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Contact values of the radial distribution functions of additive hard-sphere
mixtures in d dimensions: A new proposal
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Mariano López de Haroc)

Centro de Investigacio´n en Energı´a, UNAM, Temixco, Morelos 62580, Mexico

~Received 20 March 2002; accepted 28 June 2002!

The contact valuesgi j (s i j ) of the radial distribution functions of ad-dimensional mixture of
~additive! hard spheres are considered. A ‘‘universality’’ assumption is put forward, according to
which gi j (s i j )5G(h,zi j ), where G is a common function for all the mixtures of the same
dimensionality, regardless of the number of components,h is the packing fraction of the mixture,
andzi j 5(s is j /s i j )^s

d21&/^sd& is a dimensionless parameter,^sn& being thenth moment of the
diameter distribution. Ford53, this universality assumption holds for the contact values of the
Percus–Yevick approximation, the scaled particle theory, and, consequently, the Boublı´k–Grundke–
Henderson–Lee–Levesque approximation. Known exact consistency conditions are used to express
G(h,0), G(h,1), andG(h,2) in terms of the radial distribution at contact of the one-component
system. Two specific proposals consistent with the above-mentioned conditions~a quadratic form
and a rational form! are made for thez dependence ofG(h,z). For one-dimensional systems, the
proposals for the contact values reduce to the exact result. Good agreement between the predictions
of the proposals and available numerical results is found ford52, 3, 4, and 5. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1502247#
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I. INTRODUCTION

It is well-known that there exists a close connection b
tween the thermodynamic and structural properties of cla
cal fluids. In fact, for pairwise additive intermolecular pote
tials, all the thermodynamic functions may be expressed
terms of the radial distribution functions~rdf!. The expres-
sions are particularly simple for hard-core fluids, since
that case the internal energy reduces to that of the ideal
and in the pressure equation it is only the contact val
rather than the full rdf which appear explicitly. Therefor
knowledge of the contact values of the rdf in hard-core fl
ids, which we will denote bygi j (s i j ) ~where in generali and
j label species ands i j is the distance of separation at conta
between the centers of two interacting fluid particles, one
speciesi and the other of speciesj ), suffices to obtain the
equation of state~EOS! of these systems. In the case of
single component hard-core fluid, if the EOS were kno
then it would be straightforward to infer the contact value
the radial distribution function. In contrast, if one were giv
the EOS of a multicomponent hard-core mixture such c
tact values could not be determined in a unique way. To
day, no exact expressions for the contact values of the rd
for the EOS~except for the case of one-dimensional system
i.e., hard rods! are known, although various approxima
theories, empirical efforts, and computer simulations h
been carried out in connection with this problem. On
component systems are, of course, easier to handle and
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has meant that studies for mixtures are much more sca
Perhaps the most successful theoretical~analytical! approach
to this issue in the case of additive hard-sphere mixturesd
53) is the exact solution of the Percus–Yevick~PY! equa-
tion carried out by Lebowitz in 1964.1 This analytical solu-
tion, which among other things yields explicit expressio
for the contact values of the rdf, as well as for the virial a
the compressibility routes to the EOS, is at the basis of
celebrated~and empirically derived! Boublı́k–Mansoori–
Carnahan–Starling–Leland~BMCSL! EOS,2,3 considered to
be a rather accurate EOS for hard-sphere mixtures. In
paper,2 Boublı́k also introduced an approximation for th
contact values of the rdf@in fact an interpolation between th
PY results and the ones of the scaled particle theory~SPT!4,5#
that later was independently proposed by Grundke
Henderson6 and Lee and Levesque.7 This approximation,
which we will refer to as BGHLL, leads precisely to th
BMCSL EOS when substituted into the statistical mechan
formula for the pressure equation. Refinements of
BGHLL approximation have recently been proposed
Henderson and Chan,8–12 Matyushov and Ladanyi,13 and
Barrio and Solana14 to cope with some deficiencies of th
BMCSL EOS in the so-called colloidal limit of binary hard
sphere mixtures.

