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Equation of state of a seven-dimensional hard-sphere fluid. Percus–Yevick
theory and molecular-dynamics simulations
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Following the work of Leutheusser@Physica A127, 667~1984!#, the solution to the Percus–Yevick
equation for a seven-dimensional hard-sphere fluid is explicitly found. This allows the derivation of
the equation of state for the fluid taking both the virial and the compressibility routes. An analysis
of the virial coefficients and the determination of the radius of convergence of the virial series are
carried out. Molecular-dynamics simulations of the same system are also performed and a
comparison between the simulation results for the compressibility factor and theoretical expressions
for the same quantity is presented. ©2004 American Institute of Physics.
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I. INTRODUCTION

In liquid theory there has been a long lasting interest
the equilibrium properties of high-dimensional hard-sph
fluids, especially in the last few years.1–30 Such an interes
has arisen from many different sources. To begin with, giv
the relative simplicity of the intermolecular interactions
these hard-core systems, they are amenable to both the
cal and computer simulation studies. In this sense and
occurs in other problems in theoretical and mathemat
physics, it is an asset that one can deal with hard sphere
arbitrary dimensionality and exploit some of the features t
these systems have in common, for instance the fact that
all exhibit a first-order freezing transition. Furthermore, a
as conjectured by Frisch and Percus,19 in the case of fluids
high spatial dimensionality may have a parallel with limitin
high density situations, so that by increasing the dimens
ality one may obtain at least a rough idea of any thermo
namic phenomenology that extends to such dimensiona
An example of this expectation is the recent investigation
the demixing problem in mixtures of hard hyperspheres.22

Computer simulation studies of hard-sphere fluids in
mensions greater than three are very scarce. To the be
our knowledge, only the four- and five-dimension
simple5,13 and multicomponent25 fluids have been simulated
This is not surprising since the computational effort need
to obtain reliable results increases significantly with the
mensionality.

Exact information on the equation of state~EOS! usually
comes from the virial coefficientsBn defined by31

Z[
p

rkBT
511 (

n52

`

Bnrn21511 (
n52

`

bnhn21. ~1!

In this equation,p is the pressure,r is the number density,kB
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is the Boltzmann constant,T is the temperature, andZ is the
compressibility factor. The second virial coefficient isB2

52d21vdsd, whered is the dimensionality,s is the diameter
of a sphere, andvd5(p/4)d/2/G(11d/2) is the volume of a
d-dimensional sphere of unit diameter. In the second equa
of Eq. ~1! we have introduced the packing fractionh
[rvdsd and the reduced virial coefficientsbn

[Bn /(vdsd)n2152(d21)(n21)Bn /B2
n21. The radius of con-

vergence of the virial series~1!, rconv5 limn→`uBn /Bn11u, is
the modulus of the singularity ofZ(r) closest to the origin in
the complexr plane. If such a singularity were located o
the positive real axis, then all the virial coefficientsBn would
be positive for largen.

The exact expression for the third virial coefficient is2,9

B3

B2
2

52
B3/4~d/211,1/2!

B~d/211/2,1/2!
, ~2!

whereB(a,b)5G(a)G(b)/G(a1b) is the beta function and
Bx(a,b) is the incomplete beta function. BothB2 andB3 are
positive definite for arbitraryd. The analytic evaluation of
the fourth virial coefficient is much more involved. Luba
and Baram2,3 derived exact expressions for two of the thr
terms contributing toB4 and proposed a semiempirical fo
mula for the remaining contribution. More recently, Clisb
and McCoy28,30 showed thatB4 can be evaluated exactly fo
any evendimensiond and gave the explicit results ford
54, 6, 8, 10, and 12. They also computed numerically29,30

the fifth and sixth virial coefficients throughd550. The re-
sults show that, whileB5 remains positive,B4 and B6 be-
come negative ford>8 and d>6, respectively. This sug
gests the possibility that, even in the three-dimensional c
there might be negative virial coefficientsBn for sufficiently
largen.32 The fact that the virial coefficients are not positiv
definite and that they may have alternate signs is of imp
tance in connection with the radius of convergence of
virial expansion~1!, as mentioned before.
3 © 2004 American Institute of Physics
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A. The scenario for high dimensionality

The high-dimensionality limit of hard hyperspheres h
been the subject of several studies.6,7,19,23 By means of
asymptotic methods and heuristic arguments, Frisch
Percus19 were led to the following scenario in that limit:

~i! The fourth virial coefficient is negative. Beyond th
term, the virial expansion is an alternating series;

~ii ! the virial series is convergent forr̂,1, where r̂
[2h1/d is the scaled density per dimension. In term
of the packing fraction, the virial series converges
h,hconv522d;

~iii ! in the density ranger̂,1 the second virial term domi
nates over the remaining ones, so that

Z'11B2r511
r̂d

2
. ~3!

~iv! Even though the virial expansion does not conve
for r̂.1 ~oscillatory divergence!, the truncated serie
~3! remains valid within the interval 1, r̂,(1
2e) r̂0 , wheree5O(d21) and

r̂05~1.148d21/6e21.473d1/3
!21/dAe/2;Ae/2.1.17. ~4!

~v! At the densityr̂5 r̂0 an infinite compressibility spin-
odal appears, thus indicating a first-order transition
the high-dimensional solid.

In an independent paper, Parisi and Slanina23 reached
similar conclusions from a toy model based on simplifi
HNC equations. They obtained that, while in the limitd
→` the EOS forr̂,1 is given by Eq.~3!, in the interval
1, r̂, r̂05Ae/2, one has

Z~ r̂ !511 r̂d@ 1
21D~r̂!#, ~5!

where

D~r̂!5Fek~r̂ !

