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Equation of state of a seven-dimensional hard-sphere fluid. Percus—Yevick
theory and molecular-dynamics simulations
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Following the work of Leutheuss¢Physica A127, 667 (1984], the solution to the Percus—Yevick
equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of
the equation of state for the fluid taking both the virial and the compressibility routes. An analysis
of the virial coefficients and the determination of the radius of convergence of the virial series are
carried out. Molecular-dynamics simulations of the same system are also performed and a
comparison between the simulation results for the compressibility factor and theoretical expressions
for the same quantity is presented. ZD04 American Institute of Physics.
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I. INTRODUCTION is the Boltzmann constant, is the temperature, ardis the
compressibility factor. The second virial coefficient Bs

In liquid theory there has been a long lasting interest on=29"1; ;0% whered is the dimensionalityy is the diameter
the equilibrium properties of high-dimensional hard-sphereof a sphere, and = (7/4)¥4T (1+d/2) is the volume of a
fluids, especially in the last few years® Such an interest d-dimensional sphere of unit diameter. In the second equality
has arisen from many different sources. To begin with, giverof Eq. (1) we have introduced the packing fraction
the relative simplicity of the intermolecular interactions in =pv,0® and the reduced virial coefficientsb,
these hard-core systems, they are amenable to both theoresB /(v4o%)"~t=200"D0-1B /B)~!. The radius of con-
cal and computer simulation studies. In this sense and as Vlergence of the virial serig4), pcon=liMp_..|Bn/Bn 1], is
occurs in other problems in theoretical and mathematicatlhe modulus of the singularity &(p) closest to the origin in
physics, it is an asset that one can deal with hard spheres ihe complexp plane. If such a singularity were located on
arbitrary dimensionality and exploit some of the features thathe positive real axis, then all the virial coefficieits would
these systems have in common, for instance the fact that theye positive for largen.
all exhibit a first-order freezing transition. Furthermore, and ~ The exact expression for the third virial coefficierftds
as conjectured by Frisch and Perctisn the case of fluids
high spatial dimensionality may have a parallel with limiting
high density situations, so that by increasing the dimension- Bs _ Bau(d/2+1,1/2) @
ality one may obtain at least a rough idea of any thermody- B3 B(d/2+1/2,1/2°
namic phenomenology that extends to such dimensionality.

An example of this expectation is the recent investigation of

L . : hereB(a,b)=I'(a)I'(b)/T"(a+ b) is the beta function and
the demixing problem in mixtures of hard hypersphéfes. W . . .
Computer simulation studies of hard-sphere fluids in di—BX(a’b) is the incomplete beta function. BoBy, andB; are

mensions greater than three are very scarce. To the best : ?S':'Vetﬁef'.n.'tf for f"f".rt.’"f";“ﬁ- Thehanalytlc_ ev?lugtlcl)_n t? f
our knowledge, only the four- and five-dimensional € fourth vinal coetlicient 1s much more involved. Luban

‘3 . .
simple*'® and multicomponer? fluids have been simulated. and Bararfl.bd(inveSCBexactdexpressmdns for two of.t.helt?ree
This is not surprising since the computational effort needed€Ms contributing td, and proposed a semiempirica] for-

to obtain reliable results increases significantly with the di-mUIa for theg 3roema|n|ng contribution. More recently, Clisby
mensionality. and McCoy®* showed thaB, can be evaluated exactly for

Exact information on the equation of stdEEO0S usually inz %vesn dirgensi(;)nldz aan(]j gavle the exp:ic(ijt results_eglﬁigl
comes from the virial coefficient8,, defined by =% 9, 6, U, and Lz. hey also computed numer

the fifth and sixth virial coefficients through=50. The re-

* * sults show that, whileBg remains positiveB, and Bg be-
=1+r§2 Bnpnfl:1+r§2 byn" "t (1) come negative fod=8 andd=6, respectively. This sug-

gests the possibility that, even in the three-dimensional case,
In this equationp is the pressure is the number densitkg ~ there might be negative virial coefficieriss, for sufficiently
largen.® The fact that the virial coefficients are not positive
aE| N . definite and that they may have alternate signs is of impor-
ectronic mail: mrp@cie.unam.mx . . . .

bElectronic mail: malopez@servidor.unam.mx tance in connection with the radius of convergence of the
http://mww.unex.es/fisteor/andres/. Electronic mail: andres@unex.es  Virial expansion(1), as mentioned before.
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A. The scenario for high dimensionality

The high-dimensionality limit of hard hyperspheres has

been the subject of several studids®?® By means of

asymptotic methods and heuristic arguments, Frisch and

Percus® were led to the following scenario in that limit:

(i)

term, the virial expansion is an alternating series;

Robles, Lopez de Haro, and Santos

1. Truncated virial series
The first obvious choice is the truncated virial expansion
Zi20(m)=1+byn+byn” 8

As discussed above, this simple approximation becomes
more and more accurate in the stable fluid domain as the

