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A branch-point approximant for the equation of state of hard spheres
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Using the first seven known virial coefficients and forcing it to possess two branch-point
singularities, a new equation of state for the hard-sphere fluid is proposed. This equation of state
predicts accurate values of the higher virial coefficients, a radius of convergence smaller than the
close-packing value, and it is as accurate as the rescaled virial expansion and better than the Padé
[3/3] equations of state. Consequences regarding the convergence properties of the virial series and
the use of similar equations of state for hard-core fluids in d dimensions are also pointed out.

© 2009 American Institute of Physics. [DOI: 10.1063/1.3147723]

I. INTRODUCTION

The virial expansion of the equation of state (EOS) is an
expansion in powers of (usually) the number density p that
was originally introduced phenomenologically by Kammer-
lingh Onnes' in 1909 in order to provide a mathematical
representation of experimental data. Later, in what may be
considered as one of the great achievements in statistical
physics in the 20th century, Mayer and Mayer2 was able to
derive such an expansion for the pressure p of a classical
fluid in terms of its density. The corresponding virial coeffi-
cients (usually denoted by B)) turn out to be related to inte-
grals over the interaction among groups of fluid particles and
are, in general, functions of the absolute temperature 7. In
the case of hard-sphere (HS) fluids, which are the subject of
this paper, the virial coefficients are, however, independent
of T. In particular, the value of the second virial coefficient
for HSs in d dimensions is B,=2%"'v,07, where o is the
diameter of the spheres and v, =(7/4)%?/T(1+d/2) is the
volume of a d-dimensional sphere of unit diameter, a result
first derived for three-dimensional HSs (d=3) by van der
Waals.’ Analytical expressions for B; and B, are also avail-
able in literature* ™" but higher virial coefficients must be
computed numerically and, since this represents a non trivial
task, up to now only values up to the tenth virial coefficient
have been reported. 15-34

The virial expansion for d-dimensional HS systems is
often expressed in terms of the packing fraction 7 defined as
n=v,pa’. Hence, for these systems the compressibility fac-
tor Z=p/ pkgT (with kg the Boltzmann constant) is given by

Zmp) =1+ by, (1)
j=2

where the (reduced) virial coefficients bjEBj/(vdod)j‘1 are
now pure numbers.
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The availability of only a few virial coefficients repre-
sents a restriction on the usefulness of the virial expansion
and many issues about it are still unresolved. For instance, its
radius of convergence is not known even though lower
bounds are available.*>¢ Second, although all the available
virial coefficients in d=2, d=3, and d=4 are positive, even
the character of the series (either alternating or not) is still
unknown. In fact results from higher dimensions suggest that
the positive character might not be true for the higher virial
coefficients of hard disks and spheres.33’37’38 Finally, people
have usually recurred to approximate EOSs obtained through
the knowledge of the limited number of virial coefficients via
various series acceleration methods such as Padé or Levin
approximants. However, the expectation that these EOSs
would ultimately lead to the complete phase behavior of the
system has not been fulfilled. Hence, the question of whether
the virial series contains relevant information related to the
phase behavior of the HS system also remains as an open
one.

Recently it has been clearly established that the EOSs
for hard hyperspheres (d=4) predicted by the Percus—
Yevick (PY) integral equation possess a branch-point singu-
larity on the negative real axis that is responsible for the
radius of convergence and the alternating character of the
virial series.””® It is very likely that these features are not
artifacts of the PY approximation but would be shared by the
exact EOSs. However, in the case of hard spheres (d=3), the
radius of convergence of the PY EOS is artificially »=1 and,
as stated above, there is no definite indication about the na-
ture of the singularity responsible for the true radius of con-
vergence or its value.

The main aim of this paper is to shed some more light on
the character of the virial series of the three-dimensional HS
fluid. The idea is to propose a new (heuristic) EOS for HS
systems in d dimensions that, for reasons that will become
clear later, we will refer to as a “branch-point approximant.”
Such a proposal is not geared specifically toward obtaining
an accurate EOS but rather relies on the notion that the ra-
dius of convergence of the virial series might be dictated by
a branch-point singularity. In any case, the plausibility of this
notion will be assessed by comparing the predictions of high
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TABLE 1. Expressions (for general k) and numerical values (for k=d=3) of
a, a,, A, and c;—cs.
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TABLE II. Exact and predicted values of bg—b, in the three-dimensional
case.

