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Molecular dynamics and theory for the contact values of the radial
distribution functions of hard-disk fluid mixtures
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We report molecular dynamics results for the contact values of the radial distribution functions of
binary additive mixtures of hard disks. The simulation data are compared with theoretical
predictions from expressions proposed by Jenkins and Mancini@J. Appl. Mech.54, 27 ~1987!# and
Santoset al. @J. Chem. Phys.117, 5785 ~2002!#. Both theories agree quantitatively within a very
small margin, which renders the former still a very useful and simple tool to work with. The latter
~higher-order and self-consistent! theory provides a small qualitative correction for low densities
and is superior especially in the high-density domain. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1797213#
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I. INTRODUCTION

Model systems of hard disks and hard spheres are us
for the derivation of rigorous results in statistical mechan
as well as in perturbation theories of fluids.1 Hard disks and
hard spheres are also relevant for the modeling of me
copic systems such as colloidal suspensions2 and granular
matter.3 Apart from its academic interest, the study of tw
dimensional systems is important in the context of mo
layer adsorption on solid surfaces.4 Recently, the equation o
state of hard disks has beenexperimentallymeasured in
charge-stabilized colloidal particles suspended in water
confined by a laser beam.5 While most of the studies ar
restricted to monodisperse fluids, it is obviously important
consider thepolydispersecharacter of the system, especia
in applications to mesoscopic matter. The equation of stat
well as nonequilibrium transport properties of bidisperse s
tems of inelastic hard disks have been discussed in the
erature; see Refs. 6–16 and references therein.

The state of an additivem-component fluid mixture of
N5( i 51

m Ni hard disks is characterized by the total numb
densityr, the set of mole fractionsx[$x1 ,x2 ,...,xm%, with
xi5Ni /N, and the set of diameterss[$s1 ,s2 ,...,sm%. In-
stead ofr, the area fractionn5(p/4)r^s2&, where ^sn&
[( ixis i

n is thenth moment of the size distribution, can b
used to characterize the density of the system. The sp
correlation between two disks of speciesi and j separated by
a distancer is measured by the radial distribution functio
~RDF! gi j (r ;n,x,s). The contact values

x i j ~n,x,s![gi j ~s i j ;n,x,s!, s i j [~s i1s j !/2, ~1!

of the RDFs are of special interest since they appear in

a!Electronic mail: s.luding@tnw.tudelft.nl. URL: http://www.dct.tudelft.n
part/welcomePTG.html

b!Electronic mail: andres@unex.es. URL: http://www.unex.es/fiste
andres/
8450021-9606/2004/121(17)/8458/8/$22.00
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Enskog kinetic theory of dense fluids17 and, more important,
they are directly related to the equation of state~EOS! of the
fluid via the virial theorem,18

Z~n,x,s![
p

rkBT
5112n(

i , j
xixj

s i j
2

^s2&
x i j ~n,x,s!. ~2!

Alternatively, the compressibility factorZ can be expressed
as19

Zw~n,x,s!5(
i

xix iw~n,x,s!, ~3!

wherex iw(n,x,s) denotes the density of speciesi at contact
with a planar hard wall, relative to the associated bulk d
sity. Its expression can be obtained from that ofx i j (n,x,s)
by assuming the wall to be a component of the mixtu
present in zero concentration and having an infin
diameter:19,20

x iw~n,x,s!5 lim
s j→`

lim
xj→0

x i j ~n,x,s!. ~4!

The subscriptw in Zw has been used to emphasize that E
~3! represents a route alternative to Eq.~2! to get the EOS of
the hard-disk polydisperse fluid. Of course,Z5Zw in an ex-
act description, butZ andZw may differ when dealing with
approximations. Thus a stringent consistency condition
an approximate theory ofx i j is to yield the same EOS
through both routes.

The aim of this paper is twofold. First, we present~ac-
curate! molecular dynamics results forx i j in the case of a
bidisperse hard-disk fluid mixture with a size ratios1 /s2

51/2. Next, those simulation data are compared against
oretical predictions by Jenkins and Mancini6 and by Santos
et al.21 As will be seen, both theories agree quantitative
well with the simulation data but the latter is slightly sup
rior in the high-density fluid regime (0.3&n&0.7). The the-
oretical proposals forx i j are presented in Sec. II and th

/
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simulation method is outlined in Sec. III. The results a
presented and discussed in Sec. IV and we close the pap
Sec. V with some final remarks.