2r̂2 G d

, ~6!

k( r̂) being the solution to33

ln
2r̂2

e
5 ln~11A12k2!2A12k2. ~7!

Note that, since lnk,ln(11A12k2)2A12k2 for 0,k,1,
one has limd→`D( r̂)50 for r̂, r̂0 . Although, strictly
speaking, Eq.~7! cannot be extended tor̂. r̂0 , Eq. ~6! sug-
gests that limd→`D( r̂)5` in that density domain, in agree
ment with the phase transition noted by Frisch and Percu34

B. Approximate equations of state

As in two and three dimensions, one can make use
approximate schemes to represent the EOS of hard hy
spheres. Several proposals have been made in the liter
for the EOS based on the knowledge of the first few vir
coefficients.9–12,15 For illustration, we review here a few o
them making use of the first three virial coefficients. T
extension to higher virial coefficients is straightforward.
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1. Truncated virial series

The first obvious choice is the truncated virial expans

Z@2,0#~h!511b2h1b3h2. ~8!

As discussed above, this simple approximation becom
more and more accurate in the stable fluid domain as
dimensionality increases. In a way analogous to Eq.~8! it is
possible to define a truncated expansionZ@n,0# from the
knowledge of the firstn11 virial coefficients.

2. Padé approximants

One can also construct Pade´ approximants of the form
Z@n,m# from the first n1m11 virial coefficients. For in-
stance,

Z@1,1#~h!5
b21~b2

22b3!h

b22b3h
, ~9!

Z@0,2#~h!5@12b2h1~b2
22b3!h2#21. ~10!

3. Colot –Baus approximation

Colot and Baus8,9 proposed~truncated! rescaledvirial
expansions, where the series expansion of (12h)dZ(h),
rather than that ofZ(h), is truncated. Let us denote b
Z@n,0#

BC (h) the truncated rescaled virial expansion that ma
use of the firstn11 virial coefficients. For example,

Z@2,0#
BC ~h!5

11~b22d!h1@b32b2d1d~d21!/2#h2

~12h!d
.

~11!

The pole of orderd at the~unphysical! packing fractionh51
is suggested by the scaled particle theory.

4. Maeso –Solana –Amoró s–Villar (MSAV)
approximation

Maeso et al.15 combined the advantages of Pade´ ap-
proximants and rescaled expansions by proposing Pade´ ap-
proximants for (12h)dZ(h). A rescaled Pade´ approximant
constructed from the firstn1m11 virial coefficients will be
denoted here asZ@n,m#

MSAV(h). Thus,

Z@1,1#
MSAV~h!5

1

~12h!d

3
b22d1@d~d11!/21b2~b22d!2b3#h

b22d2@b32b2d1d~d21!/2#h
.

~12!

By construction,Z@n,0#
MSAV(h)5Z@n,0#

BC (h).

5. Song –Mason –Stratt approximation

Using simple arguments, Songet al.10,12 proposed the
following generalization tod dimensions of the celebrate
Carnahan–Starling~CS! EOS for three-dimensional har
spheres:35

ZSMS~h!511b2h
11~b3 /b22d!h

~12h!d
. ~13!
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6. Luban –Michels approximation

On a different vein, Luban and Michels13 wrote the com-
pressibility factor as

ZLM~h!511b2h

3
11@b3 /b22z~h!b4 /b3#h

12z~h!~b4 /b3!h1@z~h!21#~b4 /b2!h2
.

~14!

The knowledge of the functionz~h! is equivalent to that of
Z(h). However,z~h! focuses on the high density behavior
the EOS, since Eq.~14! is consistent with the exact first fou
virial coefficients, regardless of the choice ofz~h!. The ap-
proximation z~h!51 is equivalent to assuming a Pade´ ap-
proximant Z@2,1#(h). Instead, Luban and Michels observe
that the computer simulation data ford52 – 5 favor alinear
approximationz(h)5a1bh, with coefficients obtained by
a least-square fit to the simulation results for each dim
sionality.

7. Percus –Yevick theory

It is noteworthy that the Percus–Yevick~PY! integral
equation can be solved analytically in odd dimensions,
first pointed out by Freasier and Isbister1 and, independently
Leutheusser.4 The latter concluded that, in general, the pro
lem reduces to an algebraic equation of degreed23. Follow-
ing his procedure, however, we find that ford>9 this is not
so ~see the Appendix! and our calculations suggest that su
degree should rather be 2(d23)/2 for d>3. In any case, in five
dimensions one has to deal with a quadratic equation1,4 and
explicit expressions for the virial and compressibility rout
to the EOS can be obtained.20 A simple analysis of the solu
tion for d55, that as far as we know has not been carried
before, shows that the virial route incorrectly gives a ne
tive value for B6 : B6

PY-v/B2
5522999/165.20.002 86. The

compressibility route yields B6
PY-c/B2

5512 233/(83165)
.0.001 46, while the correct value isB6 /B2

5.0.000 94.29,30

Both routes consistently predict thatB8 is negative, with
subsequent coefficients alternating in sign. On the ot
hand, the virial route gives values for the magnitude
Bn (n>8) increasingly larger than the compressibility rou
Bn

PY-v/Bn
PY-c'0.6610.77n. The alternating character of th

virial series predicted by the PY equation ford55 is due to
a branch singularity located on thenegative real axis at
hbranch52(925A3)/6.20.056 624 3. The radius of con
vergencehconv

PY .0.056 624 3 of the PY solution ford55 is
larger than the value 22550.031 25 extrapolated from th
radius limd→`hconv522d, but is close to the estimatehconv