The fourth virial coefficient is negative. Beyond that dimensionality increases. In a way analogous to Bjit is

possible to define a truncated expansigp g from the

(i)  the w/(r;al series is convergent fob<1, wherep  ynowledge of the firsh+ 1 virial coefficients.
=27 is the scaled density per dimension. In terms
of<the paclggg-fractlon, the virial series converges forz Padé approximants
7= Tconv— ) . .
(iii) inthe density rangp<1 the second virial term domi- One can a'SQ construct Paqlppromme.m.ts of the fO_fm
nates over the remaining ones, so that Znm from the firstn+m+1 virial coefficients. For in-
p stance,
~1+B,p=1+—.
eIt Bp=1t O bbby .
(iv) Even though the virial expansion does not converge ()= b,—bsy
for p>1 (oscillatory divergence the truncated series _ 2 o1
(3) remains valid within the interval 4€p<(1 Zioz(m=[1=bzn+(by—bs) 7]~ (10
—€)po, Wheree=0(d™ 1) and
s 3. Colot —Baus approximation
~ ~ 16— 14733 — 1[5 _ [alo .
po=(1.1481" Yo~ 1478) “ 1 Je/2~ \Je/2=1.17. (4) Colot and Bau®® proposed(truncated rescaledvirial
~ ~ . . - . _pe . i I i d
(v) At the densityp=p, an infinite compressibility spin- €xPansions, where the series expansion of (3°Z(7),

odal appears, thus indicating a first-order transition t
the high-dimensional solid.

In an independent paper, Parisi and Slafim@ached

similar conclusions from a toy model based on simplified

HNC equations. They obtained that, while in the lindit
—o the EOS forp<1 is given by Eq.(3), in the interval
1<p<py=el2, one has

Z(p)=1+p3+A(p)], (5)
where
~.7d
-~ |ex(p)
A(p)= , 6
)= 52 (6)
x(p) being the solution &
2p?
|n?=|n(l+\/l—K )—V1—k“. (7)
Note that, since Ir<In(1+1— «?)— J1— «? for 0<«<1,

one has lig_..A(p)=0 for p<py. Although, strictly
speaking, Eq(7) cannot be extended {@>p,, Eq.(6) sug-
gests that ling_,..A(p) = in that density domain, in agree-

ment with the phase transition noted by Frisch and Pettus.

B. Approximate equations of state

As in two and three dimensions, one can make use of

0rather than that ofZ(%), is truncated. Let us denote by

Zp 0](77) the truncated rescaled virial expansion that makes
use of the firsh+1 virial coefficients. For example,

d)7+[bg—byd +d(d=1)/2]7*
(1-n)°

1+ (by—

[2 o]( n)=
(11

The pole of orded at the(unphysical packing fractiony=1
is suggested by the scaled patrticle theory.

4. Maeso—Solana—Amoro s—Villar (MSAV)
approximation

Maeso et al'® combined the advantages of Padp-
proximants and rescaled expansions by proposing Rade
proximants for (£ 7)9Z(7). A rescaled Padapproximant
constructed from the firgst+m+ 1 virial coefficients will be
denoted here a&¥>Y (7). Thus,

[n,m]

MSAV( ) 1

[1 1] (1 77)d
—d+[d(d+1)/2+by(by—d)—bs]y

~d—[b,—b,d+d(d—1)12]7
(12)
By constructionZ{ig\ (1) = Zyo(7)-

5. Song —Mason —Stratt approximation
Using simple arguments, Sores al1%'? proposed the

approximate schemes to represent the EOS of hard hypefellowing generalization tad dimensions of the celebrated
spheres. Several proposals have been made in the literatui@@rnahan—StarlingCS) EOS for three-dimensional hard
for the EOS based on the knowledge of the first few virialspheres?

coefficients> 121°For illustration, we review here a few of
them making use of the first three virial coefficients. The
extension to higher virial coefficients is straightforward.

13
(1—)¢ 9

Zsusdm)=1+Dbyn
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6. Luban —Michels approximation Zed m)=aZpvd 7))+ (1—a)Zpy(7), (15)

On a different vein, Luban and Michéfswrote the com-  \yherea=2/3. Given that the PY equation can be solved for
pressibility factor as odd dimensions, it is then natural to speculate about whether
Zim(m)=1+byy or not the prescriptiorfl5), with an adequate choice of the

mixing parametera, keeps being reliable fod>3, even
y 1+[bs/by,—¢(n)bs/bs] 7y though the internal inconsistency between both routes seems
1—£(5)(ba/bg) p+[ () —1](balby) 772' to increase dramatically with the dimensionatity the five-

dimensional case, one of dshowed that the choice=3/5
(14)  leads to values aZcgin excellent agreement with computer

The knowledge of the functioti(7) is equivalent to that of ~Simulations This suggested that the choice=(d+1)/2d
Z(7). However.Z(7) focuses on the high density behavior of might provide a good description fai=3. Note that, while
the EOS, since Eq14) is consistent with the exact first four EQgs.(13) and(15) coincide atd=3, they differ ford>3, so
virial coefficients, regardless of the choice §tf)). The ap- they generalize the original CS EOS along different direc-
proximation {(7)=1 is equivalent to assuming a Padp-  tions. An alternative generalization of the CS EOS was made
proximantZ, (7). Instead, Luban and Michels observed by Gonzalezet al. '® They proposed a simple ansatz for the
that the computer simulation data for=2—5 favor alinear  direct correlation functior(r), which reduced exactly to the
approximation(z) =a+b#, with coefficients obtained by PY theory ford=1 andd=3 and gave results very close to
a least-square fit to the simulation results for each dimenthe PY theory for other dimensions. Their generalized CS
sionality. EOS consisted of a weighted average between the virial and
compressibility routes obtained from their theory with a mix-
) ing parametew=2(2d—1)/5d.
7. Percus - Yevick theory