As far as we are aware, there are no reported appr
mations forgi j (s i j ) with dÞ3, except that of Jenkins an
Mancini15 in the case of hard-disk mixtures and our own16

for d-dimensional mixtures. The latter approximation, ho
ever, was introduced only as a means to derive a proposa
the EOS of mixtures. In fact, while this EOS presents
excellent agreement with simulations ford52,16,17
5 © 2002 American Institute of Physics
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d53,16,18,19d54,20 andd55,20 the expressions forgi j (s i j )
are less accurate.19,20 It is the major aim of this paper to
propose new ~improved! approximate expressions fo
gi j (s i j ), for arbitrary mixtures and arbitrary dimensionalit
that, apart from satisfying known consistency conditions,
sufficiently general and flexible to accommodate any giv
EOS for the single fluid. A key aspect of the present a
proach, also included in our previous work,16 is that we will
assume from the very beginning a kind of universal behav
of the contact values which at least holds also for the so
tion of the PY equation,1 for the SPT approximation,4,5 and
for the BGHLL interpolation2,6,7 in the case of mixtures o
hard spheres (d53). This means that, once the dimensio
ality and the packing fraction are fixed, the expression for
contact valuesgi j (s i j ) for all pairs i j is the same, irrespec
tive of the composition and the number of components in
mixture. This expression must comply with three consiste
conditions related to the point particle, equal size, and
colloidal limits, respectively. Two functional forms~a qua-
dratic one and a rational one! which are sufficiently repre-
sentative will be examined. Their merits will be assess
from a comparison with available simulation data as well
with respect to the performance of the EOS obtained fr
them. In the latter issue, we will show that a paradoxi
result is obtained. What we find is that, contrary to what o
could possibly expect, better contact valuesdo notnecessar-
ily mean more accurateEOS and that even twodifferent
expressions forgi j (s i j ) may lead to exactly thesameEOS.

The paper is organized as follows: In Sec. II we rec
the known consistency conditions and introduce the new p
posals for the contact values of the rdf. Section III deals w
the comparison between our contact values and ensuing
and simulation results. We close the paper in Sec. IV w
further discussion and some concluding remarks.

II. THE PROPOSAL

Let us consider a mixture of hard spheres ind dimen-
sions with an arbitrary number of components. The hard c
of the interaction between a sphere of speciesi and a sphere
of speciesj is s i j 5

1
2(s i1s j ), where the diameter of a

sphere of speciesi is s i i 5s i . The number density of the
mixture isr and the mole fraction of speciesi is xi5r i /r.
From these quantities one can define the packing fractioh
5vdr^sd&, wherevd5(p/4)d/2/G(11d/2) is the volume of
a d-dimensional sphere of unit diameter and^sn&[( i xis i

n

denotes the moments of the diameter distribution.
In a hard-sphere mixture, the knowledge of the cont

valuesgi j (s i j ) is important for a number of reasons. F
example and as stated previously, the availability ofgi j (s i j )
is sufficient to get the equation of state~EOS! of the mixture
via the virial expression

Zm~h!5112d21h(
i , j

xixj

s i j
d

^sd&
gi j ~s i j !, ~1!

whereZm5p/rkBT is the compressibility factor of the mix
ture,p being the pressure,kB the Boltzmann constant, andT
the absolute temperature. The contact valuesgi j (s i j ) are also
needed to generate the entire rdfgi j (r ) in the generalized
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mean spherical approximation21 and in the rational function
approximation.22 In a different context, they are important a
well to implement the Enskog kinetic theory both for elas
and inelastic hard spheres.15,23

The exact form ofgi j (s i j ) as functions of the packing
fraction, the set of diameters$sk%, and the set of mole frac
tions $xk% is only known in the one-dimensional case, whe
one simply hasgi j (s i j )5(12h)21. Consequently, ford
>2 one has to resort to approximate theories or empir
expressions. From that point of view, it is useful to make u
of exact limit results that can help one in the construction
approximate expressions forgi j (s i j ). Let us consider first
the limit in which one of the species, sayi, is made of point
particles that do not occupy volume, i.e.,s i→0. In that case,
gii (s i) takes the ideal gas value, except that the availa
volume fraction is 12h:

lim
s i→0

gii ~s i !5
1

12h
. ~2!

An even simpler situation occurs when all the species h
the same size,$sk%→s, so that the system becomes equiv
lent to a one-component system. Therefore,

lim
$sk%→s

gi j ~s i j !5g~s!, ~3!

where g(s) is the contact value of the radial distributio
function in the one-component case. Equations~2! and ~3!
represent the simplest and most basic conditions thatgi j (s i j )
must satisfy. There are a number of other less trivial con
tency conditions.5,8,11,13,14,24–27Here we consider the condi
tion stemming from a binary mixture in which one of th
species, sayi 51, is much larger than the other one, i.e
s1 /s2→`, but occupies a negligible volume, i.e
x1(s1 /s2)d→0. In that case, a sphere of species 1 is see
a wall by particles of species 2, so that8,25,28

lim
s1 /s2→`

x1(s1 /s2)d→0

@g12~s12!22d21hg22~s2!#51. ~4!