.0.052 made by Clisby and McCoy on the basis of Mon
Carlo evaluation of sets of Ree–Hoover diagrams.29,30 All
these estimates are sensibly smaller than the packing fra
h f50.19 at which freezing occurs ford55.5,13,26

8. Generalized Carnahan –Starling approximation

As is well known, the CS EOS for three-dimension
hard spheres can be interpreted as a weighted averag
tween the PY virial and compressibility routes:
-
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ZCS~h!5aZPY-c~h!1~12a!ZPY-v~h!, ~15!

wherea52/3. Given that the PY equation can be solved
odd dimensions, it is then natural to speculate about whe
or not the prescription~15!, with an adequate choice of th
mixing parametera, keeps being reliable ford.3, even
though the internal inconsistency between both routes se
to increase dramatically with the dimensionality.1 In the five-
dimensional case, one of us21 showed that the choicea53/5
leads to values ofZCS in excellent agreement with compute
simulations.5 This suggested that the choicea5(d11)/2d
might provide a good description ford>3. Note that, while
Eqs.~13! and~15! coincide atd53, they differ ford.3, so
they generalize the original CS EOS along different dire
tions. An alternative generalization of the CS EOS was m
by Gonzalezet al.16 They proposed a simple ansatz for th
direct correlation functionc(r ), which reduced exactly to the
PY theory ford51 andd53 and gave results very close t
the PY theory for other dimensions. Their generalized
EOS consisted of a weighted average between the virial
compressibility routes obtained from their theory with a m
ing parametera52(2d21)/5d.

C. Aim of the paper

The aim of this paper is threefold. First, we present
explicit solution to the PY equation in the case of a sev
dimensional hard-sphere fluid following the procedure int
duced by Leutheusser.4 This allows us to derive the EOS o
the fluid both through the virial and the compressibili
routes, as well as to analyze the behavior of the virial co
ficients stemming out of them. As we will see, the singular
closest to the origin is again a branch point on the nega
real axis, so the radius of convergence of the PY virial se
is hconv.0.010 062 5. We conjecture that this value might
close to the~unknown! exact radius. Moreover, a Carnahan
Starling-type equation of state of the form~15! with a55/6
is proposed. Secondly, we provide molecular-dynamics
sults for the compressibility factor. To the best of our know
edge, this is the first time that simulation results are p
sented for hard hyperspheres in seven dimensions.
twenty densities considered range from the dilute regi
(rs750.1 or h50.0037! to our estimated freezing poin
(rs7.0.95 orh.0.072!. Finally, we perform a comparison
between different proposals for the EOS of a sev
dimensional hard-sphere fluid with the simulation data.
observe that the proposals~11! and ~13! ~which do not have
any empirical parameter!, ~14! ~which contains two fitting
parameters!, and~15! ~with one fitting parameter! reproduce
fairly well the simulation data.

The paper is organized as follows. In Sec. II we provi
the solution of the PY equation for a seven-dimensio
hard-sphere fluid as well as the analysis of the virial coe
cients arising from the derivation of the EOS using the vir
and the compressibility routes. This is followed in Sec. III
a description of the molecular-dynamics simulation that w
carried out to obtain the compressibility factor of the flui
The results of the simulation are then used to assess
merits of various proposals that have been made in the
erature for the EOS. The paper is closed in Sec. IV w
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TABLE I. Values of Bn /B2
n21 for n53 – 8, according to the virial route of the PY approximation, the co

pressibility route of the PY approximation, the CS-type approximation~15! with a55/6, and the known exac
results~Refs. 29 and 30!.

n Bn
PY-v/B2

n21 Bn
PY-c/B2

n21 Bn
CS/B2

n21 Bn
ex/B2

n21

3 0.282 226 562 5 0.282 226 562 5 0.282 226 562 5 0.282 226 56
4 27.499 694 82431023 2.155 081 43131022 1.670 906 27931022 9.873(4)31023

5 1.235 022 89331022 5.116 807 91831023 6.322 378 08631023 7.071(7)31023

6 28.177 005 66631023 21.865 328 12031023 22.917 274 37831023 23.52(2)31023

7 6.553 131 16031023 1.384 246 67031023 2.245 727 41831023

8 25.762 797 81631023 21.078 783 14631023 21.859 452 25831023
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further discussion of the results and some concluding
marks.

II. SOLUTION OF THE PERCUS–YEVICK EQUATION
FOR A SEVEN-DIMENSIONAL HARD-SPHERE
FLUID

As mentioned in Sec. I, the solution to the PY equat
for hard hyperspheres withd5odd reduces to an algebra
equation of degree 2(d23)/2. The cased55, which yields a
quadratic equation, has been analyzed by sev
authors.1,4,14,20,21The highest dimensionality for which th
algebraic problem certainly lends itself to an analytic so
tion is d57. A sketch of the general solution and some d
tails of the particular casesd57 andd59 are provided in
the Appendix. It is shown there that the solution of the P
equation for seven-dimensional hard hyperspheres is g
by the physical solution to the quartic equation~A19!. In the
Appendix it is also shown that ford59 the resulting alge-
braic equation is of eighth degree.

A study of the solutions of Eq.~A19! shows that in the
interval 0.446 469&h,1 the four roots are real. On the oth
hand, for 0<h&0.446 469 two of the roots become compl
conjugates and only the other two roots remain real,
physical one being finite in the limith→0. The explicit so-
lution to Eq. ~A19! involves the term@P4(h)P6(h)#1/2,
where P4(h)51194h1202h21 1360

3 h3150h4 and P6(h)
51199h2 307

8 h22 339
4 h32 2762

3 h41 695
2 h51 5575

108 h6. As a
consequence, the solution possesses branch points at th
roes ofP4(h) andP6(h). The zero ofP4(h) closest to the
origin is hbranch8 .20.010 886 8, while that ofP6(h) is
hbranch.20.010 062 5. Therefore, the radius of convergen
of the virial series for a seven-dimensional hard-sphere fl
described by the PY approximation ishconv

PY 5uhbranchu
.0.010 062 5.

