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Molecular dynamics and theory for the contact values of the radial
distribution functions of hard-disk fluid mixtures
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We report molecular dynamics results for the contact values of the radial distribution functions of
binary additive mixtures of hard disks. The simulation data are compared with theoretical
predictions from expressions proposed by Jenkins and Mahkifppl. Mech.54, 27 (1987] and
Santoset al. [J. Chem. Physl17, 5785(2002]. Both theories agree quantitatively within a very
small margin, which renders the former still a very useful and simple tool to work with. The latter
(higher-order and self-consisteriheory provides a small qualitative correction for low densities
and is superior especially in the high-density domain.2@4 American Institute of Physics.
[DOI: 10.1063/1.1797213

I. INTRODUCTION Enskog kinetic theory of dense fluldsand, more important,

they are directly related to the equation of std&©S of the
Model systems of hard disks and hard spheres are usefelLid via the virial theorent®

for the derivation of rigorous results in statistical mechanics

as well as in perturbation theories of fluitislard disks and

hard spheres are also relevant for the modeling of mesos-

copic systems such as colloidal suspensicarsd granular

matter® Apart from its academic interest, the study of two- Alternatively, the compressibility factaZ can be expressed

dimensional systems is important in the context of mono2

layer adsorption on solid surfacéRecently, the equation of

state of hard disks has beeaxperimentallymeasured in zw(y,x,a-):z Xi Xiw( V. X, ), (©)

charge-stabilized colloidal particles suspended in water and '

confllned by a Iaser bea?nWh_lle mgst of.the St.Ud'eS are wherey;(v,X, o) denotes the density of specieat contact

restn.cted to monqdlsperse fluids, it is obviously |mportqnt towith a planar hard wall, relative to the associated bulk den-

consider thepolydispersecharacter of the system, especially

) o : . sity. Its expression can be obtained from thatyg{ v, X, o)
in applications to mesoscopic matter. The equation of stateagy assuming the wall to be a component of the mixture

well as n_onequ!llbrlum trc_a\nsport propertles_ of b|d|spe_rse SYShresent in zero concentration and having an infinite
tems of inelastic hard disks have been discussed in the Ingiameterlg’zo

erature; see Refs. 6-16 and references therein.
The state of an additiven-component fluid mixture of Xiw(v.X,0)= lim lim x;;(v,X,0). (4)
N=3"N; hard disks is characterized by the total number o —®X]—0
densityp, the set of mole fractiong={xy,X5,... Xn}, with
x;=N; /N, and the set of diameteis={o,05,...,0n}. In-
stead ofp, the area fractionv=(m/4)p(c?), where{c")
=3x;0{ is thenth moment of the size distribution, can be
used to characterize the density of the system. The spati
correlation between two disks of specieandj separated by
a distance is measured by the radial distribution function
(RDF) gjj(r;v,x,0). The contact values

2

Z(rx0)= ——=14203 xx Dy (vx.0). (2)
T pkgT = gy Xt ol

The subscriptv in Z,, has been used to emphasize that Eq.
(3) represents a route alternative to E2).to get the EOS of
the hard-disk polydisperse fluid. Of courgesZ,, in an ex-
aet description, buZ andz,, may differ when dealing with
approximations. Thus a stringent consistency condition for
an approximate theory of;; is to yield the same EOS
through both routes.

The aim of this paper is twofold. First, we preséat-
(1) curatg molecular dynamics results foy;; in the case of a
bidisperse hard-disk fluid mixture with a size ratiq/o,

of the RDFs are of special interest since they appear in th& 1/2- Next, those simulation data are compared against the-
oretical predictions by Jenkins and Man€imaind by Santos

- . et al? As will be seen, both theories agree quantitatively
¥Electronic mail: s.luding@tnw.tudelft.nl. URL: http:/Avww.dct.tudelft.nl/ well with the simulation data but the latter is slightly supe-
part/welcomePTG.html

bElectronic mail: andres@unex.es. URL: http://www.unex.esffisteor/ 10 ?n the high-density fluid regime (0537’_50-7)- The the-
andres/ oretical proposals fory;; are presented in Sec. Il and the

Xij(v.x,0)=gjj(0ij v, X,0), 0j=(0i+0))/2,
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Contact values of radial distributions
simulation method is outlined in Sec. Ill. The results are

presented and discussed in Sec. IV and we close the paper in

Sec. V with some final remarks.