Also in that limit,8,25,28 ln g11(s1);s1 /s2 , but we will not
make use of this condition here.

Our purpose now is to propose approximate express
for gi j (s i j ) of hard-core mixtures with an arbitrary numb
of components and arbitrary dimensionalityd, that satisfy the
consistency conditions~2!–~4!. First, we assume that the de
pendence ofgi j (s i j ) on the parameters$sk% and $xk% takes
place only through the scaled quantityzi j [(s is j /s i j )
3^sd21&/^sd&. More specifically,

gi j ~s i j !5G~h,zi j !, ~5!

where the functionG(h,z) is universalin the sense that it is
a common function for all the pairsi j , regardless of the
composition and number of components of the mixture.
course, the functionG(h,z) is different for each dimension
ality d.

The ratioj[^sd21&/^sd& can be understood as a ‘‘typi
cal’’ inverse diameter or curvature of the particles of t
mixture. The parameterzi j

215(s i
211s j

21)/2j represents
then the average curvature, in units ofj, of a particle of
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speciesi and a particle of speciesj. According to Eq.~5!, if
two different pairsi j in two different mixtures~with the
same packing fraction! have the same dimensionless avera
curvaturezi j

21 , then they have the same contact value of
rdf.

The ansatz~5! includes the one used by us,16 where
G(h,z) was approximated by a linear function ofz. A par-
ticular case of this linear form is the proposal made by J
kins and Mancini for hard-disk mixtures:15

G~h,z!5
1

12h
1

9

16

h

~12h!2
z ~d52!. ~6!

In the three-dimensional case, Eq.~5! is also compatible with
the solution of the PY equation,1 the SPT approximation,4,5

and, consequently, the BGHLL proposal.2,6,7 More specifi-
cally, G(h,z) is a linear function ofz in the PY approxima-
tion and a quadratic function in the SPT and BGHLL a
proximations:

G~h,z!5
1

12h
1

3

2

h

~12h!2
z1l

h2

~12h!3
z2 ~d53!,

~7!

where lPY50, lSPT5
3
4, and lBGHLL5 1

2. These three ap
proximations are consistent with Eqs.~2! and ~3!, but only
the SPT is also consistent with condition~4!. The approxi-
mation referred to as the SPT-virial route by Rosenfe5

adopts also the scaling form~5!, namely G(h,z)5(1
2h)21exp@3zh/2(12h)#, but it does not comply with con
dition ~4!.

Once we adopt the ansatz~5!, the limits in Eqs.~2!–~4!
provide very useful constraints on thez dependence ofG.
First, zii →0 in the limit s i→0, so that insertion of Eq.~2!
into Eq. ~5! yields

G~h,0!5
1

12h
. ~8!

Next, if all the diameters are equal,zi j →1, so that Eq.~3!
implies that

G~h,1!5g~s!. ~9!

Finally, in the limit considered in Eq.~4!, we havez22→1,
z12→2. Consequently,

G~h,2!5112d21hG~h,1!. ~10!

Thus Eqs.~8!–~10! provide complete information on th
function G at z50, z51, andz52, in terms of the contac
valueg(s) of the one-component rdf.

The proposal made in Ref. 16 consists of assumin
linear dependence ofG on z that satisfies the requiremen
~8! and ~9!:

G~h,z!5
1

12h
1Fg~s!2

1

12hGz. ~11!

If in the two-dimensional case we take Henderson’s valu29

g(s)5(127h/16)/(12h)2, Eq. ~11! reduces to Jenkins
and Mancini’s approximation,15 Eq. ~6!. In general, Eq.~11!
does not satisfy Eq.~10!. However, the ansatz~11! was used
in Ref. 16 only as a means to obtain the EOS from Eq.~1!.
e
e

-

-

a

The resulting EOS exhibits an excellent agreement w
simulations in two, three, four, and five dimensions, provid
that an accurateg(s) is used as input.16–18,20,30On the other
hand, if one is directly interested in obtaining reliable cont
values gi j (s i j ), then Eq. ~11! is too crude. The simples
functional form ofG that complies with Eqs.~8!–~10! is a
quadratic function ofz:

G~h,z!5G0~h!1G1~h!z1G2~h!z2, ~12!

where the coefficients are explicitly given by

G0~h!5
1

12h
, ~13a!