Table I gives the first few values of the PY virial coe
ficients obtained from the virial and the compressibil
routes. As far as we know, the exact valuesBn

ex of the virial
coefficients of seven-dimensional hard spheres are know
to n56 only.29,30 They are listed in Table I as well, whic
also gives the CS-type valuesBn

CS/B2
n21, where Bn

CS

5aBn
PY-c1(12a)Bn

PY-v with the simple choicea55/6. Note
that the choicea.0.6 would makeB4

CS.B4
ex, whereas the

choicea.0.7 would makeB5
CS.B5

ex and B6
CS.B6

ex. How-
ever, comparison with molecular-dynamics simulations~see
Sec. III! favorsa.0.8.

From Table I we observe that the virial route of the P
approximation incorrectly yields a negative value for t
-

al

-
-

en

e

ze-

e
id

up

fourth virial coefficient~which actually becomes negative fo
d>8,28–30! while the compressibility route predicts the co
rect sign.36 We have computedBn

PY-v andBn
PY-c for values of

n much larger than those displayed in Table I. The resu
indicate that sgn (Bn

PY-v)5(21)n11 for 5<n<97 but sgn
(Bn

PY-v)5(21)n for n>98; analogously, sgn (Bn
PY-c)

5(21)n11 for 5<n<80 but sgn (Bn
PY-c)5(21)n for n

>81. Therefore, both routes synchronize their signs fo
<n<80 and again forn>98. This peculiar behavior of the
alternating character of the virial series seems to be a co
quence of the proximity between the two branch point s
gularities closest to the origin,hbranch.20.010 062 5 and
hbranch8 .20.010 886 8, both located on the negative re
axis. To confirm this interpretation, we plot in Fig. 1 th
ratiosubn

PY-v/bn11
PY-vu, ubn

PY-c/bn11
PY-cu, andubn

CS/bn11
CS u. Recall that

the radius of convergence of the virial series ishconv

5 limn→`ubn /bn11u. Figure 1 shows that forn&50 the ratio
ubn /bn11u seems to converge from above to theapparent
radius of convergencehconv8 52hbranch8 .0.010 886 8. How-
ever, the true radiushconv

PY 52hbranch.0.010 062 5 is reached
from below forn*100.

As mentioned in Sec. I, the radius of convergence p
dicted by the PY approximation in the five-dimensional ca
is hconv

PY .0.056 624 3. When going to the next odd dime
sionality, the radius of convergence has shrunk tohconv

PY

.0.010 062 5. In terms of the scaled density per dimens
introduced by Frisch and Percus,19 the radius of convergenc
is r̂conv

PY .1.126 ford55 and r̂conv
PY .1.037 ford57. There-

fore, it nicely tends to converge to the expected valuer̂conv

FIG. 1. Plot of the ratiosubn
PY-c/bn11

PY-cu ~diamonds!, ubn
PY-v/bn11

PY-vu ~triangles!,
and ubn

CS/bn11
CS u ~circles!. The horizontal lines correspond to the appare

radius of convergencehconv.0.010 886 8 and to the true radius of conve
gencehconv

PY .0.010 062 5.
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51 as d→`. In addition, the PY value ofhconv

5212dB2 limn→`uBn /Bn11u for d57 is consistent with es
timates obtained from Table XVIII of Ref. 29. By assumin
that the Ree–Hoover ring diagrams dominate for highd,29

one hashconv,226B2uB9 /B10u'2260.0132/0.0143.0.014
for d57, which agrees with the PY valuehconv

PY

.0.010 062 5. Clisby and McCoy’s estimate29 hconv.0.052
for d55 is also close to the PY valuehconv

PY .0.056 624 3. All
of this leads us to conjecture that the PY solution gives a
estimate of the radius of convergence of the true virial se
for high dimensionalities. Pushing this conjecture even f
ther, we can expect the true radius of convergence to be
to a singularity~pole or branch point! located on the negative
real axis, so that the virial coefficients alternate in sign
yond a certain order. Figure 2 shows the virial coefficie
Bn

PY-v/B2
n21, Bn

PY-c/B2
n21, and Bn

CS/B2
n21 in the seven-

dimensional case. In the spirit of the above conjecture,
may speculate that the exact values ofBn /B2

n21 lie in be-
tweenBn

PY-v/B2
n21 andBn

PY-c/B2
n21, perhaps not far from the

interpolated valuesBn
CS/B2

n21. The reduced virial coeffi-
cientsBn /B2

n21 start decreasing in magnitude, reach a mi
mum aroundn510, and then grow withn. The fact that the
PY solution in the three-dimensional case does not posse
branch point singularity, so that all the virial coefficients r
main positive, casts some doubts as to whether the true v
series fails to converge for densities close to the freez
density h f.0.494. In any case, the true radius of conv
gence ford53 cannot be larger than the crystalline clos
packing valuehcp5pA2/6.0.7405, while the PY solution
hashconv

PY 51.

III. MOLECULAR-DYNAMICS SIMULATIONS

A. Method

The numerical simulation was implemented by using
same algorithm as described in Ref. 25, which is also ba
on the work of Michels and Trappeniers5 and Luban and
Michels13 for four- and five-dimensional hyperspheres. W
are not aware of any previous computer simulation of h
hyperspheres of a dimension higher thand55. We have cho-
sen the molecular-dynamics method instead of the Mo
Carlo method because that gives us the possibility of tes
our code by applying it tod54 and d55 and comparing
with the results of Refs. 5 and 13.

