0.370 This work

0.512 Eq.~3.6! ~Ref. 55!
0.594 0.46 0.42 Perturbation theory~Ref. 33!
0.587 0.71 0.74 Perturbation theory~Ref. 34!

1.25 0.764 0.370 0.29 Computer simulation~Ref. 48!
0.729 0.203 0.360 This work
0.766 Eq.~3.6! ~Ref. 55!
0.913 0.34 0.43 Perturbation theory~Ref. 33!
0.850 0.48 0.47 Perturbation theory~Ref. 34!

1.375 0.974 0.355 0.30 Computer simulation~Ref. 48!
0.960 0.193 0.349 This work
1.046 Eq.~3.6! ~Ref. 55!
1.11 0.34 0.39 Perturbation theory~Ref. 33!
1.08 0.36 0.40 Perturbation theory~Ref. 34!

1.5 1.219 0.299 0.30 Computer simulation~Ref. 48!
1.209 0.184 0.339 This work
1.367 Eq.~3.6! ~Ref. 55!
1.205 0.200 0.37 PY equation~Ref. 54!
1.35 0.31 0.36 Perturbation theory~Ref. 33!
1.33 0.29 0.37 Perturbation theory~Ref. 34!

1.625 1.479 0.177 0.330 This work
1.738 Eq.~3.6! ~Ref. 55!
1.70 0.27 0.38 Perturbation theory~Ref. 33!
1.61 0.26 0.36 Perturbation theory~Ref. 34!

1.75 1.811 0.284 0.35 Computer simulation~Ref. 48!
1.777 0.170 0.322 This work
2.164 Eq.~3.6! ~Ref. 55!
2.04 0.25 0.38 Perturbation theory~Ref. 33!
1.93 0.24 0.36 Perturbation theory~Ref. 34!

1.85 2.036 0.165 0.317 This work
2.550 Eq.~3.6! ~Ref. 55!
2.33 0.25 0.37 Perturbation theory~Ref. 33!
2.23 0.23 0.35 Perturbation theory~Ref. 34!

2 2.764 0.225 0.32 Computer simulation~Ref. 48!
2.466 0.159 0.310 This work
3.208 Eq.~3.6! ~Ref. 55!
2.88 0.24 0.37 Perturbation theory~Ref. 33!
2.79 0.23 0.35 Perturbation theory~Ref. 34!

atc50.0976.
ibility factor (Zc) to be more reliable for small values ofl
21 than for wide wells. However, to the best of our know
edge, the simulation estimates for those quantities are o
available forl>1.25,48 and so we cannot make a compa
son for smaller widths. Table I shows the values ofTc , rc ,
andZc for several values ofl, as estimated from compute
simulations,48 and as predicted by the model, by Eq.~3.6!, by
perturbation theory,33,34 and by the PY integral equation.54

Comparison with MC simulation data shows that t
critical temperature predicted by our model, Eq.~3.2!, tends
to be smaller than the correct value, while Vliegenthart a
Lekkerkerker’s criterion,55 as well as second-order perturb
tion theory33,34 tend to overestimate it. What is indeed r
markable is the fact that Eq.~3.2! provides the best agree
ment with computer simulations forl<1.75 @except atl
51.25, in which case Eq.~3.6! is better#. In the case of the
critical value of the compressibility factor, the best agre
ment corresponds to our model, except atl51.75, where
Chang and Sandler’s perturbation theory gives a better re
On the other hand, the critical densities predicted by
model are around 30%–45% smaller than the simulation
ues, a discrepancy that can be traced back to the solutio
the PY equation for SHS. Since the computer simulatio
and all the theories share the property thatrc is a monotoni-
cally decreasing function ofl, we can conclude that the
correct value ofrc in the limit l→1 is certainly larger than
the simulation valuerc50.370 atl51.25, while Baxter’s
solution yieldsrc50.232. Thus, we can expect this failure
reproduce accurately the critical density also present in
PY approximation for finitel. This is confirmed by the re-
sults of a numerical solution of the PY equation forl
51.5,54 which gives a value ofrc rather close to the one
obtained here.