It .is noteworthy that the P'ercusTYevio{I?Y') integral C. Aim of the paper
equation can be solved analytically in odd dimensions, as
first pointed out by Freasier and Isbistand, independently, The aim of this paper is threefold. First, we present the
Leutheusset.The latter concluded that, in general, the prob-explicit solution to the PY equation in the case of a seven-
lem reduces to an algebraic equation of degte&. Follow-  dimensional hard-sphere fluid following the procedure intro-
ing his procedure, however, we find that fix= 9 this is not  duced by Leutheuss@fThis allows us to derive the EOS of
so (see the Appendixand our calculations suggest that suchthe fluid both through the virial and the compressibility
degree should rather bé®2 32 for d=3. In any case, in five routes, as well as to analyze the behavior of the virial coef-
dimensions one has to deal with a quadratic equafiamd  ficients stemming out of them. As we will see, the singularity
explicit expressions for the virial and compressibility routesclosest to the origin is again a branch point on the negative
to the EOS can be obtaind¥A simple analysis of the solu- real axis, so the radius of convergence of the PY virial series
tion for d=5, that as far as we know has not been carried outS 7con=0.0100625. We conjecture that this value might be
before, shows that the virial route incorrectly gives a negaclose to thelunknown exact radius. Moreover, a Carnahan—
tive value forBg: BEY'/B3=—2999/16=—0.00286. The Starling-type equation of state of the for(h5) with a=5/6
compressibility route yields BE¥/BS=12 233/(8< 16°) is proposed. Secondly, we provide molecular-dynamics re-
=0.001 46, while the correct value 3;6/55 0.0009429:30  sults for the compressibility factor. To the best of our knowl-
Both routes consistently predict th& is negative, with €dge, this is the first time that simulation results are pre-
subsequent coefficients alternating in sign. On the othepented for hard hyperspheres in seven dimensions. The
hand, the virial route gives values for the magnitude oftwenty densities considered range from the dilute regime
B, (n=8) increasingly larger than the compressibility route: (po’=0.1 or 7=0.0037 to our estimated freezing point
BPY"/BPYC 0.66+0.77. The alternating character of the (po’=8-9§ or»=0.072. Finally, we perform a comparison
virial series predicted by the PY equation fb+5 is due to  between different proposals for the EOS of a seven-
a branch singularity located on theegativereal axis at dimensional hard-sphere fluid with the simulation data. We
Mbranci= (9 5.3)/6=—0.056 624 3. The radius of con- Observe that the proposalsl) and(13) (which do not have
vergencen' Y ~0.056 624 3 of the PY solution fat=5 is ~ any empirical parametgr(14) (which contains two fitting
larger than the value *25 0.03125 extrapolated from the Parameters and(15) (with one fitting parametemreproduce
radius limy ... 7cony=2"Y, but is close to the estimatg.,,, fairly well the simulation data.
=0.052 made by Clisby and McCoy on the basis of Monte The paper is organized as follows. In Sec. Il we provide
Carlo evaluation of sets of Ree—Hoover diagr&fis.All the solution of the PY equation for a seven-dimensional

these estimates are sensibly smaller than the packing fractidird-sphere fluid as well as the analysis of the virial coeffi-
7¢=0.19 at which freezing occurs fat=>5512° cients arising from the derivation of the EOS using the virial

and the compressibility routes. This is followed in Sec. IIl by

a description of the molecular-dynamics simulation that was

carried out to obtain the compressibility factor of the fluid.
As is well known, the CS EOS for three-dimensional The results of the simulation are then used to assess the

hard spheres can be interpreted as a weighted average beerits of various proposals that have been made in the lit-

tween the PY virial and compressibility routes: erature for the EOS. The paper is closed in Sec. IV with

8. Generalized Carnahan —Starling approximation
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TABLE |. Values oan/Bg’1 for n=3-8, according to the virial route of the PY approximation, the com-
pressibility route of the PY approximation, the CS-type approximatidi with «=5/6, and the known exact
results(Refs. 29 and 30

n By /By " BL YBS BL¥BS BBy !

3 0.282 2265625 0.282 2265625 0.282 2265625 0.282 2265625
4 —7.499 694 8241072 2.155 081 43% 102 1.670 906 27% 10?2 9.873(4)x 1078

5 1.235022 898 10 2 5.116 807 91& 10 ° 6.322 37808610 ° 7.071(7)x10°3

6 —8.17700566610°° —1.865328126(10° % —2.91727437& 10 % —3.52(2)x10°°

7 6.553131 168102 1.384 246 676102 2.245727 4181072

8 —5.76279781&10°° —1.07878314&10°° —1.859452 25810 °

further discussion of the results and some concluding refourth virial coefficient(which actually becomes negative for

marks. d=8,26-39 while the compressibility route predicts the cor-
rect sign°® We have compute8 " and B} for values of

Il. SOLUTION OF THE PERCUS-YEVICK EQUATION n much larger than those displayed in Table I. The results

FOR A SEVEN-DIMENSIONAL HARD-SPHERE indicate that sgn B}"")=(—1)""* for 5<n<97 but sgn