II. THEORETICAL APPROXIMATIONS

In this section, different approximations for the conta
values of the radial distribution function are reviewed, fi
for the monodisperse and then for the polydisperse case

A. The monodisperse case

For the sake of completeness, let us begin with the o
component fluid before considering the more general po
disperse fluid. Perhaps the most widely used approxima
for the contact valuex~n! of the RDF of the monodispers
hard-disk fluid is the one proposed by Henderson in 19722

xH~n!5
127n/16

~12n!2 . ~5!

Despite the simplicity of this prescription, it provides fair
accurate values. On the other hand, Eq.~5! tends to overes-
timate the value ofx~n! for high densities of the stable flui
phase.23–25 This led Verlet and Levesque23 to propose the
correction

xVL~n!5xH~n!2
n3

26~12n!4 . ~6!

A more accurate prescription has recently been propose
one of us:26–29

xL4~n!5 1
2 @xH~n!1xVL~n!#5xH~n!2

n3

27~12n!4 . ~7!

This is confirmed by Fig. 1, where simulation data
x~n!,26–28,30 relative to Henderson’s approximationxH(n),
are compared with the ratiosxVL(n)/xH(n) and
xL4(n)/xH(n). We observe thatxH(n) behaves satisfactorily
up to an area fractionn'0.3. However, as the density in
creases and approaches the limit of stability of the hard-d
fluid (n.0.7),26–29,31 xH(n) overestimates the simulatio
data~by a few percent atn50.68), while Eq.~7! presents an
excellent agreement with computer simulations for densi
n<0.68.

B. The polydisperse case

In this section, the classical result for the RDF cont
value6 is confronted to more recent findings.21 The derivation
is detailed for bulk and wall EOS in both cases, and
agreement/disagreement of the two approaches is discu

1. Jenkins and Mancini’s approximation

In the case of a hard-disk mixture, a useful approxim
tion for the contact valuesx i j was proposed by Jenkins an
Mancini ~JM! in 1987.6 It reads

x i j
JM~n,x,s!5

1

12n
1

9

16

n

~12n!2 zi j ~x,s!, ~8!

where the parameter
r in

t
t

e-
-
n

by

k

s

t

e
ed.

-

zi j ~x,s![
s is j

s i j

^s&

^s2&
~9!

contains the whole dependence ofx i j on the size composi-
tion through the first two moments. It is worth mentionin
that Eq.~8! was originally proposed in the context ofinelas-
tic disks and thus it is much better known by researcher
granular matter theory than by researchers in liquid theo
As a matter of fact, Eq.~8! has recently been rediscovered b
liquid theorists.32

In the special case where all the disks have the sa
diameter (s i→s), one haszi j →1 and so Eq.~8! reduces to
Henderson’s approximation~5! for monodisperse disks
Thus, Jenkins and Mancini’s approximation~8! represents a
simple, straightforward extension ofxH to the polydisperse
case. As a consequence, it inherits, by construction, the l
tations of Henderson’s equation~5! for high densities~cf.
Fig. 1!. Moreover, Eq.~8! does not yield the same EO
through routes~2! and ~3!. Let us first consider the standar
route ~2!. Taking into account the mathematical identiti
~for an arbitrary number of components!

(
i , j

xixjs i j
2 5

^s2&1^s&2

2
, ~10!

(
i , j

xixjs i j
2 zi j 5

^s&
2^s2& (i , j xixjs is j~s i1s j !

5^s&2, ~11!

insertion of Eq.~8! into Eq. ~2! yields

FIG. 1. Density dependence of the ratiox/xH, where unity~dotted line!
corresponds to Eq.~5!. The circles~Refs. 26–28! and triangles~Ref. 30! are
simulation data, while the dashed and solid lines are the theoretical pre
tions given by Eqs.~6! and ~7!, respectively.
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ZJM~n,x,s!511
n

12n
1An

11n/8

~12n!2

5112nF 12A
2~12n!

1AxH~n!G , ~12!

where A[^s&2/^s2& was used as a convenie
abbreviation.27,29 To explore the alternative route~3!, let us
take the limits indicated in Eq.~4! on Eq.~8! to get

x iw
JM~n,x,s!5

1

12n
1

9

16

n

~12n!2 ziw~x,s!, ~13!

where

ziw~x,s![2s i

^s&

^s2&
. ~14!