Coefficient Expression Value

a Sio/Sis 0.271 232
a, 703687/ ks 1.948 04

A Hay—a)?/S, s 1.514 86

¢ 3a,+b,A 6.873 14

s 2(ar+ad)-S5A 0.002 683 43
c 1a1(3ay—a})+ S 4A 133515

virial coefficients coming out of the proposal both with the
exact values of these coefficients for each d and with the
performance of other proposals for the EOS (rescaled virial
expansions and Padé approximants).

This paper is organized as follows. In Sec. II we intro-
duce the new EOS including a branch-point singularity and
examine the case of three-dimensional HSs. Section III refers
to the use of the same type of EOS for different dimension-
alities. We close the paper in Sec. IV with some discussion
and concluding remarks.

Il. THE CASE OF HARD SPHERES (d=3)

We begin by proposing a branch-point approximant for
the EOS of d-dimensional HS systems, namely,

l+cyp+cyP+c3 — (1 +2a,m+a,P)*?
A(l =)t ’

)

where A, ay, a,, ¢y, ¢35, c3, and k are parameters to be deter-
mined. This functional form (with k=3) is inspired by the
EOS for hard hyperspheres in d=5 predicted by the PY
theory through the virial route.”’** As stated above, we will
assume the approximant form given in Eq. (2) for three-
dimensional HSs as a toy model to highlight the possibility
that the radius of convergence of the virial series in this
system might be dictated by a branch-point singularity. Ac-
cording to the philosophy of an approximant, the six coeffi-
cients A, ay, a,, ¢, ¢,, and ¢z are obtained from the knowl-
edge of the virial coefficients b,—b;. The resulting
expressions are given in Table I, where we have called

Sk .
Skn =2 (n_j)<— 1)b;. (3)

J=2

Z(n =1+

Although the choice for k is, in principle, arbitrary, a
natural one seems to take k=d. Hence, in this section we
assume k=3. A special situation takes place if a2=a%. In that
case, the denominator (S3s) in the expression for A must
vanish in order to have a finite value, i.e., bs=b,—3b3+3b,.
Since this denominator also appears in the expressions for a,
and a,, the respective numerators (S3¢ and S; ;) must also
vanish, i.e., one must have bg=3b,—8b3+6b, and b;=06b,
—15b5+10b,. Under those conditions, one has ¢;=3a;+b,A,
c;=3a7-S53A, c3=a;+S34A, so that Eq. (2) becomes Z(7)
=14 9[by+(b3—3b,) p+(b,=3b3+3by) 7]/ (1-73)°, regard-
less of the values of a; and A. The aforementioned relation-
ships are precisely satisfied by the virial and compressibility

Branch-point  Rescaled expansion  Padé [3/3]
Coefficient Exact Eq. (2), k=3  Eq. (5), m=6, k=3 Eq. (6)
bg 68.538 68.609 68.812 69.040
by 85.813 85.532 86.219 87.147
bo 105.78 104.32 105.56 107.93

routes to the EOS in the PY approximation for d=3. There-
fore, the functional form (2) is general enough as to include
both PY EOSs, and thus also the Carnahan-Starling (CS)
EOS,*” given by

l+p+7 -7
(1-n°* ~

as particular cases. Moreover, in the one-dimensional case
one has b;=1, so that again the relationships are satisfied and
the resulting compressibility factor reduces to the exact EOS
of the system, namely Z(7)=1/(1-17).