FIG. 2. Plot of the virial coefficientsBn
PY-c/B2

n21 ~diamonds!, Bn
PY-v/B2

n21

~triangles!, andBn
CS/B2

n21 ~circles!.
ir
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For our simulations, in order to keep the computing tim
within reasonable limits and at the same time being able
examine a wide density range, the initial configuration
chosen to be the one obtained by placingN564 hyper-
spheres in a unitary cell of ad-type lattice. The simulation
cell is a hypercube of sideL and volumeV5Ld5N/r and
the minimum image convention and periodic boundary c
ditions in all directions have been applied, in the same w
as in the three-dimensional~3D! case.37

During the simulations only binary collisions are take
into account, while collisions between three or four partic
are ignored. The collision time for every pair of particles
calculated and the smallest value is obtained. All the p
ticles are moved during this time at constant velocity. T
pair of particles that suffers a collision is treated according
impulsive dynamics and the velocities are changed; in
step the hard collisional virial is calculated. This allows o
to evaluate the excess compressibility factor as

Z2152
1

N^v2&Dt
(
i j

r i j •Dvi , ~16!

where^v2& is the mean-square velocity,Dt is the simulated
time, r i j is the relative position vector between colliding pa
ticles i and j, andDvi the change in velocity of the particlei
on collision.

The equation of state is achieved by changing the dia
eters of the particles, in such a way that the reduced den
r* 5rsd changes, and letting the system to relax up to
equilibrium pressure. The errors associated with our calc
tion were computed following standard methods for errors
equilibrium averages.37

As mentioned above, before running the program fod
57, it has been previously validated ford54 and d55,
reproducing the excess compressibility factor obtained
Michels, Trappeniers, and Luban.5,13

B. Results

We have computed the compressibility factor for den
ties 0.1<r*<1.90 with a stepDr*50.1, as well as for
r*51.95. The simulation data obtained by our molecul
dynamics simulations are listed in Table II. At the large
densityr*51.95 ~h50.0720! the compressibility factor pre
sents a dramatic drop. We interpret this as an indication
the freezing transition. Consequently, the density at wh
the seven-dimensional fluid of hard spheres freezes can
estimated asr f* &1.95 or, equivalently,h f&0.072. From Fig.
5 of Ref. 26 one can observe that lnhf(d) is almost a linear
function of the dimensionalityd, with a slight negative cur-
vature. According to this, knowing the freezing densiti
h f(d) and h f(d12), one can estimate the freezin
density h f(d14) as h f(d14)&h f

2(d12)/h f(d). Given
that h f(3).0.494 and h f(5).0.19, one has h f(7)
&0.192/0.494.0.073, in close agreement with our estima
An independent estimate based on a conjecture by Colot
Baus8 confirms again this value. These authors sugges
that the ratio of length scales@h f(d)/hcp(d)#1/d is practically
independent ofd, so that h f(d12).hcp(d12)@h f(d)/
hcp(d)# (d12)/d. The general expression for the close-packi
fraction hcp(d) is not known, but ford,25 the values are
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TABLE II. Compressibility factor as a function ofh from the simulation data and for different approximations. The numbers in parentheses indica
statistical error in the last significant digit.

h Zsimul ZCS ZPY-v ZPY-c Z@4,0# Z@2,2# Z@3,2# Z@2,0#
BC Z@2,2#

MSAV ZSMS ZLM

0.0037 1.253 66~2! 1.252 23 1.251 92 1.252 29 1.252 14 1.252 14 1.252 14 1.252 33 1.252 14 1.252 33 1.2
0.0074 1.5337~1! 1.537 51 1.535 16 1.537 97 1.536 87 1.536 87 1.536 81 1.538 29 1.536 85 1.538 27 1.5
0.0111 1.8646~3! 1.857 67 1.849 97 1.859 21 1.855 77 1.855 76 1.855 34 1.860 08 1.855 62 1.860 03 1.8
0.0148 2.2103~3! 2.214 82 2.196 91 2.218 40 2.210 93 2.210 94 2.209 30 2.220 06 2.210 33 2.219 93 2.2
0.0185 2.6174~2! 2.611 24 2.576 74 2.618 14 2.604 99 2.605 13 2.600 47 2.620 71 2.603 28 2.620 47 2.6
0.0221 3.0650~4! 3.049 46 2.990 39 3.061 28 3.041 11 3.041 70 3.030 80 3.064 67 3.037 16 3.064 23 3.0
0.0258 3.5449~5! 3.532 19 3.438 90 3.550 85 3.522 98 3.524 81 3.502 43 3.554 69 3.515 02 3.553 99 3.5
0.0295 4.0989~7! 4.062 34 3.923 42 4.090 12 4.054 80 4.059 48 4.017 69 4.093 72 4.040 37 4.092 64 4.1
0.0332 4.7013~5! 4.643 02 4.445 19 4.682 58 4.641 33 4.651 83 4.579 11 4.684 83 4.617 13 4.683 26 4.7
0.0369 5.389~1! 5.277 57 5.005 55 5.331 98 5.287 85 5.309 24 5.189 44 5.331 30 5.249 71 5.329 10 5.3
0.0406 6.051~1! 5.969 55 5.605 92 6.042 28 6.000 15 6.040 73 5.851 64 6.036 59 5.943 07 6.033 58 6.0
0.0443 6.8179~6! 6.722 76 6.247 77 6.817 75 6.784 56 6.857 31 6.568 96 6.804 33 6.702 73 6.800 33 6.8
0.0480 7.6325~1! 7.541 21 6.932 69 7.662 92 7.647 94 7.772 55 7.344 90 7.638 37 7.534 89 7.633 17 7.7
0.0517 8.5133~2! 8.429 22 7.662 33 8.582 59 8.597 69 8.803 33 8.183 28 8.542 78 8.446 45 8.536 13 8.6
0.0554 9.4294~3! 9.391 34 8.438 41 9.581 92 9.641 72 9.970 83 9.088 29 9.521 86 9.445 19 9.513 48 9.5
0.0591 10.492~1! 10.4324 9.262 75 10.6664 10.7885 11.3020 10.0645 10.5801 10.5398 10.5697 10.5
0.0628 11.570~3! 11.5577 10.1372 11.8417 12.0469 12.8317 11.1168 11.7224 11.7400 11.7096 11.4
0.0664 12.694~1! 12.7725 11.0638 13.1142 13.4266 14.6056 12.2507 12.9537 13.0569 12.9381 12.3
0.0701 13.907~3! 14.0828 12.0446 14.4904 14.9374 16.6847 13.4722 14.2794 14.5029 14.2607 13.1
0.0720 9.039 44~6! 14.7756 12.5559 15.2196 15.7454 17.8637 14.1178 14.9794 15.2786 14.9589 13.4
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not far from Blichfeldt’s upper estimate26 hcp(d)<22d/2(d
12)/2. Usingh f(5).0.19, we geth f(7).0.076, which is
again consistent with our estimate.