Inserting Eq.~13! into Eq. ~3! and making use of

(
i

xiziw52A, ~15!

one has

Zw
JM~n,x,s!5(

i
xix iw

JM~n,x,s!

5ZJM~n,x,s!1A n/8

~12n!
. ~16!

The inconsistencyZJMÞZw
JM appears already to first order i

n. Comparison with simulation results shows thatZJM is
clearly superior toZw

JM.

2. Santos, Yuste, and Lo ´ pez de Haro’s approximation

The two limitations ofx i j
JM just mentioned, namely, th

slavery to Henderson’s equationxH and the failure to give a
common EOS through Eqs.~2! and ~3!, are remedied by a
recent proposal made by Santoset al.21 It reads

x i j
SYH~n,x,s!5

1

12n
1F ~22n!x~n!2

22n/2

12n Gzi j ~x,s!

1F12n/2

12n
2~12n!x~n!Gzi j

2 ~x,s!, ~17!

wherezi j is again given by Eq.~9! and the contact valuex~n!
of the monodisperse fluid can be freely chosen. Obviously
the trivial case where all the disks have the same sizezi j

51 and sox i j
SYH(n)5x(n). Insertion of Eq.~17! into Eq.~2!

yields the following simple form:

ZSYH~n,x,s!511
n

12n
1AnF2x~n!2

1

12nG
5112nF 12A

2~12n!
1Ax~n!G , ~18!

where use has been made of Eqs.~10!, ~11!, and

(
i , j

xixjs i j
2 zi j

2 5
^s&2

^s2&2 (
i , j

xixjs i
2s j

25^s&2, ~19!
in

valid again for any number of components. Note the iden
cal form of the second lines in Eqs.~12! and ~18!. The ex-
pression forx iw

SYH is given by Eq.~17!, except thatzi j must
be replaced byziw . Whenx iw

SYH is inserted into Eq.~3! and
use is made of Eq.~15! and of

(
i

xiziw
2 54A, ~20!

it turns out that the EOS~18! is consistently reobtained, i.e
Zw

SYH[ZSYH.
So far, the monodisperse quantityx~n! remains arbitrary.

From that point of view, Eq.~17! represents a consisten
class of approximations, with freex~n!, rather than a specific
approximation.

3. Some comments

It is worth mentioning that Eqs.~8! and ~17! share the
property that, at a given packing fractionn, the whole depen-
dence ofx i j on the composition~x,s! of the mixture appears
through the parameterzi j only. To clarify the implications of
this, let us consider two mixturesM andM 8 having the same
packing fractionn but strongly differing in the set of mole
fractions, the sizes of the particles, and even the numbe
components, i.e., (x,s)Þ(x8,s8). Suppose now that ther
exists a pairi j in mixtureM and another pairi 8 j 8 in mixture
M 8 such thatzi j (x,s)5zi 8 j 8(x8,s8). Then, according to
Eqs.~8! and~17!, the contact value of the RDF for the pairi j
in mixture M is the same as that for the pairi 8 j 8 in mixture
M 8. This sort of ‘‘universality’’ ansatz, which is more gen
eral than Eq.~8! or ~17! and is shared by other well-know
proposals forx i j of hard-sphere fluids~e.g., the scaled-
particle theory, Percus-Yevick, and Boublı´k-Grundke-
Henderson-Lee-Levesque approximations!,21 is of course
only approximate. However, its enforcement leads to
construction of simple and accurate proposals forx i j with
the help of only a few requirements.21,33

Interestingly enough, the EOS~12! and~18! are identical
when x5xH is used in the latter, even though the conta
valuesx i j used in the derivation are different. More speci
cally, if x5xH is used in Eq.~17!, then

x i j
SYH2x i j

JM5
n/16

12n
zi j ~12zi j !. ~21!

The property ZSYH5ZJM is just a consequence o
( i , j xixjs i j

2 zi j 5( i , j xixjs i j
2 zi j

2 , as follows from Eqs.~11! and
~19!.