The numerical values of the coefficients a;, a,, A, and
cy—c3 obtained from the known values of the first seven
virial  coefficients®**? (namely, b,=4, b;=10, b,
=18.364 768, bs=28.2245, by=39.8151, b;=153.3444) are
given in Table I. The two branch points —(a; = \/a%—az)/ a,
=-0.139234*=0.702 817i lie on the complex plane. Their
modulus is 1/ \'@=0.716 and this is then the radius of con-
vergence of the virial series of the EOS (2). While this radius
is possibly an overestimate (in fact, it is larger than the freez-
ing density), it is not unphysical since it is smaller than the
close-packing value, in contrast to the radius =1 given by
the PY, the CS, and the Carnahan—Starling—Kolafa44 EOSs,
to name just a few.

Table II compares the known and predicted values of
bg—b,o. Apart from the values predicted by Eq. (2), the table
also includes the values obtained from the two following
approximate EOSs that also make use of b,—b: The rescaled
virial expansion12

1+ 30,G
(1-n* ~

where m=6, k=3, and C,=(-1)"[(*) -5, ,,,], with S, given
by Eq. (3), and the best*> Padé approximant [3/3] given by

— 1 +22=1Dn77n
1 +2131=1En7]n ’

where D, and E, (n=1,2,3) are combinations of b,—b,
whose explicit expressions may be easily obtained but will
be omitted here. The deviations from the correct ones of the
values for bg—b,, predicted by Eq. (2) are 0.1%, 0.3%, and
1.4%, respectively. In contrast, the deviations of the values
predicted by the rescaled virial expansion and the Padé ap-
proximant [3/3] are 0.4%, 0.5%, and 0.2% and 0.7%, 1.5%,
and 2%, respectively. Note that, in particular, the rescaled
virial expansion predicts a very accurate value for b,, even
better than the prediction for bg. At a qualitative level, an
interesting outcome of Eq. (2) is first that it predicts a nega-
tive value of a certain coefficient (specifically, bsg) and sec-

Zes(m) = (4)

30,33

(5)

(6)
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FIG. 1. (Color online) Plot of sgn(b)ln|b;| for j=150 in the three-
dimensional case.

ond that henceforth the coefficients change sign every 1-2
terms. Figure 1 shows sgn(b;)In|b;| for j=150. In contrast,
the rescaled virial expansion predicts that all the b; are posi-
tive, while the Padé [3/3] predicts positive coefficients up to
bse and then alternating signs for groups of 55 consecutive
coefficients.

While the comparison between the exact values of the
higher reduced virial coefficients and those that follow from
the expansion of Eq. (2) is quite satisfactory, one may rea-
sonably wonder how the new EOS will perform when com-
pared with other accurate proposals. Figure 2 shows that
both the branch-point approximant and the rescaled virial
expansion deviate less than 0.3% from the CS values for 0
=7=0.5 and are in very good agreement with simulation
data.*® The Padé [3/3] does a poorer job in this instance.
Hence, the performance of the new proposal is also very
accurate over the whole fluid phase range.

lll. OTHER DIMENSIONALITIES

In this section we perform a similar analysis of the use
of Eq. (2) with k=d for all the dimensionalities (d=2, 4, 5, 6,
7, 8 and 9) where the first ten virial coefficients are
known.*>**
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FIG. 2. (Color online) Plot of 100[Z(7)/Zcs(7)—1] in the three-dimensional
case. Solid line: Z(#) given by the branch-point approximant (2) with k=3;
dotted line: Z(7) given by the rescaled virial approximant (5) with m=6 and
k=3; dashed line: Z(7) given by the Padé [3/3] approximant (6). The circles
are simulation data from Ref. 46.
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Table III displays the exact and predicted values of bg
—byo for d=2 and d=4-9 as given by the branch-point ap-
proximant, the rescaled virial expansion and the Padé [3/3]
EOS:s.

For d=2 the best approximant is the Padé [3/3]. The
branch-point approximant also does a good job in the case of
hard disks, but the rescaled virial approximation is slightly
better (except for the value of bg). The case d=4 is some-
what peculiar because the predictions from all the approxi-
mants are rather poor. In any event, the Padé [3/3] gives the
“best” performance, followed by the rescaled virial expan-
sion, and finally the branch-point approximant. This latter
even “anticipates” the likely alternating character of the se-
ries and predicts a negative value of b,y The situation
changes for 5=d=9 where the performance of the rescaled
virial expansion is extremely poor and in fact it never pre-
dicts negative coefficients, even when the exact bg<<O is
introduced (d=6, d=7) or the exact b, <0 and bg<<0 are
introduced (d=8, d=9). On the other hand, in these dimen-
sionalities the Padé [3/3] predicts the right signs, while the
branch-point approximant predicts, in addition, very good
values.