8459
1.01 — —
Il. THEORETICAL APPROXIMATIONS

1.00
In this section, different approximations for the contact
values of the radial distribution function are reviewed, first

for the monodisperse and then for the polydisperse case.
A. The monodisperse case

= 0.99
=
For the sake of completeness, let us begin with the one- R
component fluid before considering the more general poly-
disperse fluid. Perhaps the most widely used approximation
for the contact value(v) of the RDF of the monodisperse 0.98
hard-disk fluid is the one proposed by Henderson in 1375:
uo 1=T7vI16
X (V)_ (1_11)2 .

(5

Despite the simplicity of this prescription, it provides fairly 0‘9’6 0
accurate values. On the other hand, E5).tends to overes- '
timate the value oj(v) for high densities of the stable fluid

phase”®>~2° This led Verlet and Levesqéeto propose the
correction
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FIG. 1. Density dependence of the rafidy", where unity(dotted line
corresponds to Ed5). The circles(Refs. 26—-28and trianglegRef. 30 are
v

26( 1— V)4 . (6)

one of us?®-2°

simulation data, while the dashed and solid lines are the theoretical predic
tions given by Eqs(6) and(7), respectively.
A more accurate prescription has recently been proposed by

0.8

A%

3
XM= 3x" ) + X (n)1=x"(v) -

gijo; (O
Zij(X:O')E#Q
27(1_V)4' (7)
This is confirmed by Fig. 1, where simulation data of
X(V),26_28’30

Tij <‘72>
relative to Henderson’s approximatiop(v),
are compared with the

ratiosyV(v)/x"(») and
X" (v)! xH(v). We observe that(v) behaves satisfactorily

tic disks and thus it is much better known by researchers in
up to an area fraction~0.3. However, as the density in-
creases and approaches the limit of stability of the hard-dis
fluid (v=0.7)2672%31 yH(1) overestimates the simulation

granular matter theory than by researchers in liquid theory.
fi

data(by a few percent at=0.68), while Eq.(7) presents an

v=<0.68.

s a matter of fact, Eq8) has recently been rediscovered by
quid theorists®
excellent agreement with computer simulations for densitie

(C)

contains the whole dependence gf on the size composi-
tion through the first two moments. It is worth mentioning
that Eq.(8) was originally proposed in the context iokelas-

In the special case where all the disks have the same
B. The polydisperse case

diameter ¢;— o), one hag;;—1 and so Eq(8) reduces to
Henderson’s approximatior(5) for monodisperse disks.
Thus, Jenkins and Mancini’'s approximatié®) represents a

simple, straightforward extension gf' to the polydisperse
valué® is confronted to more recent findingsThe derivation

case. As a consequence, it inherits, by construction, the limi-
, ) ) tations of Henderson's equatig®) for high densities(cf.
In this section, the classical result for the RDF contact,:ig_ 1). Moreover, Eq.(8) does not yield the same EOS

. > ; through route$2) and(3). Let us first consider the standard
is detailed for bulk and wall EOS in both cases, and the&qyte (2). Taking into account the mathematical identities
agreement/disagreement of the two approaches is dlscusse(\f;br an arbitrary number of componepts

1. Jenkins and Mancini’s approximation

(0?)+(o)?
- D T e et (10
In the case of a hard-disk mixture, a useful approxima- I
tion for the contact valueg;; was proposed by Jenkins and (o)
i ; 6 o
Mancini (JM) in 1987? It reads .EJ XinfTiszij :mzl xixoioi( o+ o)
9 v ' '
XiJjM(V,X,o'):1_V+1—6(1_V)22ij(x,0'), (8)
where the parameter