If one choosesx(n)5xH(n) then Eq.~17!, being con-
sistent with the conditionZ5Zw , can be expected to becom
more accurate than Eq.~8!, especially for highly asymmetric
mixtures. SincexH(n) is fairly good for n&0.3, as Fig. 1
shows, the main difference between Eqs.~8! and~17! in that
density domain lies in the functional relation on the para
eterzi j : linear in the case of Eq.~8! and quadratic in the cas
of Eq. ~17!. As a consequence,

x i j
SYH/x i j

JM.1 if zi j ,1,

51 if zi j 51,

,1 if zi j .1, ~22!
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where we emphasize that Eq.~22! refers to 0,n&0.3. This
is illustrated in Fig. 2, where the ratiox i j

SYH/x i j
JM is plotted

versuszi j for n50.25 andn50.5. In the former case, sinc
xH and xL4 yield practically the same value, the associa
two functions given by Eq.~17! are hardly distinguishable
On the other hand, those functions exhibit visible small d
ferences atn50.5 due to the fact thatxH deviates fromxL4

by about 0.5%~cf. Fig. 1!.
In the spirit of the approximations~17! and ~18!, the

more accurate the monodisperse functionx~n! the better
those approximations are expected to be. Therefore, m
successful predictions forx i j and Z can be expected if one
chooses forx~n! an expression more refined than Hend
son’s, such as Eq.~7!, especially for high densities. In Se
IV we will check all these expectations by comparing m
lecular dynamics results forx i j against Eqs.~8! and~17!, the
latter being complemented by the monodisperse presc
tions ~5! and ~7!.

III. SIMULATION METHOD

Since we are interested in the behavior of rigid particl
we use an event-driven~ED! method that discretizes the s
quence of events with variable time steps for all partic
between collisions, as adapted to the problem. This is dif
ent from classical molecular dynamics simulations, wh
the time step is usually fixed for the numerical integration
the equations of motion.

FIG. 2. Plot of the ratiox i j
SYH/x i j

JM against the parameterzi j for n50.25~thin
lines! andn50.50 ~thick lines!. The dashed lines correspond to the cho
x(n)5xH(n) in Eq. ~17!, while the solid lines correspond to the choic
x(n)5xL4(n). The dotted line represents the JM expression~8!.
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A. Collision model

The particles are assumed to be perfectly rigid and
low an undisturbed motion until a collision occurs as d
scribed below. A change in velocity can occur only at a c
lision, and due to their rigidity, the disks collid
instantaneously. The standard interaction model for insta
neous collisions of particles with diameterss i and massmi

is used in the following. The postcollisional velocitie
(vi8 ,vj8) of two collision partnersi j are given in terms of the
precollisional velocities (vi ,vj ) by

vi , j8 5vi , j7
2m i j

mi , j
vn , ~23!

where m i j 5mimj /(mi1mj ) is the reduced mass andvn

[@(vi2vj )•n#n is the component of the relative velocit
vi2vj parallel to the unit vectorn pointing along the line
connecting the centers of the colliding particles. If two p
ticles collide, their velocities are changed according to E
~23!.

B. Algorithm

In the ED simulations, the particles follow an undi
turbed translational motion until an event occurs. An even
either the collision of two particles or the collision of on
particle with a boundary of a cell~in the linked-cell
structure!.34 The cells have no effect on the particle motio
here; they were solely introduced to accelerate the search
future collision partners in the algorithm.

Simple ED algorithms update the whole system af
each event, a method which is straightforward, but ineffici
for large numbers of particles. In Ref. 35 an ED algorith
was introduced which updates only those two particles
volved in the last collision. For the algorithm, a doubl
buffering data structure is implemented, which contains
‘‘old’’ status and the ‘‘new’’ status, each consisting of time o
event, positions, velocities, and event partners. When a
lision occurs, the old and new status of the participating p
ticles are exchanged. Thus, the former new status beco
the actual old one, while the former old status becomes
new one and is then free for the calculation and storage
possible future events. This seemingly complicated excha
of information is carried out extremely simply and fast b
only exchanging the pointers to the new and old status,
spectively. Note that the old status of particlei has to be kept
in memory, in order to update the time of the next conta
t i j , of particle i with any other objectj , if the latter, inde-
pendently, changed its status due to a collision with yet
other particle. During the simulation such updates may
necessary several times so that the predicted new statu
to be modified.

