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Standard statistical-mechanical formulas relate the ther-
modynamic properties of a fluid to the two-body interaction
potential ¢(r) and the associated radial distribution function
g(r;p.B),! where p is the number density and B=1/k,T is
the inverse temperature. When an approximation is used to
get g(r;p, B), there is in general no guarantee that those dif-
ferent formulas or routes are thermodynamically self-
consistent. In fact, some liquid state theories contain one or
more adjustable state-dependent parameters which are tuned
to achieve thermodynamic consistency between two or more
routes. This is the case, for instance, of the modified
hypernetted-chain closure,” the Rogers-Young closure,” the
Zerah-Hansen closure,4 the self-consistent Ornstein-Zernike
approximation,5 the hierarchical reference theory,6 Lee’s
theory based on the zero-separation theorems,’ the general-
ized mean spherical approximation,8 or the rational-function
approximation.9 It is then remarkable when an approximate
theory for g(r;p, ) satisfies a condition of thermodynamic
consistency without being forced to do so. In this context, it
is perhaps not sufficiently well-known that the hypernetted-
chain (HNC) integral equation provides thermodynamically
consistent results through the virial and energy routes, re-
gardless of the potential ¢(r)."® More recently, Mladek
et al."' have shown that the mean spherical approximation
(MSA) is exactly solvable for the Gaussian core model and
have found that the virial and energy routes to thermodynam-
ics are equivalent in that case as well.

The aim of this note is to place Mladek et al. ﬁnding11 in
a broader context by proving the thermodynamic consistency
between the virial and energy routes for (a) any “soft” po-
tential and (b) within a class of approximations that includes
the MSA as a particular case.

The virial and energy routes to thermodynamics read’

’fj’ Zp.p)=1~ 508 f ar g(rip.B)r - Vo, (1)
d 1
u(p, B)_Zfzpf dr g(r;p, B e(r), (2)

respectively, where p is the pressure, Z is the compressibility
factor, d is the dimensionality of the system, and u is the
internal energy per particle. The condition of thermodynamic
consistency between both routes is
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P d
p&—pu(p,ﬁ) = @Z(p,ﬁ). (3)

Let us now consider an interaction potential verifying the
boundary conditions

limre(r)=0, limr4e(r) =0. (4)

r—0 r—®
While the second condition means that the potential is suffi-
ciently short ranged, the first condition defines the kind of
soft potentials to be considered here. It includes bounded
potentials (such as the Gaussian core model'? or the
penetrable sphere model"?), logarithmically diverging
potentials,14 or even potentials diverging algebraically as
o(r) ~r™ with n<d. On the other hand, conventional mo-
lecular models (such as hard spheres, square-well fluids, and
Lennard—Jones fluids) are excluded from the class of poten-
tials (4). Equation (4) implies that &(0)=finite, where the
Fourier transform of the potential is

Bk) = Flo(r)] = f dr e*"e(r). (5)

Introducing the total correlation function h(r;p,B)
=g(r;p,B)—1, Egs. (1) and (2) can be rewritten as

Z(p.B) =1+ pﬁ@(O) —pﬂl (p.B), (6)
d 1
u(p,B) = > B + 2;mp(O) + pl (p.B), (7)
where
Iv(p’ﬁ) = f dr h(’"QPuB)r . V(P(r)

1 ~ d B
Gy J dk hlk:p.f) 2 [k@B)].  (8)

1(p.B) Efdr h(r;p,B)e(r)

= (2%)[, f dk h(k;p, B)@(k). 9)

In the last equalities of Eqgs. (8) and (9), h(k;p,p)
=Fh(r;p,B)] and standard steps have been followed. The
consistency condition (3) becomes
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1
MpB) = ol B+ B B=0. (10)

Equation (10) is of course satisfied if the exact h(k;p,B) is
used to evaluate I,(p,8) and I,(p,B). On the other hand, as
proven below, the same happens with any approximate func-

tion h(k;p,B) which, when divided by p, depends on p, S,
and k through the scaled variable z= pB@(k) only, i.e.,

h(k;p,B) = p~'F(z), z= pB&(k), (11)

where the function F(z) does not need to be specified. The
scaling form (11) implies

9~ _ 9 -
ﬁ[ﬁh(k;p,ﬁ)] =h(k;p,B) + a—p[ph(k;p,/a’)], (12)

9. =~ 9 o\~ 9=
a—p[ph(k;p,ﬂ)]k-Efp(k)—qo(k)k- 0kh(k,p,,8)- (13)

Applying Eq. (12) in the definition of A(p, 8), Eq. (10), one
gets

1 _ PR
Alp,B) =- mf dk h(k;p,ﬁ)ﬁ [kg(k)]

9 - q
+a—p[ph(k;p,ﬁ)]k-a—kso(k) - (14)

Finally, use of Eq. (13) yields A(p,8)=0, which proves the
thermodynamic consistency between Egs. (1) and (2) within
the class of approximations (11). Furthermore, Z and u adopt
the forms

1
Z(p7ﬁ)= 1 +E¢(O)a_ﬁgu(a)7 (15)
d 1_
Bu(p,B) = 2 * E@(O)a - BLla), (16)
where  a=pB, {(a)=pl(p,p)/2d, and  ((a)

=-pl,(p,B)/2. Equation (10) implies the relation o’ ()
=d[al,(@)]/da, where ¢’ (a)=d{,(a)/da.

It must be noted that the compressibility route is
inconsistent with the virial and energy routes, i.e.,
[1+ph(0;p, BT " # d(pZ)/dp, for approximations of the
form (11). While the (reduced) isothermal compressibility
1+pﬁ(0;p,ﬂ)= 1+F($(0)@) depends on p and B through the
product a=pB only, Eq. (15) yields d(pZ)/dp=1+&(0)a
—Bal (a), the last term depending on both « and B.

The MSA for soft potentiads11 consists of assuming the
random-phase approximation c(r;p,8)=—B¢(r) for the di-
rect correlation function at any distance. The Ornstein-
Zernike relation' then gives Eq. (11) with F(z)=-z/(1+z),
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so that this version of the MSA is thermodynamically con-
sistent through the virial and energy routes. However,
they are inconsistent with the compressibility route:

[1+ph(0;p,B)]™" - d(pZ)/ dp=Bal’ (a).

The work presented here and elsewhere'” might have a
didactic value in showing that relatively simple mathematics
allows one to check the thermodynamic self-consistency be-
tween the virial and energy routes in some important special
cases.
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