G1~h!5~222d22h!g~s!2
22h/2

12h
, ~13b!

G2~h!5
12h/2

12h
2~122d22h!g~s!. ~13c!

In the one-dimensional case, Eqs.~13b! and ~13c! lead to
G15G250 and we recover the exact result. For thre
dimensional systems, if the SPT value is used for the o
component contact value,gSPT(s)5(12h/21h2/4)/(1
2h)3, we reobtain the SPT expressions for the mixture,
Eq. ~7!. On the other hand, if the much more accura
Carnahan–Starling31 ~CS! expression gCS(s)5(12h/2)/
(12h)3 is used as input, we arrive at the following expre
sion:

G~h,z!5
1

12h
1

3

2

h~12h/3!

~12h!2
z1

h2~12h/2!

~12h!3
z2

~d53!, ~14!

which is different from the BGHLL one and improves th
latter forz.1, as comparison with computer simulations w
show. It should be noted that if one considers a binary m
ture in the infinite solute dilution limit, namelyx1→0, so
that z12→2/(11s2 /s1), Eq. ~14! yields the same result fo
g12(s12) as the one proposed by Matyushov and Ladany13

for this quantity on the basis of exact geometrical relatio
However, the extension that the same authors propose w
there is a nonvanishing solute concentration, i.e., forx1Þ0
@cf. Eq. ~19! in Ref. 13#, is different from Eq.~14!. We will
come back to this point later when we assess the merit
both proposals.

Of course, the quadratic form~12! is not the only choice
compatible with conditions~8!–~10!. Another simple possi-
bility is to assume a rational function of the form

G~h,z!5
11@A1~h!21#z

B0~h!1B1~h!z
. ~15!

Imposing Eqs.~8!–~10!, we get

B0~h!512h, ~16a!

A1~h!52
g~s!h

2

122d21~12h!g~s!

12~122d21h!g~s!
, ~16b!

B1~h!52
1

2

22h2~12h!~222d21h!g~s!

12~122d21h!g~s!
. ~16c!
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Other functional forms forG(h,z) complying with Eqs.~8!–
~10! are possible, but the choices~12! and ~15! are suffi-
ciently representative, so we will restrict ourselves to them
this paper.

III. COMPARISON WITH SIMULATION DATA

A. Contact values of the radial distribution functions

In order to assess the utility of the new proposals for
contact values of the rdf, in Figs. 1–9 we present results
hard-core mixtures ind52, 3, 4, and 5, and the availab

FIG. 1. Plot of the contact valuegi j (s i j ) as a function of the paramete
zi j 5(s is j /s i j )^s&/^s2& for hard disks (d52) at a packing fractionh
50.6. The open circles are simulation data for three binary mixtures~Ref.

33! with s2 /s15
1
3 and x150.25, 0.5, and 0.75. The closed circles a

simulation data for two binary mixtures~Ref. 34! with s2 /s15
3
4 and x1

50.483 and withs2 /s15
1
2 and x150.219. The lines correspond to Eq

~11! ~dashed line!, Eq. ~12! ~solid line!, and Eq.~15! ~dotted line!.

FIG. 2. Plot of the contact valuegi j (s i j ) as a function of the paramete
zi j 5(s is j /s i j )^s

2&/^s3& for hard spheres (d53) at a packing fractionh
50.49. The symbols are simulation data for the single fluid~circle!—Ref.
18—three binary mixtures~squares!—Ref. 35—with s2 /s150.3 andx1

50.0625, 0.125, and 0.25, and a ternary mixture~triangles!—Ref. 36—with

s2 /s15
2
3, s3 /s15

1
3 andx150.1, x250.2. The lines are, from bottom to

top at the right end, Eq.~11! ~---!, BGHLL ~– • –!, Eq. ~15! ~¯!, Eq. ~12!
~ !, and SPT~– •• –!.
n

e
r

computer simulation data. Figure 1 showsgi j (s i j ) as a func-
tion of zi j for d52 andh50.6, according to the linear ap
proximation~11!, the quadratic approximation~12!, and the
rational approximation~15!. In the three cases we have us
for g(s) the value obtained from the Levin@6# approximant
of Erpenbeck and Luban.32 The only tabulated simulation
data forgi j (s i j ) in the case of hard disks that we are awa
of are those of Ref. 33. Hence, we have included in Fig. 1
simulation results for the most asymmetric mixtures cons
ered in Ref. 33, namelys2 /s15 1

3 with x150.25, 0.5, and
0.75, and also simulation data extracted from Fig. 2 of R
34. We observe that the quadratic and rational approxim
tions, both consistent with condition~10!, are hardly distin-
guishable. The three theoretical curves practically coincid

FIG. 3. Plot of the contact valuegi j (s i j ) as a function of the paramete
zi j 5(s is j /s i j )^s

2&/^s3& for hard spheres (d53) at a packing fractionh
50.314. The symbols are simulation data for three binary mixtures~Ref.