The minimum of all t i j is stored in the new status o
particle i , together with the corresponding partnerj . De-
pending on the implementation, positions and velocities a
the collision can also be calculated. This would be a waste
computer time, since before the timet i j , the predicted part-
ners i and j might be involved in several collisions with
other particles, so that we apply a delayed update schem35

The minimum times of event, i.e., the times which indica
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TABLE I. Simulation parameters for mixturesA andB.

Mixture N1 N2 x1 x2 s1 /s2 z11 z12 z22

A 450 126 0.781 0.219 1/2 0.736 0.981 1.47
B 7803 1998 0.796 0.204 1/2 0.747 0.996 1.4
re
t

si
li-
ke

ica
n

te

,
i-
hat

and

e
n a
the next event for a certain particle, are stored in an orde
heap tree, such that the next event is found at the top of
heap with a computational effort ofO(1); changing the po-
sition of one particle in the tree from the top to a new po
tion needsO(ln N) operations. The search for possible col
sion partners is accelerated by the use of a standard lin
cell data structure and consumesO(1) of numerical
resources per particle. In total, this results in a numer
effort of O(N ln N) for N particles. For a detailed descriptio
of the algorithm see Ref. 35.

C. Computation of x i j

The results for the RDF contact values are compu
indirectly as
d
he

-

d-

l

d

x i j 5
t i j

21A

2s i j NjApT/~2m i j !
, ~24!

wheret i j
21 is the average number of (i j ) collisions per unit

time and per particle of speciesi , A is the area of the system
and T5Ti , j5Ekin

i , j /Ni , j is the temperature based on the k
netic energy per particle per degree of freedom. Note t
t i j

21 is proportional toNj and hencex i j 5x j i .
The averages are taken over a few hundred thous

~low density! up to several millions~high density! collisions
per particle, where the first 20%–30% of the simulation tim
is typically disregarded, so that the average is taken i
reasonably equilibrated state.
e the

TABLE II. Molecular dynamics values of the contact valuesx i j and of the compressibility factorZ for the
hard-disk binary mixturesA andB, with parameters given in Table I. The numbers in parentheses indicat
statistical error in the last digit.

Mixture n x11 x12 x22 Z

A 0.01 1.013~5! 1.015~8! 1.02~2! 1.0193~1!
A 0.05 1.076~4! 1.086~3! 1.08~2! 1.1026~3!
A 0.10 1.162~7! 1.181~5! 1.20~2! 1.2229~7!
A 0.15 1.264~5! 1.289~6! 1.34~1! 1.3656~9!
A 0.20 1.383~4! 1.426~6! 1.48~2! 1.537~2!
A 0.25 1.518~2! 1.579~6! 1.66~2! 1.742~2!
A 0.30 1.689~3! 1.768~8! 1.88~2! 1.997~2!
A 0.35 1.888~5! 1.998~7! 2.15~3! 2.310~3!
A 0.40 2.132~6! 2.28~2! 2.51~5! 2.708~7!
A 0.45 2.441~8! 2.63~3! 2.98~7! 3.22~1!
A 0.50 2.828~5! 3.09~2! 3.52~4! 3.89~1!
A 0.55 3.346~6! 3.68~1! 4.35~6! 4.79~1!
A 0.60 4.03~1! 4.51~2! 5.41~7! 6.05~2!
A 0.65 5.01~1! 5.65~3! 7.03~9! 7.87~3!
A 0.70 6.47~2! 7.36~7! 9.6~2! 10.67~5!
A 0.75 8.77~1! 10.14~9! 13.6~5! 15.3~2!

B 0.05 1.076~1! 1.084~3! 1.09~1! 1.1028~2!
B 0.10 1.164~1! 1.180~3! 1.21~1! 1.2234~3!
B 0.1482 1.262~1! 1.288~1! 1.33~1! 1.3609~5!
B 0.20 1.385~2! 1.423~2! 1.50~1! 1.5376~7!
B 0.25 1.525~1! 1.582~3! 1.68~2! 1.745~1!
B 0.30 1.690~1! 1.768~2! 1.90~1! 1.996~2!
B 0.3455 1.873~1! 1.978~5! 2.15~2! 2.282~2!
B 0.3867 2.070~3! 2.196~6! 2.45~2! 2.595~3!
B 0.45 2.450~2! 2.638~7! 3.00~2! 3.221~5!
B 0.50 2.843~2! 3.096~4! 3.59~2! 3.891~2!
B 0.55 3.357~3! 3.705~7! 4.37~3! 4.794~2!
B 0.60 4.058~2! 4.525~6! 5.49~2! 6.055~3!
B 0.65 5.036~7! 5.708~9! 7.06~5! 7.885~3!
B 0.66 5.281~6! 6.00~2! 7.46~5! 8.348~4!
B 0.67 5.547~4! 6.32~1! 7.91~4! 8.855~1!
B 0.68 5.830~5! 6.68~1! 8.36~4! 9.409~1!
B 0.69 6.145~8! 7.06~2! 8.89~5! 10.016~2!
B 0.70 6.498~9! 7.45~3! 9.55~7! 10.684~3!
B 0.75 8.82~2! 10.34~4! 13.4~1! 15.30~1!
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IV. RESULTS AND DISCUSSION