FLUID (BP")=(—1)" for n=98; analogously, sgn B."9

_ PY-cy _
As mentioned in Sec. I, the solution to the PY equation=(—1)""* for 5<n<80 but sgn B;")=(—1)" for n

for hard hyperspheres withi=odd reduces to an algebraic =81. Therefore, both routes synchronize their signs for 5
equation of degree (@32 The cased=5, which yields a <n=80 and again fon=98. This peculiar behavior of the

quadratic equation, has been analyzed by severalternating character of the virial series seems to be a conse-
authorst*142%21The highest dimensionality for which the duence of the proximity between the two branch point sin-
algebraic problem certainly lends itself to an analytic solu-gularities closest to the origingpang=—0.0100625 and
tion is d=7. A sketch of the general solution and some de-7branci= —0.010886 8, both located on the negative real
tails of the particular cased=7 andd=9 are provided in axis. To confirm this interpretation, we plot in Fig. 1 the
the Appendix. It is shown there that the solution of the PYratios|by™ /by, [bi¥/biYSl, and[bf¥bi?,|. Recall that
equation for seven-dimensional hard hyperspheres is giveif€ radius of convergence of the virial series #gony

by the physical solution to the quartic equati@i9). Inthe = liMn_|by /b, 4|. Figure 1 shows that fan=<50 the ratio
Appendix it is also shown that fa=9 the resulting alge- |n/bn+1| Seems to converge from above to thpparent
braic equation is of eighth degree. radius of convergencey .y, = — 7panci=0.010 886 8. How-

A study of the solutions of Eq/A19) shows that in the ~€Ver, the true radiugcg, = — 7pranci=0.010 062 5 is reached
interval 0.446 46% 7<1 the four roots are real. On the other from below forn=100.
hand, for G<7=<0.446 469 two of the roots become complex As mentioned in Sec. I, the radius of convergence pre-
conjugates and only the other two roots remain real, thélicted by the PY approximation in the five-dimensional case
physical one being finite in the limiz—0. The explicit so- IS 7con~0.056 624 3. When going to the next odd dimen-
lution to Eq. (A19) involves the term[P,(7)Pes(7)]1¥2 sionality, the radius of convergence has shrunknﬁnv

where P,(7) = 1+ 947+ 2022+ 12034+ 50, and Pg(7)  =0.0100625. In terms of the scaled density per dimension
=1+99y— 3012 339,3_2162,4, 6955, 58156 Ag g introduced by Frisch and Perctisthe radius of convergence

consequence, the solution possesses branch points at the #ePcon~1.126 ford=5 andp¢y,~1.037 ford=7. There-

roes ofP,(7) andPg(7). The zero ofP,(7) closest to the fore, it nicely tends to converge to the expected valug,
origin is 7y anci=—0.010886 8, while that ofPg(7) is
Tpranci= — 0.010 062 5. Therefore, the radius of convergence

of the virial series for a seven-dimensional hard-sphere fluid 0.02 z
described by the PY approximation isy=|7oranc 3 0o ¢ BY-c
=0.0100625. 0.015F R o CS

Table | gives the first few values of the PY virial coef- —
ficients obtained from the virial and the compressibility E
routes. As far as we know, the exact val&ss of the virial %
coefficients of seven-dimensional hard spheres are known up
to n=6 only?®>*° They are listed in Table | as well, which 0.005 o
also gives the CS-type valueBSYBj) !, where BS® oa
= aBPY+ (1— a)BPYY with the simple choicer=5/6. Note
that the choicex=0.6 would makeB$°=B¢*, whereas the 20 40 60 80 100 120 140
choice «=0.7 would makeBS®=Bg* and B§=Bg*. How- n

ever, comparison with molecular-dynamics simulati¢sese . . .
P y FIG. 1. Plot of the ratiogh}¥%bl¥S| (diamonds, |b}/b"YY| (triangles,

Sec. Il favors «=0.8. o and |bS¥bSS,| (circles. The horizontal lines correspond to the apparent
From Table | we observe that the virial route of the PY ragius of convergence,,,~0.010 886 8 and to the true radius of conver-

approximation incorrectly yields a negative value for thegencezZ,~0.0100625.

0.01 z
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0.03 For our simulations, in order to keep the computing time
within reasonable limits and at the same time being able to
0.02 examine a wide density range, the initial configuration is
- 001 chosen to be the one obtained by placiNg-64 hyper-
Lo A ! spheres in a unitary cell of dtype lattice. The simulation
Q 0 Y AW AW AN AVAVAY cell is a hypercube of side and volumeV=L%=N/p and
) Y i the minimum image convention and periodic boundary con-
-0.01 i i o~ . I L
) : ditions in all directions have been applied, in the same way
—0.02 - i ; as in the three-dimension&@D) case®’
; E i During the simulations only binary collisions are taken
5 10 15 20 25 30 into account, while collisions between three or four particles
n are ignored. The collision time for every pair of particles is

calculated and the smallest value is obtained. All the par-
ticles are moved during this time at constant velocity. The
pair of particles that suffers a collision is treated according to
N impulsive dynamics and the velocities are changed; in this
=1 as d—o. In addition, the PY value of7ncn,  step the hard collisional virial is calculated. This allows one

_ol-dp i 7 ; ;
=2""B,lim,_..|By /By, for d=7 is consistent with es- (5 eyaluate the excess compressibility factor as
timates obtained from Table XVIII of Ref. 29. By assuming

FIG. 2. Plot of the virial coefficient®} /B ' (diamond$, BLY"/B)*
(triangles, andBSYB) ™ (circles.