=(o)?,

(11)
insertion of Eq.(8) into Eq. (2) yields



8460 J. Chem. Phys., Vol. 121, No. 17, 1 November 2004

oM 14 v A 1+v/8
(rxo) =1+ i+ vy
PP Rt N 12
- v 2(1_1/) X (V) ’ ( )
where A=(0)?/(0?) was used as a convenient

abbreviatior’”?° To explore the alternative rout®), let us
take the limits indicated in Eq4) on Eq.(8) to get

M 1 9 v
XiW(V!Xla): 1— +1_6(1_V)22iW(X!0-)! (13)
where
(o)
Ziw(X,0)= 20'I< > (14
Inserting Eq.(13) into Eq. (3) and making use of
> XiZiw=2A, (15)
|
one has
ZSVM(V!X!O'):E XiXi]v't,A(V,X,U)
vI8
_>IM
=7 (VXU-)+A(1 ) (16)

The inconsistencyg M+ Zij appears already to first order in
v. Comparison with simulation results shows trzt" is
clearly superior taZ,".

2. Santos, Yuste, and Lo pez de Haro’s approximation

The two limitations ofX just mentioned, namely, the
slavery to Henderson'’s equathﬁ and the failure to give a
common EOS through Eg$2) and (3), are remedied by a
recent proposal made by Santisal?! It reads

o R R E—

Xij

(an')—l zj(x,0)

1-v/2
1_

—(A-v)x(v) 17

z (x,0),

wherez;; is again given by Eq9) and the contact valug(v)

of the monodisperse fluid can be freely chosen. Obviously, irqlg)_

the trivial case where all the disks have the same size,
=1 and sox;;""(v) = x(v). Insertion of Eq(17) into Eq.(2)
yields the following simple form:

SYH — v __1
2" (v,X,0)=1+ 1_V+Av 2x(v) 1_}}}
=1+4+2v m‘FAX(V) , (18
where use has been made of EG®), (11), and
2 2_< >2 2= 2
iEj XiX;0ijZj; = 2>2E XX] F=(0)%, (19

S. Luding and A. Santos

valid again for any number of components. Note the identi-
cal form of the second lines in Eg&l2) and (18). The ex-
pression for)(SYH is given by Eq.(17), except thatz;; must

be replaced by, . When ;' is inserted into Eq(3) and
use is made of Eq15) and of

> X2, =4A, (20

it turns out that the EO&L8) is consistently reobtained, i.e.,
ZSYHEZSYH
b .

So far, the monodisperse quantjgyr) remains arbitrary.
From that point of view, Eq(17) represents a consistent
class of approximations, with fregv), rather than a specific
approximation.

3. Some comments

It is worth mentioning that Eqg8) and (17) share the
property that, at a given packing fractienthe whole depen-
dence ofy;; on the compositiorix,o) of the mixture appears
through the parametex; only. To clarify the implications of
this, let us consider two mixturéd andM '’ having the same
packing fractiony but strongly differing in the set of mole
fractions, the sizes of the patrticles, and even the number
components, i.e.,X(o)# (x',o’). Suppose now that there
exists a paifj in mixtureM and another pair’'j’ in mixture
M’ such thatzj(x,0)=z:;(x',6’). Then, according to
Egs.(8) and(17), the contact value of the RDF for the pajir
in mixture M is the same as that for the paij’ in mixture
M’. This sort of “universality” ansatz, which is more gen-
eral than Eq(8) or (17) and is shared by other well-known
proposals fory;; of hard-sphere fluidge.g., the scaled-
particle theory, Percus-Yevick, and BoublBrundke-
Henderson-Lee-Levesque approximatigitsis of course
only approximate. However, its enforcement leads to the
construction of simple and accurate proposals ¥grwith
the help of only a few requirements33

Interestlngly enough, the EQ%2) and(18) are identical
when y=x" is used in the latter, even though the contact
valuesyj; used in the derivation are different. More specifi-
cally, if y=x" is used in Eq(17), then

of

SYH

IM_
Xij

/16
—Xij T _Vzij(l_zij)- (21

1
The property ZSYH ZJM is just a consequence of
2 XX 0'”2 =3 cr” ,J , as follows from Eqgs(11) and

If one choosesy(v)=x"(v) then Eq.(17), being con-
sistent with the conditiod=Z,,, can be expected to become
more accurate than E¢B), especially for highly asymmetric
mixtures. SinceyH(v) is fairly good for »<0.3, as Fig. 1
shows, the main difference between E@.and(17) in that
density domain lies in the functional relation on the param-
eterz; : linear in the case of Eq8) and quadratic in the case
of Eq. (17). As a consequence,

XﬁYH/XiJjM> 1 if Zij < 1,

=1 if Zij:]-!