19! with s2 /s15
1
5 and x150.003 11, 0.004 15, and 0.005. The lines a

from bottom to top at the right end, Eq.~11! ~---!, BGHLL ~– • –!, Eq. ~12!
~ !, SPT~– •• –!, and Eq.~15! ~¯!.

FIG. 4. Plot of the contact valueg11(s1) as a function of the packing

fraction h for the three-dimensional binary mixturex150.005, s2 /s15
1
5

(z1153.457). The symbols are simulation data~Ref. 19!. The lines are, from
bottom to top at the right end, Eq.~11! ~---!, BGHLL ~– • –!, Barrio–
Solana—Ref. 14~¯!, Eq. ~12! ~ !, SPT ~– •• –!, Eq. ~15! ~¯!, and
Henderson–Chan—Refs. 8–11~---!.
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the range of values ofzi j spanned by the simulations.
would be interesting to carry out simulations extending to
regionzi j .2 to assess the reliability of Eqs.~12! and ~15!.

A comparison between theoretical predictions and sim
lation values for three-dimensional mixtures is shown
Figs. 2–5. To carry out the computations in Eqs.~11!, ~12!,
and~15!, we have used the CS contact valuegCS(s). Figures
2 and 3 show that the universality assumption~5! is well
supported by simulation data. Since the dependence
gi j (s i j ) on zi j is nonlinear~note that the curvature is differ
ent from that of the two-dimensional case!, Eq. ~11! only
captures some kind of ‘‘average’’ behavior. Among the thr
quadratic functions, namely the SPT, the BGHLL, and E
~12!, the best global agreement is presented by Eq.~12!. The
SPT prescription, Eq.~7! with l5 3

4, is consistent with con-

FIG. 5. Plot of the contact valueg12(s12) as a function of the packing
fraction h for the three-dimensional binary mixturex150.004 15,s2 /s1

5
1
5 (z1251.210). The symbols are simulation data~Ref. 19!. The lines are,

from bottom to top at the right end, Eq.~11! ~---!, BGHLL ~– • –!, Eq. ~12!
~ !, Barrio–Solana—Ref. 14~¯!, Henderson–Chan—Refs. 8–11~---!,
SPT~– •• –!, and Matyushov–Ladanyi—Ref. 13~¯!.

FIG. 6. Plot of the contact valueg12(s12) as a function of the packing

fraction h for the four-dimensional binary mixturex150.5, s2 /s15
1
2

(z1250.706). The symbols are simulation data~Ref. 20!. The lines corre-
spond to Eq.~11! ~dashed line!, Eq. ~15! ~dotted line!, and Eq.~12! ~solid
line!.
e

-

of

e
.

dition ~10!, but its performance is not very good because i
pinned at a too high value atz51 ~one-component case!.
The BGHLL prescription, Eq.~7! with l5 1

2, is excellent at
z51 ~CS value!, does a very good job for 0,z,1, but
clearly underestimates the simulation data forz.1, as ex-
pected from the fact that the BGHLL is inconsistent with E
~10! at z52. Our recipe~12! is only slightly worse than the
BGHLL for z,1 but improves it significantly forz.1. Fi-
nally, the rational function~15! is practically indistinguish-
able from the BGHLL forz,1, is reasonably good for 1
,z,2, and is the best one in the case of the large–large
for disparate mixtures, as shown by Fig. 3 in the regionz
'4. Of course, none of these approximations is expecte
be good enough in the limit ofextremelylarge values ofz,
where lnG;z.8,25,28 The latter behavior could be incorpo

FIG. 7. Plot of the contact valueg12(s12) as a function of the packing

fraction h for the four-dimensional binary mixturex15
3
4, s2 /s150.25

(z1250.402). The symbols are simulation data~Ref. 20!. The lines corre-
spond to Eq.~11! ~dashed line!, Eq. ~15! ~dotted line!, and Eq.~12! ~solid
line!.