that the Ree—Hoover ring diagrams dominate for higfy _ 1 E
one has 7.y <2 °B,|By/Byg~2 °0.0132/0.0143:0.014 T Noal T ij AV, (16)
PY

for d=7, which agrees with the PY valuerncy,, . o .
~0.010062 5. Clisby and McCoy's estim&teyqo,~0.052 v.vhere<v.2) is the mean-square velocitit is the smu_lated
for d=5 is also close to the PY valugl¥, ~0.056 624 3. All  time,r; is t'he relative position vector betyveen colhdm_g par-
of this leads us to conjecture that the PY solution gives a faificlesi andj, andAv; the change in velocity of the particle
estimate of the radius of convergence of the true virial serie§" collision. _ _ _ _

for high dimensionalities. Pushing this conjecture even fur- ~ The equation of state is achieved by changing the diam-
ther, we can expect the true radius of convergence to be duiero of the particles, in such a way that the reduced density
to a singularity(pole or branch pointiocated on the negative #*=po" changes, and letting the system to relax up to an
real axis, so that the virial coefficients alternate in sign be£quilibrium pressure. The errors associated with our calcula-
yond a certain order. Figure 2 shows the virial coefficientslion were computed f7oIIowmg standard methods for errors in
BP¥/B) L, BRY¥YB) !, and BSYB) ™! in the seven- €quilibrium a}Vefage%. '

dimensional case. In the spirit of the above conjecture, one AS mentioned above, before running the programdor

may speculate that the exact valuesByf/B)~* lie in be- =7, it has been previously validated for=4 and d=5,
tweenBP/B) ! andBRYYBY L, perhaps not far from the reproducing the excess compressibility factor obtained by

: - 3
interpolated valuesBSYB) ™. The reduced virial coeffi- Michels, Trappeniers, and Lubar:

c:ientan/Bg’l start decreasing in magnitude, reach a mini-B. Results
mum arounch=10, and then grow witim. The fact that the i :
PY solution in the three-dimensional case does not possess a we hal/e comput_ed the compiessmmty factor for densi-
branch point singularity, so that all the virial coefficients re-tles 0.75p"<1.90 with a stepAp™=0.1, as well as for

. : ; .
main positive, casts some doubts as to whether the true viri _1'9,5' The |5|mulat|on dlf"‘ta dopta'_;jetﬂ bﬁ c;ur hmollecular-
series fails to converge for densities close to the freezin ynamics simulations are fisted in Table Il. At the largest

density 7;=0.494. In any case, the true radius of conver-densityp” =1.95(»=0.0720 the compressibility factor pre-
gence ford=3 cannot be larger than the crystalline close-SeNnts a dramatic drop. We interpret this as an indication of

packing valuerg,—~ 72/6~0.7405, while the PY solution the freezing transition. Consequently, the density at which

has 7Y = 1. the seven-dimensional fluid of hard spheres freezes can be
conv estimated apf =< 1.95 or, equivalentlyp;=<0.072. From Fig.

IIl. MOLECULAR-DYNAMICS SIMULATIONS 5 of Ref. 26 one can observe thatyf{d) is almost a linear

A Method function of the dimensionalityl, with a slight negative cur-

vature. According to this, knowing the freezing densities
The numerical simulation was implemented by using then;(d) and #¢(d+2), one can estimate the freezing
same algorithm as described in Ref. 25, which is also basedensity 7;(d+4) as 7;(d+4)=< n?(d+2)/17f(d). Given
on the work of Michels and Trappeniérand Luban and that #;(3)=0.494 and 7;(5)=0.19, one has 7:(7)
Michels" for four- and five-dimensional hyperspheres. We <0.19/0.494=0.073, in close agreement with our estimate.
are not aware of any previous computer simulation of hardAn independent estimate based on a conjecture by Colot and
hyperspheres of a dimension higher thisn5. We have cho- Bau$ confirms again this value. These authors suggested
sen the molecular-dynamics method instead of the Montéhat the ratio of length scalé:ayf(d)/ncp(d)]l’d is practically
Carlo method because that gives us the possibility of testinqdependent ofd, so that »(d+2)=7.(d+2)[ 7:(d)/
our code by applying it tal=4 andd=5 and comparing 7(d)]“*2"9. The general expression for the close-packing
with the results of Refs. 5 and 13. fraction #¢y(d) is not known, but ford<25 the values are
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TABLE Il. Compressibility factor as a function of from the simulation data and for different approximations. The numbers in parentheses indicate the
statistical error in the last significant digit.

MSAV

7 Zgimu Zes Zpyy Zpy. Zi4g Z122 Z132 % VA Zsus Zyy
00037  1.2536@) 125223 125192 125229 125214 125214 125214 1.25233 125214 125233 125217
0.0074  1.533@) 153751 153516 153797 153687 153687 153681 1.53829 153685 153827 153725
00111  1.8646)  1.85767 184997 1.85921 1.85577 185576 1.85534 1.86008 185562 1.86003  1.85745
00148  2.210@) 221482 219691 221840 221093 221094 220930 222006 221033 221993 221565
00185  2617®) 261124 257674 261814 260499 260513 2.60047 262071 260328 2.62047 261524
00221  3.0650)  3.04946 299039 3.06128 3.04111 3.04170 3.03080 3.06467 3.03716 3.06423  3.0600
0.0258  3.5446)  3.53219 3.43890 3.55085 352298 3.52481 350243 355469 351502 355399  3.55394
0.0295  4.098F)  4.06234 392342 409012 405480 4.05948 401769 4.09372 4.04037 4.09264  4.10109
00332  4.7016)  4.64302 444519 4.68258 464133 4.65183 457911 4.68483 461713 4.68326  4.70519
0.0369  5.380l) 527757 500555 533198 528785 530924 518944 533130 524971 532910 5.36929
0.0406  6.0501) 596955 560592 6.04228 6.00015 6.04073 585164 603659 594307 603358  6.09511
00443  6.817%) 672276 624777 681775 678456 685731 656896 6.80433 670273 6.80033  6.88228
0.0480  7.6328)  7.54121 6.93269 7.66292 7.64794 7.77255 7.34490 7.63837 7.53489  7.63317  7.72727
00517  8513®) 842922 7.66233 858259 859769 8.80333 818328 854278 844645 853613  8.62220
0.0554  9.429@)  9.39134 843841 958192 964172 997083 9.08829 952186 9.44519 951348  9.55355
00591 10.49¢)  10.4324 926275 10.6664  10.7885  11.3020  10.0645  10.5801  10.5398  10.5697  10.5009
00628  11.57(B) 115577 101372  11.8417 120469  12.8317 111168  11.7224  11.7400  11.7096  11.4365
00664 12.694) 127725  11.0638 131142  13.4266  14.6056  12.2507 129537  13.0569  12.9381  12.3252
00701 13.90@)  14.0828  12.0446  14.4904  14.9374  16.6847 134722  14.2794 145029 142607  13.1265
00720  9.0394#) 147756  12.5559 152196 157454  17.8637  14.1178 149794 152786  14.9589  13.4810
not far from Blichfeldt's upper estimat® 5.(d)<2"%*(d . 7
+2)/2. Using 7¢(5)=0.19, we gety;(7)=0.076, which is ZPy0(m) — Zsws( m) = ———— (35— 35y
again consistent with our estimate. (1=7)

