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I. INTRODUCTION

In part I of this series1 one of us has studied both the
global and the local properties of mixtures of simple particles
in one-dimensional �1D� system. This work has been part of
a more general advocacy in favor of the study of local prop-
erties of liquid mixtures.2 Instead of the traditional study of
mixtures based on the global properties, such as excess
Gibbs energy, entropy, volume, etc., we have advocated a
shift in the paradigm toward focusing on the local properties
of the same mixtures, such as affinities between two species
�embodied in the Kirkwood–Buff integrals �KBIs��, and de-
rived quantities such as local composition, preferential sol-
vation, and solvation thermodynamic quantities.

The local properties, though equivalent to and derivable
from the global properties, offer a host of new information
on the local environments of each molecular species in the
mixture. This information is not conspicuous from the global
properties. Therefore, the study of the local quantities offer a
new and more detailed and interesting view of mixtures. In
this paper we have recalculated the KBIs directly for two-
component mixtures of particles interacting via square-well
�SW� potential.

In Sec. II, we outline the derivation of the pair correla-
tion functions for two-component systems in 1D system for
arbitrary nearest-neighbor interactions. In Sec. III we present
a sample of results for mixtures of SW particles. It is shown
that the results are in quantitative agreement with those ob-
tained in part I, which were based on the partition function
method and the inversion of the Kirkwood–Buff �KB� theory
of solution. We have also calculated the limiting values of
the KBIs when one of the species has a vanishing mole frac-
tion, which we could not have done from the partition func-
tion methods.

Another question examined both numerically and theo-
retically is the deviations from symmetrical ideal solutions
and its relation with the stability of the mixtures. It is shown
that no miscibility gap can occur in such mixtures.

II. THEORETICAL BACKGROUND

It is known that the correlation and thermodynamic
properties of any 1D homogeneous system in equilibrium
can be derived exactly, provided that every particle interacts
only with its nearest neighbors.3–5 The aim of this section is
to present a self-contained summary of the exact solution.
Although the scheme extends to any number of components,6

here we focus on the two-component case.

A. Correlation functions

Let us consider a binary 1D fluid mixture at temperature
T, pressure P, and number densities �� ��=A ,B�. The par-
ticles are assumed to interact only between nearest neighbors
via interaction potentials U���R�. Before considering the pair
correlation functions g���R�, it is convenient to introduce
some probability distributions.

Given a particle of species � at a certain position, let
p��

����R�dR be the conditional probability of finding as its �th
neighbor in some direction a particle of species � at a dis-
tance between R and R+dR. If ��2 it is obvious that the
��−1�th neighbor of � in the same direction �being located at
some point R� between 0 and R� is also a first neighbor of �.
Therefore, the following recurrence condition holds:

p��
����R� = �

�=A,B
�

0

R

dR�p��
��−1��R��p��

�1��R − R�� , �2.1�

where p��
�1��R� is the nearest-neighbor probability distribution

function. On physical grounds,4 the ratio p�A
�1��R� / p�B

�1��R�
must become the same for �=A as for �=B in the limit of
large R, i.e.,

lim
R→�

pAA
�1��R�

pAB
�1��R�

= lim
R→�

pBA
�1��R�

pBB
�1��R�

. �2.2�

This relation will be used later on. The total probability den-
sity of finding a particle of species �, given that a particle of
species � is at the origin, is

p���R� = �
�=1

�

p��
����R� . �2.3�a�Electronic mail: arieh@fh.huji.ac.il.
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The convolution structure of Eq. �2.1� suggests the intro-
duction of the Laplace transforms

p̃��
����s� = �

0

�

dRe−sRp��
����R�, p̃���s� = �

0

�

dRe−sRp���R� ,

�2.4�

so that Eq. �2.1� becomes

p̃��
����s� = �

�=A,B
p̃��

��−1��s�p̃��
�1��s� . �2.5�

Equation �2.5� allows us to express p̃��
����s� in terms of the

nearest-neighbor distribution as

p̃����s� = �p̃�1��s���, �2.6�

where p̃����s� is the 2�2 matrix of elements p̃��
����s�. From

Eqs. �2.3� and �2.6� we get

p̃�s� = �
�=1

�

�p̃�1��s��� = p̃�1��s� · �I − p̃�1��s��−1, �2.7�

where p̃�s� is the 2�2 matrix of elements p̃���s� and I is the
2�2 unity matrix.

Now, notice that the pair correlation function g���R� and
the probability density p���R� are simply related by p���R�
=��g���R� or, equivalently in Laplace space,

p̃���s� = ��g̃���s� , �2.8�

where

g̃���s� = �
0

�

dRe−sRg���R� , �2.9�

is the Laplace transform of g���R�. Therefore, thanks to the
1D nature of the model and the restriction to nearest-
neighbor interactions, the knowledge of the nearest-neighbor
distributions p��

�1��R� suffices to obtain the pair correlation
functions g���R�. More explicitly, from Eqs. �2.7� and �2.8�
the Laplace transforms g̃���s� are found to be

g̃AA�s� =
1

�T

QAA�s��1 − QBB�s�� + QAB
2 �s�

xAD�s�
, �2.10�

g̃BB�s� =
1

�T

QBB�s��1 − QAA�s�� + QAB
2 �s�

xBD�s�
, �2.11�

g̃AB�s� =
1

�T

QAB�s�
�xAxBD�s�

, �2.12�

where �T=�A+�B is the total number density, x�=�� /�T is
the mole fraction of species �, and we have called