FIG. 8. Plot of the contact valueg12(s12) as a function of the packing

fraction h for the five-dimensional binary mixturex15
1
2, s2 /s150.75

(z1250.912). The symbols are simulation data~Ref. 20!. The lines corre-
spond to Eq.~11! ~dashed line!, Eq. ~15! ~dotted line!, and Eq.~12! ~solid
line!.
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rated by choosing an adequate functional form forG(h,z)
consistent with conditions~8!–~10!, but this does not seem t
be necessary in the range 0<z&4. Since the best globa
agreement in the range 0<z<2 is provided by the polyno-
mial function~12!, which has a structure similar to the wel
known BGHLL prescription in the case ofd53 @cf. Eq.
~14!#, we favor its use, except perhaps for very dispar
mixtures, where the rational approximation~15! is prefer-
able.

The refinements of the BGHLL expressions recently p
posed by Henderson and Chan8–11 and by Barrio and
Solana14 are not shown in Figs. 2 and 3 because they do
belong to the class of approximations satisfying the univ
sality assumption~5!. In addition, they are restricted to th
case ofbinary mixtures. Both approximations differ in prac
tice from the BGHLL only ing11(s1), where species 1 refe
to the big spheres (s1.s2). Figure 4 showsg11(s1) vs h
for the three-dimensional binary mixturex150.005, s2 /s1

5 1
5 ~which corresponds toz1153.457). The figure confirms

that the best agreement is obtained with the rational appr
mation ~15!. Henderson and Chan’s approximation, whi
incorporates the exact asymptotic behavior lng11(s1);s1 ,
gives too high values. Barrio and Solana’s expression
proves the BGHLL value, but is slightly worse than the qu
dratic approximation~12!.

Figure 5 presents a plot ofg12(s12) as a function ofh
for the three-dimensional binary mixture characterized
x150.004 15 ands2 /s15 1

5 ~which corresponds to a valu
of z1251.210) as given by different approximations. The
tional approximation given by Eq.~15! has not been included
in Fig. 5 to avoid overcrowding of the curves, but it is pra
tically indistinguishable from the BGHLL approximation i
this case. Clearly the best agreement between theory
simulation is provided by the approximations of Barrio a
Solana,14 of Henderson and Chan,11 and by our Eq.~12!,
which are all of comparable accuracy and certainly supe

FIG. 9. Plot of the contact valueg12(s12) as a function of the packing

fraction h for the five-dimensional binary mixturex15
1
2, s2 /s150.5

(z1250.687). The symbols are simulation data~Ref. 20!. The lines corre-
spond to Eq.~11! ~dashed line!, Eq. ~15! ~dotted line!, and Eq.~12! ~solid
line!.
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to the approximation proposed in Eq.~19! of the paper by
Matyushov and Ladanyi.13

Of course, the most physically relevant situations cor
spond to hard spheres (d53) and, to a lesser extent, disk
(d52). On the other hand, it seems desirable that a prop
for gi j (s i j ) be valid for any dimensionalityd. Moreover, a
number of recent papers deal with systems of h
hyperspheres.20,37–43 Figures 6–9 showg12(s12) versush
for binary mixtures ind54 andd55. The contact values o
the one-component system that we have used in the com
tations have been obtained from the EOS derived for th
systems by Luban and Michels.44 The values of the param
eterz12 are in the range 0.4,z12,1 for the cases considere
in Figs. 6–9. It is observed that in this range the quadra
approximation~12! exhibits an excellent agreement with th
simulation data.

B. Equation of state

Having examined the accuracy of the proposed con
values, we will now consider their performance in terms
the compressibility factor they lead to. In this regard, E
~12! has the advantage over Eq.~15! that, when inserted into
Eq. ~1!, one gets a closed expression for the compressib
factor, in terms of the packing fractionh and the first few
moments^sn&, n<d. This expression is meaningful eve
for polydisperse mixtures. The result is

Zm~h!5112d22
h

12h
@2~S022S11S2!1~S12S2!h#

1@Zs~h!21#@2S12S212d22~S22S1!h#,

~17!

where Zs(h)5112d21hg(s) is the compressibility factor
of the one-component system and the coefficientsSm are
given by

Sm522(d2m) ^sd21&m

^sd&m11 (
n50

d2m S d2m
n D ^sn1m&^sd2n&.

~18!

In the two-dimensional case, Eq.~17! becomes

Zm~h!5
1

12h
1

^s&2

^s2&
FZs~h!2

1

12hG ~d52!. ~19!