Table Il also gives some theoretical values: the PY pre- +2192 =793+ 7%). (17)

dictionsZpy., andZpy.., the CS-type interpolatiofil5) with
a=5/6, the truncated virial expansiaf, g, the Padeap-
proximantsZ, , and Z;3 5 [the three latter being obvious
extensions of the approximation®)—(10)], the rescaled
virial expansionZ[BfO] defined by Eq(11), the rescaled Pade

approximantZ%" defined by a natural extension of Eq.
(12), the SMS approximatior{13), and the LM proposal
(14).

Although the knowledge of the sixth virial coefficieBg
would allow one to consider the truncated sedesy;, it is
not included in Table Il because it turns out to be clearl
inferior to Z;, ;. This is a consequence of the fact tigaf
<0, so thaZ5 5<Z4,q, while for small and moderate den-
sities Zp4 g <Zsimyi- This is a strong indication that the un-
known seventh virial coefficier®; must be positive. Among
the different Padapproximants that can be constructed from
the knowledge of the first six virial coefficients, the best

This corresponds to a relative difference smaller than 0.14%
for the density range considered in the simulations.
Two of the theoretical EOS included in Table II, namely

ZcsandZ, ), have an empirical character. The propdd&)

is based on the observation that the two PY routes tend to

bracket the simulation data, as happens in the three-

dimensionat® and five-dimensionat cases. We have found

that the valuex=5/6 of the parameter is the simplest rational

number that makeZ&.g reproduce fairly well the simulation

values. In the case of the Luban—Michels EQ8) one fits
yg(n) to a linear function. Figure 3 shows the simulation val-
ues of {(). As in the five-dimensional cagd,(#) is an
increasing function ofy, while it is a decreasing function
for d=2-4. A linear fit in the interval 05p*<1.9
(0.0185=%=<0.0701 yields

agreement with the simulation data is presente@py, for 4 5
p*=1.4(%=0.0517 and byZ;  for p*=1.4(%=0.0517. It

is interesting to note that both Padpproximants have poles 2

on the negative real axi@t »=—0.079 in the case €[, ; -
and at7=—0.025 in the case df3 ), so that the extrapo- 0 o §o
lated virial coefficients have alternating signs. Paradoxically, o o 0/0}

while the rescaled expansidiﬁfo] incorporates the first three -2 e~

virial coefficients only, it exhibits a better agreement with 0 5%

simulation than those rescaled expansions that can be cor -4 /o{

structed with the first four, five, or six virial coefficients, so L -~

the latter are not included in Table II. Analogously, the best 6

performancssz/i\wong the rescaled Pagproximants corre- 0.02 0~'(])4 0.06 0.08

sponds toZ,%,

. Interestingly, the SMS proposftf. Eq.

. . _BC . . .
(13)] and the approximatiod yield practically equiva- g, 3. plot of the simulation values of the functigty) defined by Eq.
(14). The dashed line is the linear fit8).

lent results. The difference between both EOS is
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16 ] various proposals that have been made in the literature for
the compressibility factor of hard hyperspheres. From this
analysis it is clear that even simple approximations such as
Zl5 o and Zsys do a reasonably good job and that, as it
occurs in other dimensionalities, the virial and compressibil-
ity routes to the EOS in the PY approximation keep bracket-
ing the simulation data, so that a Carnahan-Starling-type
recipe of the form of Eq(15) turns out to be rather accurate.
However, the parameter seems not to follow a simple re-
] lation as the ones suggested by Gdezaet all®!’ or
0 | Santos?
0 0.02 004 0.06 We also presented the explicit solution of the PY equa-
1 tion for a hard-sphere fluid in seven dimensi¢iB). Such a
solution allowed us to carry out an analysis of the virial
FIG. 4. Compressibility factor as a function of the packing fraction. The coefficients arising both in the virial and in the compressibil-
circles r_epresent simulation data, the qashed line repre&pnts the dash— ity routes and to determine the radius of convergence of both
dotted line representpy.,, and the solid line represents the CS-type inter- _: . . L . .
polation (15) with a=5/6. virial series. The results indicate some peculiar behavior of
the virial coefficients with the virial route incorrectly predict-
ing a negative fourth virial coefficient. The radius of conver-
{(7n)=—5.81+88.2. (18  gence of the virial series is due to a singulatityanch point