Now, let us compare the general density dependenc
the compressibility factor predicted by the model with ava
able computer simulations. We start with the smallest va
of l that, to our knowledge, has been analyzed in simu
tions, namely l51.125.33 Figure 8 showsZ(r) for l
51.125 andT50.5, 0.67, and 1. Strictly speaking, the cur
representing the model at the lowest temperature corresp
to T5Tc.0.502 rather than toT50.5. This is because a
T50.5 there exists a small density interval aroundrc

s
n-

FIG. 8. Density dependence of the compressibility factor forl51.125 and
three temperatures. The circles are the results of computer simulations~Ref.
33!, the solid lines are the results from our model, and the dashed lines
the TL perturbation theory predictions~Ref. 37!.
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.0.22 @cf. Fig. 7# where the model gives complex value
The next width we consider isl51.4, for which extensive
molecular dynamics simulations are available.49 The results
for T51.25, 1.43, 2, and 5 are plotted in Fig. 9. We obse
that, except at the highest temperatures (T51 for l
51.125,T>2 for l51.4), our model presents a better ge
eral agreement with the simulation data than the TL per
bation theory.

IV. CONCLUDING REMARKS

The main objective of this paper has been to propose
analytical model that could be useful to describe the str
tural and thermodynamic properties of systems, such as
loidal dispersions, composed of particles effectively intera
ing through a hard-core potential with a short-ran
attraction. As the simplest interaction that captures both
tures, we have considered the square-well~SW! potential
~1.1!. On the one hand, perturbation theory becomes un
able when the rangel – 1 of the attraction is small, espe
cially at low temperatures, i.e., when a certain degree
‘‘stickiness’’ among the particles becomes important. On
other hand, the widely used sticky-hard-sphere~SHS! inter-
action model combines temperature and well width in o
parameter only, thus lacking the flexibility to accommoda
additional changes in width and/or temperature. Our
proach intends to fill the gap between these two theories

The model presented in this paper is based on the
proposed in Ref. 44, where the functionsR(t) and R̄(t) de-
fined by Eqs.~2.4! and~2.13! were approximated by rationa
forms, Eq.~2.14!. The parameters in these functions are co
strained to yield a finite value for the isothermal compre
ibility by Eqs. ~2.17!–~2.20!. This still leaves two free pa
rameters,A and t, the latter being defined in Eq.~2.23!, as
unknown functions of the packing fractionh, the tempera-
ture parameterx[e1/T* 21, and the well widthl. Apart
from their zero-density limits~2.21! and ~2.24!, two extra
conditions are needed to fix those parameters and close
construction of the model. Thus, depending on the phys
situation one is interested in and/or on the degree of simp
ity one wants to keep in the model, it is possible to choo
different criteria to determineA and t. For instance, one

FIG. 9. Density dependence of the compressibility factor forl51.4 and
four temperatures. The circles correspond to an empirical formula fitte
molecular dynamics results~Ref. 49!, the solid lines are the results from th
present model, and the dashed lines are the TL perturbation theory pr
tions ~Ref. 37!.
e

-
r-

n
-

ol-
t-

a-

li-

f
e

e
e
-

ne

-
-

the
al
c-
e

could impose certain continuity conditions on the cav
function y(r )[g(r )ew(r )/kBT at the points where the poten
tial is singular;51 alternatively, one could require thermody
namic consistency among the virial, compressibility, and
ergy routes. Of course, other choices are possible. In
original formulation of the model,A was assumed to be in
dependent of density~hence,A5x) and the second condition
was the continuity ofy(r ) at r 5ls, giving rise to a tran-
scendent equation that needed to be solved numerically
the other hand, in this paper we have simply assumed
both A and t are independent of density, Eq.~2.26!. The
assumption fort is expected to be especially adequate
narrow potentials, since in the SHS limit the role oft is
played by the parametertSHS5@12x(l21)#21, which is in-
deed independent of density. With these choices forA andt
the problem remains fully algebraic and all the paramet
can be expressed in terms of the solution of a quadratic e
tion, in analogy with what happens in Baxter’s solution
the PY equation for SHS.7 In fact, the model includes such
solution as a limit case. Given the scarcity of simulati
results for narrow wells, we have been forced to carry ou
comparison for cases withl>1.125. In spite of that, the
results show a very good general performance of the st
tural and thermodynamic properties predicted by the mo
correcting the inadequacy of the perturbation theory pred
tions in the low-temperature domain. It is interesting to no
that the model provides an explicit expression of the criti
temperature as a function of the well width, Eq.~3.2!, which
is accurate even for rather wide wells.