It is worth noticing that this EOS coincides with the on
obtained from Eq.~11! for d52. This illustrates the fact tha
two different proposals for the contact valuesgi j (s i j ) can
yield the same EOS when inserted into Eq.~1!. Let us ana-
lyze this point with more detail. Subtracting Eqs.~11! and
~12!, one has

DG~h,z!5F12h/2

12h
2~122d22h!g~s!Gz~12z!, ~20!

where DG(h,z) denotes the difference between the line
and the quadratic approximations. Thus, the compressib
factors obtained from the linear and quadratic forms
G(h,z) only differ by a term proportional to
( i , j xixjs i j

d zi j (12zi j ). It turns out that this term vanishes i
the two-dimensional case, so the linear and quadratic
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proximations yield the same EOS~19!. This fact also shows
that a rather crude approximation such as Eq.~11! may lead
to an extremely good EOS.16,17,20,30

For three-dimensional mixtures, Eq.~17! becomes

Zm~h!5
1

12h
1

^s&^s2&

^s3&
S 12h1

^s2&2

^s&^s3&
h D

3FZs~h!2
1

12h G ~d53!. ~21!

In particular, when the CS EOSZs(h)5(11h1h2

2h3)/(12h)3 is used as input, we get the following ex
tended CS EOS:

ZeCS-II~h!5ZBMCSL~h!2
h3^s2&

~12h!2^s3&2
~^s&^s3&2^s2&2!,

~22!

where the compressibility factor associated with the BMC
EOS2,3 is given in the present notation by

ZBMCSL~h!5
1

12h
1

3h^s&^s2&

~12h!2^s3&
1

h2~32h!^s2&3

~12h!3^s3&2
.

~23!

Note that Eq.~22! is different from the extended CS EO
obtained from Eq.~11!, namely16

ZeCS-I~h!5ZBMCSL~h!1
h3^s2&

~12h!3^s3&2
~^s&^s3&2^s2&2!.

~24!

Since simulation data indicate that the BMCSL EO
tends to underestimate the compressibility factor, it is ob
ous that the performance ofZeCS-I is, paradoxically, better
than that of ZeCS-II. This is explicitly shown in Fig. 10
where, for comparison, we have also included the theore
results that follow from the recent~very accurate! proposal

FIG. 10. Deviation of the compressibility factor from the BMCSL value,
a function of the packing fractionh for an equimolar three-dimensiona
binary mixture withs2 /s150.6. The open~Ref. 9! and closed~Ref. 45!
circles are simulation data. The lines are, from bottom to top at the right
the eCS-II EOS~22! ~ !, the EOS obtained from the rational approx
mation ~15! ~¯!, the eCS-I EOS~24! ~---!, and Barrio and Solana’s EOS
~¯!—Ref. 14.
L

i-

al

by Barrio and Solana14 for the EOS. So once again we fin
that better contact values do not necessarily lead to be
compressibility factors, as already seen in the tw
dimensional case. One plausible explanation for the be
performance ofZeCS-I with respect toZeCS-II might reside in
the use of the CS EOSZs(h), but we have checked that i
the Pade´ @4,3# of Sanchez46 or the very accurate EOS o
Malijevský and Veverka18 are used instead, the results do n
change. Thus the source of this effect is a fortunate comp
sation of errors in the linear approximation~11! related to the
fact that the compressibility factor involves a weighted av
age of the individual contact valuesgi j (s i j ) @cf. Eq. ~1!#.
This argument is suggested by the following observation
Fig. 11 we present a plot of the ratioG(h,z)/GBGHLL(h,z)
as a function ofz for h50.49 with G(h,z) given by Eqs.
~11! and ~12!. For completeness, also the ratios correspo
ing to the SPT~7! and the rational approximation~15! are
plotted. Properly reduced simulation results have also b
included. From this plot it is fair to conclude that the a
proximation given by Eq.~12! is globally more accurate tha
those obtained with either Eq.~11! or with GBGHLL(h,z) and
that the BGHLL contact values are better than the lin
approximation. However, the quadratic approximational-
waysunderestimates the simulation results~and therefore it
is only natural that it will always produce an underestimati
of the compressibility factor!, while both the linear approxi-
mation and the BGHLL approximation overestimate t
simulation results ifzi j <1 but underestimate them ifzi j