<1 if z;>1, (22
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1.01 A. Collision model

The particles are assumed to be perfectly rigid and fol-
low an undisturbed motion until a collision occurs as de-
scribed below. A change in velocity can occur only at a col-
lision, and due to their rigidity, the disks collide
instantaneously. The standard interaction model for instanta-
neous collisions of particles with diameters and massn,

1.00

0.99 is used in the following. The postcollisional velocities
5 (v{ ,v{) of two collision partnersj are given in terms of the
= precollisional velocities\,v;) by
=
2 i
5 098 v=v Ty @3
! ’ ’ m .
= i)

where w;;=m;m;/(m;+m;) is the reduced mass and,
=[(vi—vj)-n]n is the component of the relative velocity
vi—v; parallel to the unit vecton pointing along the line
connecting the centers of the colliding particles. If two par-
ticles collide, their velocities are changed according to Eq.

0.96 R 1 . 1 N 1 N (23).

B. Algorithm

In the ED simulations, the particles follow an undis-
FIG. 2. Plot of the ratio§¥"/ 2 against the parametey; for »=0.25(thin turbed translational motion until an event occurs. An event is
lines) and »=0.50 (thick lineg. The dashed lines correspond to the choice either the collision of two particles or the collision of one
x(»)=x"(») in Eq. (17), while the solid lines correspond to the choice particle with a boundary of a cellin the linked-cell
X(¥)=x"(»). The dotted line represents the JM expressfn structure.®* The cells have no effect on the particle motion
here; they were solely introduced to accelerate the search for
future collision partners in the algorithm.

Simple ED algorithms update the whole system after
each event, a method which is straightforward, but inefficient
for large numbers of particles. In Ref. 35 an ED algorithm
Jvas introduced which updates only those two particles in-
volved in the last collision. For the algorithm, a double-

On the other hand, those functions exhibit visible small dif_buffering data structure is implemented, whic_h Com"?“”s the

ferences av=0.5 due to the fact that™ deviates fromy-* "old” status and the “new” status, each consisting of time of

by about 0.5%Ccf. Fig. 1. event, positions, velocities, and event partners. When a col-
lision occurs, the old and new status of the participating par-

more accurate the monodisperse functipiv) the better ticles are exchanged. Thus, the former new status becomes

those approximations are expected to be. Therefore, morI e actual old one, while the former old status becomes the

successful predictions fog;; andZ can be expected if one new one and is then free_ for the_calculanon_ and storage of
chooses fory(v) an expression more refined than Hender_possmle future events. This seemingly complicated exchange

son’s, such as Ed7), especially for high densities. In Sec. 8];]|Infg;?ha;fr}nls fhegrle(gn?g:set)étr;rger%vilZ]r?éyo?;it:i: b?/e-
IV we will check all these expectations by comparing mo- y ging b ’

ctar naics esus o, agint g and(17, he DY, e Lot ot s o parehes o et
latter being complemented by the monodisperse prescrip- Y, In orc P i . . '
: t;;, of particlei with any other objecf, if the latter, inde-
tions (5) and (7). | . . :
pendently, changed its status due to a collision with yet an-
other particle. During the simulation such updates may be
necessary several times so that the predicted new status has
IIl. SIMULATION METHOD to be modified. _ _
The minimum of allt;; is stored in the new status of
Since we are interested in the behavior of rigid particlesparticle i, together with the corresponding partner De-
we use an event-drivefED) method that discretizes the se- pending on the implementation, positions and velocities after
qguence of events with variable time steps for all particleshe collision can also be calculated. This would be a waste of
between collisions, as adapted to the problem. This is differcomputer time, since before the timyg, the predicted part-
ent from classical molecular dynamics simulations, wherenersi and j might be involved in several collisions with
the time step is usually fixed for the numerical integration ofother particles, so that we apply a delayed update schgme.
the equations of motion. The minimum times of event, i.e., the times which indicate