The results of this paper could also be useful in conn
tion with a recently proposed extension of the law of cor
sponding states for systems, such as colloidal suspens
that have widely different ranges of attractive interactions26

Given an interaction potentialw(r )5w rep(r )1watt(r ), where
w rep andwatt are the repulsive~not necessarily hard-core! and
attractive parts, respectively, one can define a~temperature-
dependent! effective hard-core diameter,

s5E
0

`

dr @12e2wrep(r )/kBT#, ~4.1!

an effective well depth,

e52w~r 0!,
dw~r !

dr U
r 5r 0

50, ~4.2!

and a~temperature-dependent! effective well width,

l5@11~B2* 21!~12ee/kBT!21#1/3, ~4.3!

where

B2* 5
3

s3E0

`

dr r 2@12e2w(r )/kBT#, ~4.4!

is the reduced second virial coefficient. Then, according
the extended law of corresponding states,26 the compressibil-
ity factor for a wide range of colloidal materials is a functio
of only the reduced temperatureT* 5kBT/e, the reduced
density r* 5rs3, and the range parameterl, i.e., Z
5F(T* ,r* ,l), where the functionF is hardly sensitive to
the details of the potential. As a consequence, an accu
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prescription for the functionF based on the SW interactio
for variable width can be used to determine the thermo
namic properties of a wide class of colloidal suspensions
an illustrative example, Fig. 10 shows the dependence of
reduced critical temperatureTc* 5kBTc /e on the effective

FIG. 10. Dependence of the reduced critical temperature on the effe
well width, as obtained from computer simulations for several interac
potentials: square-well~solid circles! ~Ref. 48!, hard-core Yukawa~open
squares! ~Refs. 26,57,58!, generalized Lennard-Jones~open circles! ~Refs.
26,59!, a-Lennard-Jones~open diamond! ~Refs. 26,60!, an effective
colloid–colloid interaction~up triangles! ~Refs. 26,61!, and an effective in-
teraction for nonadditive mixtures of asymmetric hard spheres~down tri-
angles! ~Refs. 26,62,63!. The solid line is the prediction of our model, Eq
~2.27! and ~3.2!.
-
s
e

width l for several interaction potentials.26 The prediction of
our model, Eqs.~2.27! and ~3.2!, is also plotted. The ex-
tended law of corresponding states work very well up tol
&1.3. For larger interaction ranges the values ofTc* for the
generalized Lennard-Jones and the hard-core Yukawa po
tials tend to lie slightly above those corresponding to the S
interaction.

In the near future, we plan to extend the model presen
in this paper in two directions. First, the case of a mixture
particles interacting through SW potentials with differe
values ofs, e, andl will be analyzed. This generalizatio
must be such that one recovers the cases of a mixture of
spheres,64 a mixture of sticky hard spheres,65 and a monodis-
perse SW system in the appropriate limits. As a second
tension, we will study the case of an interaction model ma
of a hard core plus a square shoulder plus a square well
which, in addition to the conventional gas–liquid phase tra
sition, a liquid–liquid transition in the supercooled pha
appears.66–68
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APPENDIX A: SOME EXPLICIT EXPRESSIONS

1. Expression for S„0…

In this Appendix we list some of the expressions that are derived from the model. The long-wavelength value
structure factor is obtained by using the model~2.16! in the general expression~2.10!. The result is

S~0!5
1

5~112h!2
$5220h@11~21l!A823~11l!L2#12h2@1526~142l119l22l32l4!L21120~11l1l2!L2

2

1~50116l127l222l32l4!A8230~514l13l2!A8L2

115~312l1l2!A82#22h3@1013~7253l213l217l328l4!L2260~11l!~124l1l2!~11l1l2!L2
2

1~19159l19l22l314l4!A813~11267l2114l2266l3213l419l5!A8L213~312l1l2!~117l13l2

2l3!A82#1h4@5212~11l1l2111l324l4!L21240l3~11l1l2!L2
212~718l19l2110l324l4!A8

212~113l16l2124l3117l419l5!A8L213~312l1l2!~112l13l214l3!A82#%, ~A1!

where we have made use of Eqs.~2.17!–~2.20!.