Table II also gives some theoretical values: the PY p
dictionsZPY-v andZPY-c, the CS-type interpolation~15! with
a55/6, the truncated virial expansionZ@4,0# , the Pade´ ap-
proximantsZ@2,2# and Z@3,2# @the three latter being obviou
extensions of the approximations~8!–~10!#, the rescaled
virial expansionZ[2,0]

BC defined by Eq.~11!, the rescaled Pad´

approximantZ[2,2]
MSAV defined by a natural extension of E

~12!, the SMS approximation~13!, and the LM proposal
~14!.

Although the knowledge of the sixth virial coefficientB6

would allow one to consider the truncated seriesZ@5,0# , it is
not included in Table II because it turns out to be clea
inferior to Z@4,0# . This is a consequence of the fact thatB6

,0, so thatZ@5,0#,Z@4,0# , while for small and moderate den
sities Z@4,0#,Zsimul. This is a strong indication that the un
known seventh virial coefficientB7 must be positive. Among
the different Pade´ approximants that can be constructed fro
the knowledge of the first six virial coefficients, the be
agreement with the simulation data is presented byZ@2,2# for
r*&1.4 ~h&0.0517! and byZ@3,2# for r**1.4 ~h*0.0517!. It
is interesting to note that both Pade´ approximants have pole
on the negative real axis~at h.20.079 in the case ofZ@2,2#

and ath.20.025 in the case ofZ@3,2#), so that the extrapo
lated virial coefficients have alternating signs. Paradoxica
while the rescaled expansionZ@2,0#

BC incorporates the first thre
virial coefficients only, it exhibits a better agreement w
simulation than those rescaled expansions that can be
structed with the first four, five, or six virial coefficients, s
the latter are not included in Table II. Analogously, the b
performance among the rescaled Pade´ approximants corre-
sponds toZ@2,2#

MSAV . Interestingly, the SMS proposal@cf. Eq.
~13!# and the approximationZ@2,0#

BC yield practically equiva-
lent results. The difference between both EOS is
-

t

y,

n-

t

Z@2,0#
BC ~h!2ZSMS~h!5

h3

~12h!7
~35235h

121h227h31h4!. ~17!

This corresponds to a relative difference smaller than 0.1
for the density range considered in the simulations.

Two of the theoretical EOS included in Table II, name
ZCS andZLM , have an empirical character. The proposal~15!
is based on the observation that the two PY routes ten
bracket the simulation data, as happens in the thr
dimensional35 and five-dimensional21 cases. We have found
that the valuea55/6 of the parameter is the simplest ration
number that makesZCS reproduce fairly well the simulation
values. In the case of the Luban–Michels EOS~14! one fits
z~h! to a linear function. Figure 3 shows the simulation va
ues of z~h!. As in the five-dimensional case,13 z~h! is an
increasing function ofh, while it is a decreasing function
for d52 – 4. A linear fit in the interval 0.5<r*<1.9
~0.0185<h<0.0701! yields

FIG. 3. Plot of the simulation values of the functionz~h! defined by Eq.
~14!. The dashed line is the linear fit~18!.
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z~h!525.81188.2h. ~18!

The column labeledZLM in Table II has been evaluated usin
the fit ~18!. On the other hand, our simulation data in Fig.
seem to indicate a negative curvature ofz~h!.

Table II shows that up tor*50.8 ~h50.0295! all the
different theoretical results tabulated, including the sim
truncated virial expansionZ@4,0# , behave relatively well. For
larger densities,Z@4,0# tends to overestimate the simulatio
data, while the Pade´ approximantsZ@2,2# and Z@3,2# tend to
underestimate them. The best global agreement is prese
by ZCS, ZLM , Z@2,0#

BC , andZSMS. This is especially notewor
thy in the case of the two latter approximations, since th
do not contain fitting parameters and, moreover, only
knowledge of the first three virial coefficients is exploite
This contrasts withZLM , which includes the fourth virial
coefficient and contains two fitting parameters. On the ot
hand, ZCS belongs in a different class of approximation
Given the involved algebraic structure of the PY solutio
ZCS does not intend to represent a practical recipe to the E
of a seven-dimensional hard-sphere fluid. Instead, its rol
to highlight the fact that the two PY routes keep bracket
the simulation data, so that an interpolation between th
with a density-independent parametera is rather accurate, a
graphically illustrated in Fig. 4. This gives some confiden
on the expectation that some of the analytical properties
the PY solution~e.g., alternating character of the virial serie
branch points located on the negative real axis, ...! may shed
light on the true behavior of the exact series.