where we emphasize that E@?2) refers to 6<v»=<0.3. This
is illustrated in Fig. 2, where the ratigi""/ x; is plotted
versusz; for v=0.25 andv=0.5. In the former case, since
x" and y** yield practically the same value, the associate
two functions given by Eq(17) are hardly distinguishable.

In the spirit of the approximationg§l?7) and (18), the



8462 J. Chem. Phys., Vol. 121, No. 17, 1 November 2004 S. Luding and A. Santos

TABLE I. Simulation parameters for mixture’s and B.

Mixture N, N, X1 Xo o lo, Zyq Z15 Zy
A 450 126 0.781 0.219 12 0.736 0.981 1.472
B 7803 1998 0.796 0.204 112 0.747 0.996 1.494
the next event for a certain particle, are stored in an ordered I
heap tree, such that the next event is found at the top of the y;i= ) (24
1 J 1
heap with a computational effort @(1); changing the po- 207 NNTTH(2 )

sition of one particle in the tree from the top to a new posi-
tion needdO(In N) operations. The search for possible colli-
sion partners is accelerated by the use of a standard IinkeWhererﬁl is the average number ofj( collisions per unit
cell data structure and consumeé3(1) of numerical time and per particle of speciesA is the area of the system,
resources per particle. In total, this results in a numericand T=T,; ;=El/N; ; is the temperature based on the ki-
effort of O(N In N) for N particles. For a detailed description netic energy per particle per degree of freedom. Note that
of the algorithm see Ref. 35. rijl is proportional toN; and hencey;; = xj; -
The averages are taken over a few hundred thousand
(low density up to several millionghigh density collisions
per particle, where the first 20%—-30% of the simulation time
The results for the RDF contact values are computeds typically disregarded, so that the average is taken in a
indirectly as reasonably equilibrated state.

C. Computation of x;;

TABLE II. Molecular dynamics values of the contact valygs and of the compressibility factaf for the
hard-disk binary mixtureé andB, with parameters given in Table |. The numbers in parentheses indicate the
statistical error in the last digit.

Mixture v X11 X12 X22 Z
A 0.01 1.0185) 1.0158) 1.022) 1.01931)
A 0.05 1.0764) 1.0863) 1.082) 1.10263)
A 0.10 1.1627) 1.1815) 1.202) 1.22297)
A 0.15 1.2645) 1.2896) 1.341) 1.36589)
A 0.20 1.38%4) 1.4266) 1.482) 1.53712)
A 0.25 1.5182) 1.5796) 1.662) 1.7422)
A 0.30 1.6893) 1.7688) 1.882) 1.99712)
A 0.35 1.8885) 1.9987) 2.153) 2.3103)
A 0.40 2.1326) 2.2812) 2.51(5) 2.7087)
A 0.45 2.4418) 2.633) 2.987) 3.221)
A 0.50 2.8285) 3.092) 3.524) 3.891)
A 0.55 3.3466) 3.691) 4.356) 4.791)
A 0.60 4.031) 4.512) 5.41(7) 6.052)
A 0.65 5.011) 5.653) 7.039) 7.873)
A 0.70 6.472) 7.367) 9.62) 10.675)
A 0.75 8.771) 10.149) 13.65) 15.32)
B 0.05 1.0761) 1.0843) 1.091) 1.10282)
B 0.10 1.1641) 1.1803) 1.211) 1.22343)
B 0.1482 1.2621) 1.2881) 1.331) 1.36095)
B 0.20 1.3852) 1.4232) 1.501) 1.53767)
B 0.25 1.52%1) 1.5823) 1.682) 1.7451)
B 0.30 1.6901) 1.7682) 1.901) 1.9962)
B 0.3455 1.878) 1.9785) 2.152) 2.2822)
B 0.3867 2.078) 2.1966) 2.452) 2.5953)
B 0.45 2.45@2) 2.6387) 3.002) 3.2215)
B 0.50 2.8482) 3.0964) 3.592) 3.8912)
B 0.55 3.3573) 3.7057) 4.373) 4.7942)
B 0.60 4.0582) 4.5256) 5.492) 6.0553)
B 0.65 5.0367) 5.7089) 7.0605) 7.8853)
B 0.66 5.2816) 6.002) 7.445) 8.3484)
B 0.67 5.5474) 6.321) 7.91(4) 8.8551)
B 0.68 5.8305) 6.641) 8.364) 9.4091)
B 0.69 6.145%8) 7.062) 8.895) 10.0162)
B 0.70 6.4989) 7.453) 9.557) 10.6843)
B 0.75 8.822) 10.344) 13.41) 15.3Q1)
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FIG. 3. Density dependence of the raﬁqllxi';" for a hard-disk binary
mixture with parameters as given in Table I. The filled squares and open
circles represent our simulation dataand B, respectively. The lines rep-