. . located on the negative real axis and therefore what one has
The column labeled,y, in Table Il has been evaluated using js o aiternating series. Because of the good agreement be-

the fit (18). On the other hand, our simulation data in Fig. 3tween our value of the radius of convergence of the virial

seem to indicate a negative cu*r\iatureJO?). series and other independent estimates and the similar results
_ Table Il shows that up tp”=0.8 (=0.0299 all the  ,piaineq ford=5, it is tempting to conjecture that the PY

different theoretical results tabulated, including the simplegqtion for even higher dimensionalities should provide a
truncated virial expansiod, g, behave relatively well. For . oihar accurate estimate of the radius of convergence of the
larger densitiesZ;, ) tends to overestimate the simulation e y;iria| series and that it is the existence of singularities on
data, while the PadapproximantsZ;, ; andZj3 7 tend 10 he negative real axiéeither poles or branch pointsvhich
underestimate them. The best global agreement is presentagtermines such radius

BC L - .
by Zcs, Zum s Z[5g, @ndZsys. This is especially notewor- As a final point it is worth commenting that in this case
thy in the case of the two latter approximations, since they,, analysis was facilitated by the fact that we could com-
do not contain fitting parameters and, moreover, only the,ine hoth the analytical and the simulation results. And due
knowledge of the first three virial coefficients is exploited. {4 the common features such as the freezing transition that
This contrasts withz,y, which includes the fourth virial  5-q.core systems in different dimensionalities share, the ex-
coefficient and contains two fitting parameters. On the othepectation and the hope is that the present results shed some
hand, Zcs belongs in a different class of approximations. yore |ight on the thermodynamic properties of such systems.
Given the involved algebraic structure of the PY solution, zq tar as the high dimensionality limit is concerned, our
Zcsdoes not intend to represent a practical recipe to the EORygits provide some support to the scenario of Frisch and
of a seven-dimensional hard-sphere fluid. Instead, its role ipercys mentioned in the Introduction in the following sense.
to highlight the fact that the two PY routes keep bracketingrhe solution to the PY equation predicts an alternating virial

the simulation data, so that an interpolation between themgries Further. the values of the scaled derithat one
with a density-independent parameteis rather accurate, as gptains for the radius of convergence=(1.13 ford=5, p

graphically illustrated in Fig. 4. This gives some confidence_ 1 g4 ford=7. and the numbep=1.02 coming out of our

on the expectation that some of the analytical properties Ofe|iminary calculations fod=9) are consistent with a lim-
the PY solution(e.g., alternating character of the virial Series, jiing value of p=1 for d—=. Also, the fluid range ind

branch points located on the negative real axismay shed
light on the true behavior of the exact series.

12

=7 is reasonably well accounted for by the first three or four
virial coefficients so that it is conceivable that for infinite

dimensionality only the second virial coefficient will be the
IV. DISCUSSION dominant term.

The results of the previous sections deserve further dis-
cussion. To begin with, Fo our knovyledge this is the 1_‘|rst time A - K NOWLEDGMENTS
that a molecular dynamics simulation has been carried out on
a seven-dimensional hard-sphere fluid. The simulation strat- M.R. acknowledges the financial support of CONACyT
egy that we adopted implied a compromise between comthrough project No. 138644-E. M.L.H. acknowledges the
puter process time and density range to be explored and thespitality of Universidad Complutense de Mad(®pain),
outcome is rather encouraging. The availability of simulationwhere the final version of the paper was prepared, as well as
data for the EOS of the fluid allowed us to locate the freezinghe financial support of DGAPA-UNAM during his sabbati-
transition and also to assess the merits and limitations ofal stay in Madrid. The research of A.S. has been partially
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APPENDIX A: SOLUTION OF THE PERCUS-YEVICK
EQUATION FOR HARD HYPERSPHERES

For simplicity, in the remainder of this Appendix we set

o=1.

In the Percus—Yevick approximation, the structure factor

S(q) of a hard-sphere fluid id=2k+1 dimensions is

1
Q)= ~———, Al
T (AD

where
~ 1 .

Q(q)=1—>\f dre'd'Q(r),
0
A=(27) p=2%(2k+1)!! 7, (A2)
Q(r) having the form
k
o m+k osr<1
Q)= 2 Om(r= D 0=r=t (A3)

01

The k+1 coefficients{Q,,} are functions of the density de-
termined by the two linear equations

r=1

m Qm
(- )k=—k'2ka+xE< VM k=0,
(A4)
(—1)"=—(k—1)!2k*1Qk—1
+>\2( 1Hm— Qm k=1 (A5)
k+m+2’ '
plus thek—1 nonlinear equations
Q™M H(0) =\ (~1)™HQ™(0)]?

m—1
“A 2 (-1)"QY(0Q*™ (),

os=ms<k—2. (AB)

Here Q()(r) represents theth derivative of the function
Q(r). Fork=0 (d=1), Eqg.(A4) gives the exact solution for
hard rods. Fok=1 (d=3), Eqgs.(A4) and (A5) are suffi-

cient to find the solution of the PY equation. However, for

k=2 (d=5) one needs in addition EqA6), so that the

Robles, Lopez de Haro, and Santos

lim Q(r)=(— 1)k+127 (r2—1)%,

7—0

. " mila g (2ZM)
L'L”OQ(Z (O)=(=D)™ 2 T

(A8)
lim Q™+ (0)=0.