With regards to the EOS of hard disks, in Fig. 3 we
compare the performance of the different approximants with
respect to the simulation data*™* in the range 0=7=0.7.
Note that in this range the new proposal is able to capture the
deviations (of up to 2%) of the simulation results that one
gets from the use of the reasonably accurate EOS due to

Henderson,49 namely,
1+ 7%8

Zy(p) = ——. (7)
T (1= 92

Concerning the nature of the singularities in these di-
mensions, in Table IV, we present the values of the singular-
ity closest to the origin and the radius of convergence of the
corresponding virial series, as predicted by the branch-point
approximant (2) with k=d. For comparison, the radius pre-
dicted by the PY integral equation is also included in this
table. One finds that the new proposal predicts complex
branch points for 2=d=4. These are precisely the cases
where all the known virial coefficients are positive. On the
other hand, for 5=d =9 the branch point closest to the ori-
gin is a negative real value. This agrees with the PY results,
which gives some support to the alternating series scenario.
Also note that the branch-point approximant and the PY radii
of convergence tend to agree as d increases.

IV. CONCLUDING REMARKS

In this paper we have introduced a new proposal for the
EOS of a three-dimensional HS fluid which is built from the
knowledge of the first seven virial coefficients and possesses
two branch-point singularities in the complex plane. Al-
though the choice we have made may appear to a certain
extent arbitrary, it is perhaps the simplest one embodying the
PY and CS EOSs for HSs in three dimensions as well as the
exact Z in d=1 and the PY virial EOS in d=5. The same
functional form was also assumed for the EOS of HS fluids
in other dimensions. For d=3 the new EOS predicts accurate
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TABLE III. Exact and predicted values of bg—b;, for d=2 and d=4-9.
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Branch-point Rescaled expansion Padé [3/3]

Coefficient Exact Eq. (2), k=d Eq. (5), m=6, k=d Eq. (6)
d=2

by 8.3191 8.3397 8.3408 8.3241

by 9.2721 9.3711 9.3297 9.3001

byo 10.216 10.469 10.319 10.298
d=4

by 605.66 284.49 486.07 543.55

by 739.88 3339.4 562.33 605.51

byo 1516.7 —5388.0 579.18 704.91
d=5

by -3.0064 X 10* -3.0177 X 10* 3.1662 X 10* —2.6584 X 10*

by 3.2083 X 10° 3.1961 X 10° 9.4841 X 10* 2.3254 X 10°

bio -3.3810x 10° —-2.9014 X 10° 2.2311X10° —-1.6907 X 10°
d=6

by -3.0752% 107 —3.0448 X 107 9.4362 X 10° -2.6002 X 107

by 7.3370x 10® 7.1562 % 10% 3.42934 x 107 5.0061 X 103

bio —-1.8472x 10" —-1.7587 % 10" 9.3201 X 107 -9.5796 X 10°
d=7

bg -8.7684 % 10° -8.6759 % 10° 1.3044 x 10° -7.6577% 10°

by 4.7482x 10" 4.6063 % 10" 5.3315x 10° 3.3839x 10"

byo -2.7274 %1013 -2.5651x 10" 1.6168 % 10 —1.4941x 10"
d=8

bg -1.6114x 10" -1.5950x 10" 1.2461 x 10! -1.4369 % 10'?