IV. DISCUSSION

The results of the previous sections deserve further
cussion. To begin with, to our knowledge this is the first tim
that a molecular dynamics simulation has been carried ou
a seven-dimensional hard-sphere fluid. The simulation s
egy that we adopted implied a compromise between c
puter process time and density range to be explored and
outcome is rather encouraging. The availability of simulat
data for the EOS of the fluid allowed us to locate the freez
transition and also to assess the merits and limitations

FIG. 4. Compressibility factor as a function of the packing fraction. T
circles represent simulation data, the dashed line representsZPY-c , the dash–
dotted line representsZPY-v , and the solid line represents the CS-type int
polation ~15! with a55/6.
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various proposals that have been made in the literature
the compressibility factor of hard hyperspheres. From t
analysis it is clear that even simple approximations such
Z@2,0#

BC and ZSMS do a reasonably good job and that, as
occurs in other dimensionalities, the virial and compressi
ity routes to the EOS in the PY approximation keep brack
ing the simulation data, so that a Carnahan–Starling-t
recipe of the form of Eq.~15! turns out to be rather accurate
However, the parametera seems not to follow a simple re
lation as the ones suggested by Gonza´lez et al.16,17 or
Santos.21

We also presented the explicit solution of the PY equ
tion for a hard-sphere fluid in seven dimensions~7D!. Such a
solution allowed us to carry out an analysis of the vir
coefficients arising both in the virial and in the compressib
ity routes and to determine the radius of convergence of b
virial series. The results indicate some peculiar behavio
the virial coefficients with the virial route incorrectly predic
ing a negative fourth virial coefficient. The radius of conve
gence of the virial series is due to a singularity~branch point!
located on the negative real axis and therefore what one
is an alternating series. Because of the good agreemen
tween our value of the radius of convergence of the vir
series and other independent estimates and the similar re
obtained ford55, it is tempting to conjecture that the P
solution for even higher dimensionalities should provide
rather accurate estimate of the radius of convergence of
true virial series and that it is the existence of singularities
the negative real axis~either poles or branch points! which
determines such radius.

As a final point it is worth commenting that in this cas
our analysis was facilitated by the fact that we could co
bine both the analytical and the simulation results. And d
to the common features such as the freezing transition
hard-core systems in different dimensionalities share, the
pectation and the hope is that the present results shed s
more light on the thermodynamic properties of such syste
As far as the high dimensionality limit is concerned, o
results provide some support to the scenario of Frisch
Percus mentioned in the Introduction in the following sen
The solution to the PY equation predicts an alternating vi
series. Further, the values of the scaled densityr̂ that one
obtains for the radius of convergence (r̂51.13 for d55, r̂
51.04 ford57, and the numberr̂.1.02 coming out of our
preliminary calculations ford59) are consistent with a lim-
iting value of r̂51 for d→`. Also, the fluid range ind
57 is reasonably well accounted for by the first three or fo
virial coefficients so that it is conceivable that for infini
dimensionality only the second virial coefficient will be th
dominant term.
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APPENDIX A: SOLUTION OF THE PERCUS–YEVICK
EQUATION FOR HARD HYPERSPHERES

For simplicity, in the remainder of this Appendix we s
s51.

In the Percus–Yevick approximation, the structure fac
S(q) of a hard-sphere fluid ind52k11 dimensions is

S~q!5
1

Q̃~q!Q̃~2q!
, ~A1!

where

Q̃~q!512lE
0

1

dreiqrQ~r !,

~A2!
l[~2p!kr522k~2k11!!! h,

Q(r ) having the form

Q~r !5H (
m50

k

Qm~r 21!m1k, 0<r<1

0, r>1

. ~A3!

The k11 coefficients$Qm% are functions of the density de
termined by the two linear equations

~21!k52k!2kQk1l (
m50

k

~21!m
Qm

k1m11
, k>0,

~A4!

~21!k52~k21!!2k21Qk21

1l (
m50

k

~21!m
Qm

k1m12
, k>1, ~A5!

plus thek21 nonlinear equations

Q~2m11!~0!5 1
2l~21!m11@Q~m!~0!#2

2l (
n50

m21

~21!nQ~n!~0!Q~2m2n!~0!,

0<m<k22. ~A6!

Here Q(n)(r ) represents thenth derivative of the function
Q(r ). Fork50 (d51), Eq.~A4! gives the exact solution fo
hard rods. Fork51 (d53), Eqs.~A4! and ~A5! are suffi-
cient to find the solution of the PY equation. However, f
k>2 (d>5) one needs in addition Eq.~A6!, so that the
problem reduces to solving an algebraic equation which
we will argue below, is likely to be of degree 2k21

52(d23)/2.
In the limit h→0, it is easy to verify that

lim
h→0

Qm5~21!k11
22m

k! S k
mD ,
~A7!
n
t

r

s

lim
h→0

Q~r !5~21!k11
22k

k!
~r 221!k,

lim
h→0

Q~2m!~0!5~21!m1122k
~2m!!

m! ~k2m!!
,

~A8!

lim
h→0

Q~2m11!~0!50.

In general, one can expand the coefficientsQm in powers of
h:

Qm~h!5 (
n50

`

Qm,nhn, ~A9!

whereQm,0 is given by the first equation of~A7!. Of course,
the full nonlinear dependence of the coefficientsQm(h) can
be obtained from the solution to the set of equations~A4!–
~A6!, either analytically (k<3) or numerically (k>4).