2. Expressions for the coefficients in Eq. „2.25…

Equation~2.23! reduces to a quadratic equation forL2 . Its physical solution is given by Eq.~2.25!, where

a152A8~21l!1 1
6~114l1l223A8!t21, ~A2!

a2531A8~712l23l2!2 1
12@71l116l21A8~23115l115l217l3!#t21, ~A3!

a352222A8~112l13l2!1 1
6@71l22l21A8~7115l121l2111l316l4!#t21, ~A4!

b152424A8~21l!1 1
3~512l2l213A8!t212 1

3t
22, ~A5!

b25616A8~312l1l2!14A82~21l!22 1
6@9~31l!1A8~59151l13l225l3!112A82~21l!#t211 1

36@3118l

118l224l31l4112A8~51l!19A82#t22, ~A6!
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b3524212A8~11l1l2!24A82~21l!~112l13l2!1 1
3@3~41l1l2!1A8~29136l130l217l323l4!1A82~17

143l130l21l32l4!#t212 1
36@29113l127l217l324l41A8~68180l180l2116l317l41l5!

13A82~13113l1l223l3!#t22, ~A7!
n,
d
-

in

.

b45@11A8~112l13l2!#2 1
6@71l14l212A8~7

115l115l215l316l4!1A82~112l13l2!~7

115l13l22l3!#t211 1
144@49138l19l218l3

116l412A8~49188l1112l2180l3135l4

24l5!1A82~491138l1219l21124l3127l4

118l51l6!#t22, ~A8!

g0511l2 1
6t

21, ~A9!

g152~11l2l2!2 1
6~31l3!t21, ~A10!

g25l@24l1 1
3~213l1l21l3!t21#. ~A11!

The other root is incompatible with~2.21! and then must be
discarded.

APPENDIX B: LOW-DENSITY BEHAVIOR OF THE
MODEL

In the low-density limit, Eqs.~2.17!–~2.20! become, re-
spectively,

L1512 3
2h@12x~l421!#1O~h2!, ~B1!

S15O~h!, ~B2!

S252 1
2@12x~l221!#1O~h!, ~B3!

S352
1

12h
1

1

3
@12x~l321!#1O~h!. ~B4!

To first order in density, Eq.~2.25! gives

L25xl~l21!1L2
(1)h1O~h2!, ~B5!

where

L2
(1)52 3

2xl~l21!$11x~l21!2@122l2l2

24xl~11l!#%. ~B6!

Substitution into Eq.~2.16! yields, after some algebra,

F~ t !5Fexact~ t !1H 2C2

t4
1

C1

t3
1

C0

t2
2F2C2

t4

1
C112C2~l21!

t3

1
C01C1~l21!1C2~l21!2

t2 Ge2(l21)tJ h

1O~h2!, ~B7!

where we have called
C2[23x~11x!~l221!, ~B8!

C1[2x~11x!~l21!2~112l!, ~B9!

C0[
L2

(1)

l21
2

1

2
x~228l313l4!22x2~l21!2

3~214l13l2!23x3~l221!2. ~B10!

The expression for the exact radial distribution functio
gexact(r ), to first order in density was derived by Barker an
Henderson for the casel,2.45 The corresponding expres
sion for Fexact(t) can be found in Ref. 44. From Eq.~B7!,
one easily gets

g~r !2gexact~r !5
1

r
@C2~r 21!21C1~r 21!1C0#

3@Q~r 21!2Q~r 2l!#h1O~h2!.

~B11!