by 1.8713x 10" 1.8107 X 10" 5.6751x 10" 1.3783x 10"

bio -2.3160x 10'6 —-2.1589x 106 1.9031 X 10" -1.3220x 10'6
d=9

by -2.3219x 10" -2.2913x 10" 9.6059 % 10'? -2.0919 % 10'

by 5.5879x 10' 5.3746 X 10'° 4.8352%x 10" 4.1962 X 10'°

bio —1.4436x 10" -1.3252x 10" 1.7789 X 10" —-8.4195x 10'8

values of the higher virial coefficients, a radius of conver-
gence smaller than the close-packing value, and, irrespective
of the fact that its construction did not aim at accuracy, it is
very accurate when compared to simulation results and with

0.0

o
w

'
—
S

100[Z()/Z, ()-1]

'
—_
wn

\

00 01 02 03 04 05 06 0.7

n

FIG. 3. (Color online) Plot of 100[Z(7)/Zy(7n)—1] in the two-dimensional
case. Solid line: Z(7) given by the branch-point approximant (2) with k=2;
dotted line: Z(7) given by the rescaled virial approximant (5) with m=6 and
k=2; dashed line: Z(7) given by the Padé [3/3] approximant (6). The circles
and squares are simulation data from Refs. 47 and 48, respectively.

other approximants involving the same number of known
virial coefficients. This last feature was shown to be also
shared by the two-dimensional case. The proposal is also
robust with respect to small (~1%) deviations in the value of
the seventh virial coefficient, certainly more robust than ei-
ther the rescaled virial expansion or the Padé [3/3].

Except for d=4 (where, as already pointed out by Clisby
and McCoy33 in a somewhat related context, perhaps one
would require better accuracy of the known virial coeffi-

TABLE IV. Singularity closest to the origin and radius of convergence of
the virial series, as predicted by the branch-point approximant (2) with
k=d. The radius predicted by the PY integral equation is also included.

d Singularity Radius Radius (PY)
2 0.3234 +0.4533i 0.557 1

3 —-0.1392£0.7028i 0.716 1

4 —0.044 223 +0.075 26i 0.0873 0.15

5 —0.078 38 0.0784 0.057

6 —0.029 60 0.0296 0.024

7 —0.013 02 0.0130 0.011

8 —0.006 062 0.00606 0.0051

9 —0.002 925 0.00292 0.0024
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cients), in all other dimensionalities the branch-point approx-
imant gives the best overall performance with respect to the
prediction of the known virial coefficients. In particular, the
rescaled virial expansion is unable to predict even the signs
of known virial coefficients for d=35 and the Padé [3/3],
although correctly capturing these signs, leads to higher de-
viations. This of course constitutes no proof that the true
EOS of HS systems should include a branch-point singular-
ity, but the evidence provided here is at least consistent with
it.

On a related vein, the new EOS for HSs in d=3 also
leads to an alternating virial series, with bsg being the first
negative reduced virial coefficient. Given the difficulty of
computing exact high order virial coefficients, it is unlikely
that the alternating series scenario for HSs in three dimen-
sions may be confirmed in the near future. However, in view
of the present results and those obtained in higher
dimensions,***7 it certainly gets reinforced.

One can reasonably wonder whether the present ap-
proach to construct the EOS of HS systems using a number
of known virial coefficients may be cast in a systematic way.
While the answer is certainly not unique, the following con-
stitutes a possible generalization. We rewrite the compress-
ibility factor as

1+ 32 e = (1 + 2a;p+ ay P)N V2
A(l-n)t

Z(n) =1+ . (8)

where taking N=1 corresponds to Eq. (2). In the three-
dimensional case (k=d=3), the approximant with N=0
(which amounts to including only the first five virial coeffi-
cients) predicts bg—b;, with deviations equal to 0.54%,
0.69%, 1.2%, 3%, and 5%, respectively. On the other hand,
the approximant with N=2 predicts b, with a 1.2% devia-
tion. Therefore, although there is certainly an improvement
in the prediction of by, on going from N=0 to N=2, a rea-
sonable compromise between simplicity, generality, and ac-
curacy seems to suggest that the choice N=1 is the most
adequate.

Finally, it should be pointed out that if instead of choos-
ing k=d as we have done in this paper, a different k is picked
(say k=3 for all d) we find slight variations in the numerical
predictions but the overall picture remains unaltered.
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