Once one has determined the functionQ(r ), the struc-
tural properties of the fluid are given by Eqs.~A1! and~A2!.
In particular, the long wavelength limit of the structure fact
and the contact value of the radial distribution function a
respectively,

S~q50!5
1

@k!2kQk#
2

, ~A10!

g~11!5~21!k11k!Q0 . ~A11!

The virial route to the EOS is given by

Z5112d21hg~11!, ~A12!

while the compressibility route is

x[kBTS ]r

]pD
T

5S~q50!. ~A13!

Inserting the expansion~A9! into Eqs.~A12! and ~A13! we
get the virial coefficients along both routes:

bn12
PY-v522k~21!k11k!Q0,n ,

~A14!

bn11
PY-c522k~k! !2

1

n11 (
m50

n

Qk,mQk,n2m .

1. The case dÄ7

Now we particularize to the seven-dimensional casek
53), the unknowns beingQm , m50, 1, 2, 3. Since the two
nonlinear equations~A6! involve the derivativesQ(m)

[Q(m)(0), it is more advantageous to work with the s
$Q(m)% rather than with the set$Qm%. The latter can be ex-
pressed in terms of the former as
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S Q0

Q1

Q2

Q3

D 52S 20 10 2
1

6

45 25
11

2

1

2

36 21 5
1

2

10 6
3

2

1

6

D •S Q~0!

Q~1!

Q~2!

Q~3!

D . ~A15!

Equations~A4! and ~A5!, plus Eq.~A6! with m50 yield

Q~1!523360hQ~0!2
, ~A16!

Q~2!52
1196Q~0!$125h@31112Q~0!~3210h!#%

8~12h!
, ~A17!

Q~3!5
8215h1192Q~0!$22h@531280Q~0!~3210h!22100h#%

8~12h!2
. ~A18!

TABLE III. Values of the coefficientsQm,n , defined by Eq.~A9!, for n50 – 6.

n Q0,n Q1,n Q2,n Q3,n

0 0.166 666 667 0.250 000 000 0.125 000 000 0.020 833 333
1 3.010 416 667 7.888 020 833 5.812 500 000 1.333 333 333
2 25.119 791 667 259.313 802 083 241.072 916 667 26.541 666 667
3 5.395 897 3523102 4.247 567 7903103 3.201 932 2923103 6.540 590 2783102

4 22.286 456 5053104 22.488 562 4753105 21.884 527 3803105 23.841 568 4463104

5 1.172 728 5013106 1.635 350 2923107 1.241 794 6033107 2.538 798 2893106

6 26.600 274 1743107 21.143 524 0523109 28.688 923 1743108 21.778 764 7603108
o
e

a
x-

nd
i

Thus, the parametersQ(1), Q(2), andQ(3) are given as ex-
plicit quadratic functions ofQ(0)5Q(0). Finally, insertion
of Eqs. ~A16!–~A18! into Eq. ~A6! with m51 leads to the
quartic equation

8215h1192Q~0!$22h$882135h11960Q~0!

3@324h@9210h1240Q~0!~12h!

3~3210h~1284Q~0!~12h!!!##%%50. ~A19!

Although an explicit expression exists for the physical ro
of Eq. ~A19!, it is of course too cumbersome and will b
omitted here.38

Table III shows the first few coefficientsQm,n . The ex-
act values are rational numbers, but they become more
more involved as the ordern increases and so they are e
pressed in real form in Table III. From Eq.~A14! we can
obtain the virial coefficients corresponding to the virial a
the compressibility routes. The first few values are listed
Table I.

2. The case dÄ9

We will now sketch the result for the cased59 follow-
ing the same procedure. Fork54, the set$Qm% can be ex-
pressed in terms of the set$Q(m)% as
t

nd

n

S Q0

Q1

Q2

Q3

Q4

D 51
70 35

15

2

5

6

1

24

224 119 27
19

6

1

6

280 154
73

2

9

2

1

4

160 90 22
17

6

1

6

35 20 5
2

3

1

24

2 •S Q~0!

Q~1!

Q~2!

Q~3!

Q~4!

D .

~A20!

In addition, the fifth derivativeQ(5) is a linear combination
of $Qm% and hence of the first four derivatives:

Q~5!5220~336Q~0!1210Q~1!160Q~2!110Q~3!1Q~4!!.
~A21!

The nonlinear equations~A6! with m50, 1, 2 allow one to
express the odd derivatives in terms of the even ones as

Q~1!52
l

2
Q~0!2

, ~A22!
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Q~3!5
l3

8
Q~0!4

2lQ~0!Q~2!, ~A23!

Q~5!52
l5

16
Q~0!6

1
l3

2
Q~0!3

Q~2!2
l

2
Q~2!2

2lQ~0!Q~4!,

~A24!

wherel5241 920h. Next, insertion of Eqs.~A22! and~A23!
into the linear equations~A4! and~A5! yields Q(2) andQ(4)

asnonlinearfunctions ofQ(0). Finally, by equating the right-
hand sides of Eqs.~A21! and ~A24! one gets a closed alge
braic equation of eighth degree forQ(0). A preliminary
analysis of this equation indicates that its physical solut
possesses a branch point athbranch.20.002 394 5, so tha
the radius of convergence of the PY virial series would
hconv5uhbranchu.0.002 394 5.

We have checked that ford511 the resulting equation i
of degree 16. Therefore, it seems plausible that in the gen
cased52k11 the degree of the equation forQ(0) is 2k21

52(d23)/2.
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