JM

FIG. 4. Same as in Fig. 3, except @,/ x5 -

resent the ratig¢s;/x3Y for caseB with x(v)=x"(») (dashed ling and
with x(v)=x"*(») (solid line); the dotted line represents E@). The the-
oretical curves for cas@ are practically indistinguishable from those for
caseB and so they are not plotted.

IV. RESULTS AND DISCUSSION

1. Low densities

We observe thaty;" ;"

ij Wwith both prescriptions
x(»)=x"(v) and x(v)=x"*(v) are practically indistin-
guishable up tar~0.3. This is consistent with the fact that
in that domain of low and moderate densities the correction
(7) to Henderson’s EOS is irrelevant, as shown in Fig. 1. On

the other hand, some limitations of E@) are already ap-

We have considered two hard-disk binary mixtures with
a mole fraction of small disks; and a mole fraction of large
disks x,, as summarized in Table I. The diameter ratio of
small to large disks igr; /0,=1/2 in both cases. The corre-
sponding values of the parametersdefined by Eq(9) are
also included in Table 1.

Mixtures A and B have nearly the same composition
(x,=0.8x,=0.2), but the number of particles in mixtuBe
is about 17 times larger than in mixtufeand so the statis-
tics is better in casd. The data ofy;; for several area
fractions in the interval 0.04 »<0.75 are given in Table II.
The values of the compressibility factor obtained either di-
rectly from the simulations or indirectly from Ed2) by
inserting they;; are also included.

A. Contact values

In Figs. 3, 4, and 5 we have plotted the simulation values
for the ratiosy.11/x1y . x12/ X35, andxao/ x5y, respectively,
against the area fractiom The data corresponding to ca&e
are shown only for the densities not considered in dase
namely, v=0.01, 0.15, 0.35, and 0.40. The ratig; /x}}"
represents a “quality factor” of the simulation data with re-
spect to the JM approximatio@). Figures 3—-5 also include
the ratios x;;""x;, where in Eq.(17) we have taken
x(v)=x"(v) [cf. Eq. (5)] and x(v)=x"*(») [cf. Eq. (7)]
for the monodisperse fluid.

1.01

1.00 k...-1.

0.99
0.98
\ﬁ 0.97
0.96

0.95

0.94
0.0

0.2

FIG. 5. Same as in Fig. 3, except f@s,/ x3y -
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parent in the range 9v=<0.3: the JM approximation 1.01
(slightly) underestimates the small-small contact valyg(

<x11), While it overestimates the large-large contact value

(x22> x22). These two effects, which are not linked to the

use of x"(v), are reasonably well captured by H47), as 1.00
expected from Eq(22). In the case of the cross contact
value, we havey;,= x5 for 0<»=<0.3, in agreement with
the fact thatz;,=1 in our mixturesA andB.