>1. The net result is thatZeCS-II(h) is in poorer agreemen
with the simulation results for the compressibility factor th
either ZeCS-I(h) or ZBMCSL(h), the extended CS EOS ob
tained from Eq.~11! providing the best overall agreemen
Nevertheless, an important asset ofZeCS-II, not shared by
either ZeCS-I or ZBMCSL , is that it predicts demixing. This
result provides further support to the analysis performed
Regnaut, Dyan, and Amokrane28 in which the verification of

d,

FIG. 11. Plot of the ratioG(h,z)/GBGHLL(h,z) as a function of the param-
eterz for hard spheres (d53) at a packing fractionh50.49. The symbols
are simulation data for the single fluid~circle!—Ref. 18—three binary mix-
tures ~squares!—Ref. 35—with s2 /s150.3 andx150.0625, 0.125, and

0.25, and a ternary mixture~triangles!—Ref. 36—withs2 /s15
2
3, s3 /s1

5
1
3, andx150.1, x250.2. The lines correspond to Eq.~11! ~---!, Eq. ~12!

~ !, Eq. ~15! ~¯!, and SPT~– •• –!.



e-
re
-
n
se

tt
tt

er
f
n
on
-

ha

o
d
us
ti

e
re

o

n

tie
in

ci
rd
it
rd
u

re

on

t
ix-
S

o

re
in

hi
al

nt

u-
nite
the
of
fur-
se

res
ial

, J.

.

an-

5792 J. Chem. Phys., Vol. 117, No. 12, 22 September 2002 Santos, Yuste, and López de Haro
condition ~4! is of key importance for the existence of d
mixing. We will address this issue in more detail elsewhe

For d54 andd55 ~not shown!, however, the compress
ibility factors derived from the linear approximation give
by Eq. ~11!16 turn out to be slightly less accurate than tho
obtained from the use of either Eq.~12! or Eq.~15!. Thus, for
these high dimensionalities, the expectation that a be
overall behavior of the contact values correlates with a be
performance of the associated EOS actually holds true.

IV. CONCLUSION

In summary, in this paper we have introduced a univ
sality assumption, Eq.~5!, for the contact values of the rdf o
a hard-sphere mixture with arbitrary number of compone
and arbitrary dimensionality. Three known consistency c
ditions, Eqs.~2!–~4!, allow us to fix the values of the uni
versal functionG(h,z) at z50 @cf. Eq. ~8!#, z51 @cf. Eq.
~9!#, andz52 @cf. Eq. ~10!#, the two latter in terms of the
contact value of the one-component rdf. This implies t
any reasonable three-parameter form ofG(h,z) as a function
of z can provide a very good approximate representation
gi j (s i j ) regardless of the number of components, provide
good EOS for the single fluid system is used. We have ill
trated this possibility with two specific proposals: a quadra
function, Eq. ~12!, and a rational function, Eq.~15!. In d
51, they reduce to the exact result, while ford53 they
represent an improvement over the BGHLL values, as w
as over those of their refinements, in the quantitative ag
ment with the simulation results. Ford52, 4, and 5, they
compare rather well with the~few! available simulation re-
sults. Their potential use in connection with the generation
the entire rdfgi j (r ) for three-dimensional mixtures within
the rational function approximation method is currently u
der investigation.

The relationship between the thermodynamic proper
and the contact values of the rdf in hard-core fluids is
principle so straightforward that the importance of expli
and accurate approximations for the latter can be ha
overemphasized. In one-component hard-core systems
certainly true that a more accurate contact value of the
leads directly to a better EOS. On the other hand, our res
in this paper indicate that, due to the fact that for mixtu
the EOS~or equivalently the compressibility factor! involves
a summation over species indices in which the different c
tact values are included, one does notalwaysobtain a more
accurate EOS from seemingly better approximations
gi j (s i j ). In fact, as exemplified in the case of hard-disk m
tures (d52), it is possible to obtain exactly the same EO
with two different approximations for the contact values
the rdf. Further, the poorer agreement ofZeCS-II with simula-
tion data than eitherZeCS-Ior ZBMCSL mentioned in Sec. III is
also a reflection of the above-given assertion, the reason
ing on a ‘‘fortunate’’ compensation of errors. In any event,
some specific applications~e.g., the Enskog kinetic theory! it
is only the contact values of the rdf that are required. In t
respect, it is fair to conclude that our two new propos
provide in general a reasonably accurate approximation
gi j (s i j ) ~as compared to the available simulation data! for a
hard-core mixture with an arbitrary number of compone
.
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and arbitrary dimensionality. Of course the scarcity of sim
lation results for these systems precludes a more defi
conclusion. In any case, we hope that the availability of
new ~explicit! expressions for the contact values of the rdf
hard-core mixtures in any dimensionality may serve as a
ther motivation to carry out yet more simulations of the
systems.
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