7—0

In general, one can expand the coefficieQts in powers of

Qu n)=n20 Q7" (A9)

whereQn, o is given by the first equation ¢A7). Of course,
the full nonlinear dependence of the coefficie@ig(») can
be obtained from the solution to the set of equatiohé)—
(AB), either analytically k<3) or numerically k=4).

Once one has determined the functiQ(r), the struc-
tural properties of the fluid are given by Eq4.1) and(A2).
In particular, the long wavelength limit of the structure factor
and the contact value of the radial distribution function are,
respectively,

S(q=0)=m, (A10)

g(1")=(=1* k! Qq. (A11)
The virial route to the EOS is given by

Z=1+29"1yg(1"), (A12)
while the compressibility route is

= kBT(ap)T=S(q=O). (A13)

Inserting the expansiofA9) into Egs.(A12) and (A13) we
get the virial coefficients along both routes:

PY-v
bn+2

22k( 1)k+ 1k| QO ,
(A14)

PY-c
bnJrl

22k(k')2 2 Qk kan m:-

n+1m

problem reduces to solving an algebraic equation which, ad- The case d=7

we will argue below, is likely to be of degree?2
—o(d-3)2

In the limit »—0, it is easy to verify that

)

—m

2
lim Q= (— 1)~
n—0

(A7)

Now we particularize to the seven-dimensional case (
=3), the unknowns bein®,,, m=0, 1, 2, 3. Since the two
nonlinear equations(A6) involve the derivativesQ(™
=Q(M(0), it is more advantageous to work with the set
{Q™Y rather than with the s€iQ,,}. The latter can be ex-
pressed in terms of the former as
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TABLE lIl. Values of the coefficient®),, ,, defined by Eq(A9), for n=0-6.

Equation of state of a seven-dimensional hard-sphere fluid
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n QO.n Ql.n Q2,n Q3,n
0 0.166 666 667 0.250 000 000 0.125 000 000 0.020 833333
1 3.010 416 667 7.888 020 833 5.812 500 000 1.333 333333
2 —5.119 791 667 —59.313 802 083 —41.072 916 667 —6.541 666 667
3 5.395 897 35% 107 4.247 567 796 10° 3.201 932 29% 10° 6.540 590 278 107
4 —2.286 456 50% 10* —2.488562 47% 10° —1.88452738%10°  —3.841568 44& 10°
5 1.172 728 50% 10° 1.635 350 29 10’ 1.241 794 603 10 2.538 798 28% 10°
6 —6.600274 174 10 —1.143524 05 10° —8.68892317410° —1.778 764 76& 10°
20 10 2 1 Equations(A4) and(A5), plus Eq.(A6) with m=0 vyield
6
0
Qo 45 25 1l Q¥
Q. 2 2| Q¥
Q| 1| | 2| A9
36 21 5 —
Qs 2 Q®¥
3 1
10 6 — —
2 6

QW= —336077Q(0)2, (Al6)
1+96Q©{1-59[3+ 1120 (3—-10
Qo= 1R {1-57[ 2Q%( 77)]}, (A17)
8(1-7)
8— 157+ 1920Q©{2— 5[ 53+280Q'¥(3—107)?— 10
Qo= 7+ 192072 — 5[ Q™ 7)"— 10071} (A18)
8(1-7)?
|
Thus, the paramete®”), Q) andQ® are given as ex- 15 5 1
plicit quadratic functions oRQ(®)=Q(0). Finally, insertion 70 35 > & 24
of Egs. (A16)—(A18) into Eq. (A6) with m=1 leads to the
quartic equation Q 224 119 27 %9 % QO
0

8— 157+ 1920Q9{2— »{88— 1357+ 1960Q” Q, o 1 Q)

X[3—475[9—109+240Q0 (1 7) Qx| =| 280 154 — 5 2 QE:

Qs Q
X (3—107(1—84Q'Y(1— =0. A19 17 1
( 7( .A.4Q ( .77)))]].}} (. ) o 160 90 22 17 1| \qw

Although an explicit expression exists for the physical root 6 6
of Eq. (A19), it is of course too cumbersome and will be 2 1
omitted here’® 3 20 5 3 2

Table 11l shows the first few coefficient9,, ,. The ex- (A20)

act values are rational numbers, but they become more and

more involved as the order increases and so they are ex- In addition, the fifth derivativeQ(®) is a linear combination
pressed in real form in Table lll. From E¢A14) we can of {Q,} and hence of the first four derivatives:

obtain the virial coefficients corresponding to the virial and

the compressibility routes. The first few values are listed inQ'® = —20(336Q'? +210Q" +60Q? + 10Q(3)+Q(4())-2 :
Table I. A2l

The nonlinear equation@6) with m=0, 1, 2 allow one to

2. The case d=9 express the odd derivatives in terms of the even ones as
We will now sketch the result for the cade=9 follow-

ing the same procedure. Fk=4, the se{Q,,} can be ex-

pressed in terms of the sgD(™} as (h22)

Qm:_%Qm{
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3
Q<3>:%Q<0>“_)\Q<0>Q<2>, (A23)

5

(5) =
Q 16

3
0°4 % QO’Q@— %Q@)Z_ AQOQ®),
(A24)

wherex=241920;. Next, insertion of Eqs(A22) and(A23)
into the linear equationéA4) and (A5) yields Q® and Q¥
asnonlinearfunctions ofQ(®). Finally, by equating the right-
hand sides of Eq§A21) and (A24) one gets a closed alge-
braic equation of eighth degree f@®. A preliminary
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