Thus, the difference~to first order in density! is nonzero in
the interval 1.r .l only. In particular

g~11!2gexact~11!5C0h1O~h2!, ~B12!

where45

gexact~11!511x1F5

2
1

x

2
~15216l316l4!

22x2~l21!~414l1l223l3!

13x3~l221!2Gh1O~h2!. ~B13!

Note that the relative coefficientC0 /(11x) vanishes in the
SHS limit. As mentioned in Sec. II, the model presented
this paper does not enforce the verification of Eq.~2.22!. In
fact, Eq.~B11! implies that

g~l2!2~11x!g~l1!

5l21@C2~l21!21C1~l21!1C0#h1O~h2!

5
x~l21!

2l
@l~112l2l2!

2x~l21!~l12!~3110l23l2!

16x2~l21!2~113l12l2!#h1O~h2!. ~B14!

Finally, from Eq. ~A1! or, equivalently, inserting Eq
~B11! into Eq. ~2.1!, we get
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S~0!2Sexact~0!52x~l21!2@7123l130l224l322l4

2x~l21!~25184l178l212l329l4!

118x2~l221!2~112l!#h21O~h3!,

~B15!

where

Sexact~0!5128@12x~l321!#h12@172x~l21!~19

119l119l2151l323l423l5!22x2~l

21!2~8116l23l2238l3219l4!

118x3~l221!3#h21O~h3!. ~B16!

APPENDIX C: THE HARD-SPHERE AND
STICKY-HARD-SPHERE LIMITS

1. Hard spheres

The SW potential becomes equivalent to the HS pot
tial if l51 at any nonzero temperatureT or if T→` at any
width l. Let us first consider the latter limit. Makingx50 in
Eqs.~A2!–~A11!, one gets

a150, a253, a3522, ~C1!

b1524, b256, b3524, b451, ~C2!

g0511l, g152~11l2l2!, g3524l2. ~C3!

As a consequence, Eq.~2.25! implies thatL250. Thus, Eq.
~2.16! becomes

F~ t !52
1

12h

11L1t

11S1t1S2t21S3t3
, ~C4!

with
-

L15
11 1

2h

112h
, ~C5!

S152
3

2

h

112h
, ~C6!

S252
1

2

12h

112h
, ~C7!

S352
~12h!2

12h~112h!
. ~C8!

This is precisely the form adopted byF(t) in the analytical
solution of the PY equation for hard spheres.1,2,39,40The ex-
pression forS(0), Eq. ~A1!, simply reduces to

S~0!5
~12h!4

~112h!2
. ~C9!

The casel51 is not considered in this subsection, as
is a particular case of the SHS limit.

2. Sticky hard spheres

Let us now take the limitx→`, l→1, with x(l21)
5finite in the model proposed in this paper. In that limit th
parametert is finite, cf. Eq.~2.26!, while A850. Equations
~A2!–~A11! become

a15t21, a25322t21, a352212t21, ~C10!

b152412t212 1
3t

22, b25626t211 3
2t

22,
~C11!

b352416t2122t22, b45122t211 5
6t

22,

g0522 1
6t

21, g1522 2
3t

21, g35241 7
3t

21. ~C12!

Therefore, Eq.~2.25! reduces to
L25
12h

24h

~112h!@~12h!212h~12h!t212 1
6h~225h!t22#1/22~12h!~112h2ht21!

~12h!~112h!2 1
12~114h214h2!t21

. ~C13!
a-

the
Taking the limitl→1 in Eq. ~2.16!, we get

F~ t !52
1

12h

11L1t1L2t2

11S1t1S2t21S3t3
, ~C14!

with

L15
11 1

2h

112h
1

6h

112h
L2 , ~C15!

S152
3

2

h

112h
1

6h

112h
L2 , ~C16!

S252
1

2

12h

112h
1

124h

112h
L2 , ~C17!

S352
~12h!2

12h~112h!
2

12h

112h
L2 . ~C18!
This coincides with the analytical solution of the PY equ
tion for sticky hard spheres.7,69,70From Eq.~A1! we have

S~0!5
~12h!2

~112h!2
@12h112hL2#2. ~C19!

Of course, the results for hard spheres are recovered in
high-temperature limit (t21→0).
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