We have considered two hard-disk binary mixtures w
a mole fraction of small disksx1 and a mole fraction of large
disks x2 , as summarized in Table I. The diameter ratio
small to large disks iss1 /s251/2 in both cases. The corre
sponding values of the parameterszi j defined by Eq.~9! are
also included in Table I.

Mixtures A and B have nearly the same compositio
(x1.0.8,x2.0.2), but the number of particles in mixtureB
is about 17 times larger than in mixtureA and so the statis
tics is better in caseB. The data ofx i j for several area
fractions in the interval 0.01<n<0.75 are given in Table II.
The values of the compressibility factor obtained either
rectly from the simulations or indirectly from Eq.~2! by
inserting thex i j are also included.

A. Contact values x i j

In Figs. 3, 4, and 5 we have plotted the simulation valu
for the ratiosx11/x11

JM, x12/x12
JM, andx22/x22

JM, respectively,
against the area fractionn. The data corresponding to caseA
are shown only for the densities not considered in caseB,
namely, n50.01, 0.15, 0.35, and 0.40. The ratiox i j /x i j

JM

represents a ‘‘quality factor’’ of the simulation data with r
spect to the JM approximation~8!. Figures 3–5 also include
the ratios x i j

SYH/x i j
JM, where in Eq. ~17! we have taken

x(n)5xH(n) @cf. Eq. ~5!# and x(n)5xL4(n) @cf. Eq. ~7!#
for the monodisperse fluid.

FIG. 3. Density dependence of the ratiox11 /x11
JM for a hard-disk binary

mixture with parameters as given in Table I. The filled squares and o
circles represent our simulation dataA and B, respectively. The lines rep
resent the ratiox11

SYH/x11
JM for caseB with x(n)5xH(n) ~dashed line! and

with x(n)5xL4(n) ~solid line!; the dotted line represents Eq.~8!. The the-
oretical curves for caseA are practically indistinguishable from those fo
caseB and so they are not plotted.
f

-

s

1. Low densities

We observe thatx i j
SYH/x i j

JM with both prescriptions
x(n)5xH(n) and x(n)5xL4(n) are practically indistin-
guishable up ton'0.3. This is consistent with the fact tha
in that domain of low and moderate densities the correct
~7! to Henderson’s EOS is irrelevant, as shown in Fig. 1.
the other hand, some limitations of Eq.~8! are already ap-

n
FIG. 4. Same as in Fig. 3, except forx12 /x12

JM .

FIG. 5. Same as in Fig. 3, except forx22 /x22
JM .
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parent in the range 0,n&0.3: the JM approximation
~slightly! underestimates the small-small contact value (x11

JM

,x11), while it overestimates the large-large contact va
(x22

JM.x22). These two effects, which are not linked to th
use ofxH(n), are reasonably well captured by Eq.~17!, as
expected from Eq.~22!. In the case of the cross conta
value, we havex12.x12

JM for 0,n&0.3, in agreement with
the fact thatz12.1 in our mixturesA andB.

2. High densities

In the high-density domainn*0.3, the simulation data
clearly deviate from Eqs.~8! and ~17! when the latter is
combined withx(n)5xH(n). Both theories tend to overes
timate the contact values, what is essentially a trait inher
from Henderson’s EOS. On the other hand, a much be
agreement is obtained when Eq.~17! is combined with Eq.
~7! for the monodisperse fluid. The remaining deviations
the latter theory from the simulation values are a reflection
the approximate character of Eq.~17! rather than that of Eq
~7!, in view of Fig. 1. Part of the deviations for the highe
densities may be due to the proximity to crystallization.
the monodisperse case, it is known that the hard-disk fl
undergoes a freezing transition~possibly mediated by a
hexatic phase31! at an area fractionn.0.7.26–29,31,36In any
case, polydispersity tends to increase the freezing trans
density. For mixtureA, our simulations indicate that the tran
sition takes place betweenn50.75 andn50.8. For more
details on very high densities in the monodisperse and
isperse situations see Refs. 26 and 27, respectively.