0.99

2. High densities

In the high-density domaim=0.3, the simulation data N 0.98
clearly deviate from Eqs(8) and (17) when the latter is
combined withy(v) = x"(»). Both theories tend to overes-
timate the contact values, what is essentially a trait inherited 0.97
from Henderson’s EOS. On the other hand, a much better
agreement is obtained when E47) is combined with Eq.
(7) for the monodisperse fluid. The remaining deviations of

the latter theory from the simulation values are a reflection of 0.96 , , ,

the approximate character of Ed.7) rather than that of Eq. 0.0 0.2 04 0.6 0.8
(7), in view of Fig. 1. Part of the deviations for the highest

densities may be due to the proximity to crystallization. In v

the monodisperse case, it is known that the hard-disk fluid

. M i . -
undergoes a freezing transitio@possibly mediated by a FIG. 6. Density dependence of the rafi6z™" for a hard-disk binary mix

; §é . 26-29 31.36 ture with parameters as given in Table I. The filled squares and open circles
hexatic phase) at an area fractiow=0.7. “7In an represent our simulation dafaandB, respectively. The lines represent the

case, polydispersity tends to increase the freezing transitiontio zS""/z™ for caseB with x(v)=x"(») (dotted line—unity and
density. For mixture\, our simulations indicate that the tran- x(»)=x"*(») (solid line. The dashed line is the empirical relati¢25)
sition takes place between=0.75 andy=0.8. For more Proposed in Ref. 29.
details on very high densities in the monodisperse and bid-
isperse situations see Refs. 26 and 27, respectively.

V. CONCLUSION

In this paper we have presented molecular dynamics re-
sults for the contact valueg; =g;;(o;;) of the RDFsg;;(r)
Although in this paper we have been mainly concernedf binary mixtures of additive hard disks. As a representative
with the contact values of the RDFs, it is worth consideringcase we have fixed mole fractiong=0.8 andx,=0.2, and
the compressibility factaZ=p/pkgT. The simulation values used a diameter ratio, /o= 5. A set of numerical values of
of the ratioz/z™, wherezM is given by Eq.(12), are plot-  the area fraction have been considered, covering the dilute,
ted in Fig. 6. We observe that the JM EOS is fairly accurate¢he intermediate, and the dense regimes.
for v<0.4, even though the individual valuqéj'\" are not The simulation results have been used to assess the reli-
that good in the same density range. This is mainly due to &bility of theoretical expressions previously proposed in the
fortunate “cancellation of errors” ¥i7'<x.1, while x5y  literature. Until recently, practically the only proposal was
> X27). As a matter of fact, as already mentioned in Sec. II,the one by Jenkins and MancfhWhich is expressed by Eq.
the recipe(18) in combination withy(v) = x"(v) becomes (8). This approximation succeeds in capturing the main
identical with Z’™. Nevertheless, the JM approximation trends in the intricate dependence)@jf on the area fraction
again overestimates the simulation data for higher densitie8nd the composition of the mixture, even at a quantitative
(»=0.4). Wheny(v)=x"*(v) is used, Eq.(18) becomes level. _ _
quite reasonable, although it slightly underestimates the mix- On the other hand, our simulation data expose some

B. Equation of state

ture pressure of the fluid at the highest densities. (smal) limitations of x;“: already for low and moderate
Interestingly, a recently proposed empirical correction todensities ¢=0.3) the JM recipe tends to underestimate the
the EOS small-small correlation value and overestimate the large-

large value; for higher densities£0.3), M overestimates
Z=1+(1-arh)(zM-1), a=01, (25 the correct values, an effect that can be traced back to the

see Eq(20) in Ref. 29, works also pretty well for the param- fact that)(iJjM is strongly tied to Henderson’s EGS.

eter set used here, however, without theoretical foundation. These two shortcomings are widely corrected by a recent

The excellent performance of Eq25) for x;~0.8 and proposal made by Sant al,”* Eq. (17). While x;" is a

o,/0,= % does not necessarily extend to other compositionslinear function of the parametey; defined by Eq(9), Xﬁ'YH

In fact, Eq.(25) is not as good as E7) in the monodisperse is a quadratic function. This higher-order approach allows

case. xi;" to satisfy an extra consistency condition in the limit of
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