B. Equation of state

Although in this paper we have been mainly concern
with the contact values of the RDFs, it is worth consideri
the compressibility factorZ[p/rkBT. The simulation values
of the ratioZ/ZJM, whereZJM is given by Eq.~12!, are plot-
ted in Fig. 6. We observe that the JM EOS is fairly accur
for n&0.4, even though the individual valuesx i j

JM are not
that good in the same density range. This is mainly due
fortunate ‘‘cancellation of errors’’ (x11

JM,x11, while x22
JM

.x22). As a matter of fact, as already mentioned in Sec.
the recipe~18! in combination withx(n)5xH(n) becomes
identical with ZJM. Nevertheless, the JM approximatio
again overestimates the simulation data for higher dens
(n*0.4). Whenx(n)5xL4(n) is used, Eq.~18! becomes
quite reasonable, although it slightly underestimates the m
ture pressure of the fluid at the highest densities.

Interestingly, a recently proposed empirical correction
the EOS

Z511~12an4!~ZJM21!, a50.1, ~25!

see Eq.~20! in Ref. 29, works also pretty well for the param
eter set used here, however, without theoretical foundat
The excellent performance of Eq.~25! for x1.0.8 and
s1 /s25 1

2 does not necessarily extend to other compositio
In fact, Eq.~25! is not as good as Eq.~7! in the monodisperse
case.
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V. CONCLUSION

In this paper we have presented molecular dynamics
sults for the contact valuesx i j 5gi j (s i j ) of the RDFsgi j (r )
of binary mixtures of additive hard disks. As a representat
case we have fixed mole fractionsx1.0.8 andx2.0.2, and
used a diameter ratios1 /s25 1

2. A set of numerical values o
the area fractionn have been considered, covering the dilu
the intermediate, and the dense regimes.

The simulation results have been used to assess the
ability of theoretical expressions previously proposed in
literature. Until recently, practically the only proposal w
the one by Jenkins and Mancini,6 which is expressed by Eq
~8!. This approximation succeeds in capturing the m
trends in the intricate dependence ofx i j on the area fraction
and the composition of the mixture, even at a quantitat
level.

On the other hand, our simulation data expose so
~small! limitations of x i j

JM: already for low and moderate
densities (n&0.3) the JM recipe tends to underestimate t
small-small correlation value and overestimate the lar
large value; for higher densities (n*0.3), x i j

JM overestimates
the correct values, an effect that can be traced back to
fact thatx i j

JM is strongly tied to Henderson’s EOS.22

These two shortcomings are widely corrected by a rec
proposal made by Santoset al.,21 Eq. ~17!. While x i j

JM is a
linear function of the parameterzi j defined by Eq.~9!, x i j

SYH

is a quadratic function. This higher-order approach allo
x i j

SYH to satisfy an extra consistency condition in the limit

FIG. 6. Density dependence of the ratioZ/ZJM for a hard-disk binary mix-
ture with parameters as given in Table I. The filled squares and open ci
represent our simulation dataA andB, respectively. The lines represent th
ratio ZSYH/ZJM for case B with x(n)5xH(n) ~dotted line—unity! and
x(n)5xL4(n) ~solid line!. The dashed line is the empirical relation~25!
proposed in Ref. 29.
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highly asymmetric mixtures.21 Moreover,x i j
SYH can be used

in conjunction with any desired expression for the cont
value of the monodisperse fluid. When instead of Hend
son’s expression the one recently proposed by one of us26,27

is employed,x i j
SYH exhibits a reasonable agreement with t

simulation data forn*0.3.
In spite of this, it can be observed thatx i j

SYH tends to
underestimate the simulation data for very high densitiesn
*0.6), so that an even better approximation is needed in
extreme, high-density fluid regime. From this point of vie
we hope that our simulation data will be helpful to test t
accuracy of other future theoretical proposals that have b
or will be made.
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