Q���s� ��x�

x�

p̃��
�1��s� , �2.13�

D�s� � �1 − QAA�s���1 − QBB�s�� − QAB
2 �s� . �2.14�

The KBIs in the 1D case are defined by

G�� = 2�
0

�

dR�g���R� − 1� . �2.15�

In terms of the Laplace transform g̃���s�, Eq. �2.15� can be
rewritten as

G�� = 2 lim
s→0

	g̃���s� −
1

s

 . �2.16�

We see that only the nearest-neighbor distribution
p��

�1��R� is needed to close the problem. It can be proven4,5

that p��
�1��R� is just proportional to the Boltzmann factor

e−U���R�/kBT times a decaying exponential e−�R, where the
damping coefficient is �= P /kBT. Therefore,

p��
�1��R� = x�K��e−U���R�/kBTe−�R, �2.17�

where the proportionality constants K��=K�� �which of
course depend on the thermodynamic state of the mixture�
will be determined below by applying physical consistency
conditions. Taking Laplace transforms in Eq. �2.17� and in-
serting the result into Eq. �2.13� we get

Q���s� = �x�x�K��	���s + �� , �2.18�

where

	���s� = �
0

�

dRe−sRe−U���R�/kBT, �2.19�

is the Laplace transform of e−U���R�/kBT.
To recapitulate, given the interaction potentials U���R�

and given a particular thermodynamic state �P ,T ,xA�, the
three correlation functions are obtained �in Laplace space�
from Eqs. �2.10�–�2.12�, supplemented by Eqs. �2.14�,
�2.18�, and �2.19�.

B. Equation of state

In order to close the exact solution, it only remains to
determine the total density �T �equation of state� and the
amplitudes K�� as functions of P, T, and xA=1−xB. As said
above, they can be easily obtained by applying basic physi-
cal conditions. First, note that Eq. �2.2� establishes the fol-
lowing relationship:

KAB
2 = KAAKBB. �2.20�

Next, the physical condition limR→� g���R�=1 implies that
g̃���s�→1 /s for small s. According to Eqs. �2.10�–�2.12�,
this is only possible if D�0�=0, so that D�s�→D��0�s for
small s, where D��s�=dD�s� /ds. Thus, one has

�1 − QAA�0���1 − QBB�0�� − QAB
2 �0� = 0, �2.21�

�T =
QAB�0�

�xAxBD��0�
, �2.22�

�T =
QAA�0��1 − QBB�0�� + QAB

2 �0�
xAD��0�

, �2.23�
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�T =
QBB�0��1 − QAA�0�� + QAB

2 �0�
xBD��0�

. �2.24�

Elimination of �T between Eqs. �2.22�–�2.24� yields two
coupled equations which, together with Eq. �2.21�, gives

KAA =
1 − xBKAB	AB���

xA	AA���
, �2.25�

KBB =
1 − xAKAB	AB���

xB	BB���
. �2.26�

Insertion of Eqs. �2.25� and �2.26� into Eq. �2.20� allows one
to obtain a quadratic equation for KAB whose physical root is

KAB =
1

	AB���
1 − �1 − 4xAxB�1 − R�

2xAxB�1 − R�
, �2.27�

where we have called

R �
	AA���	BB���

	AB
2 ���

. �2.28�

It is interesting to note that, since K�� and 	�� are positive
definite, Eq. �2.25� and �2.26� imply that x�KAB	AB���
1
for �=A ,B, i.e.,

KAB	AB��� 
 min� 1

xA
,

1

xB
� � 2. �2.29�

Finally, the density �T is obtained from either of Eqs.
�2.22�–�2.24�. The result is

�T�P,T,xA�

= −
1

xA
2KAA	AA� ��� + xB

2KBB	BB� ��� + 2xAxBKAB	AB� ���
,

�2.30�

where 	��� �s� is the first derivative of 	���s�.
Equations �2.25�–�2.28� and �2.30� complete the full de-

termination of g̃���s� and the equation of state for any choice
of the nearest-neighbor interaction potentials U���x� and of
the thermodynamic state �P ,T ,xA�.

C. Kirkwood–Buff integrals

The KBI G�� can be derived, according to Eq. �2.16�, by
expanding sg̃���s� in powers of s as sg̃���s�=1+ 1

2G��s+¯
and identifying the linear term. After some algebra one gets

GAB = �TJ + 2
	AB� ���
	AB���

, �2.31�

GAA = �TJ − 2
xBKBB	BB� ���
xAKAB	AB���

−
2

�TxA
, �2.32�

GBB = �TJ − 2
xAKAA	AA� ���
xBKAB	AB���

−
2

�TxB
, �2.33�

where

J � xA
2KAA	AA� ��� + xB

2KBB	BB� ��� + 2xAxBKAB	AB� ���

− 2xAxBKAB

	AA� ���	BB� ��� − �	AB� ����2

	AB���
. �2.34�

The knowledge of the KBIs allows us to obtain the �re-
duced� isothermal compressibility

� = kBT� ��T

�P
�

T,xA

, �2.35�

by means of

� =
1 + �T�xAGAA + xBGBB� + �T

2xAxB�GAAGBB − GAB
2 �

1 + �TxAxB
AB
,

�2.36�

where


AB � GAA + GBB − 2GAB. �2.37�

It can be checked that the resulting expression of � �which,
due to its length, will be omitted here� coincides with the one
obtained as �= ���T /���T,xA

from Eq. �2.30�. This confirms
the exact character of the solution.

Making use of Eqs. �2.30�–�2.33�, it is easy to prove that

1 + �TxAxB
AB =
2

KAB	AB���
− 1, �2.38�

which according to Eq. �2.29� is a positive definite quantity.
More explicitly, from Eq. �2.27� we have

1 + �TxAxB
AB = �1 − 4xAxB�1 − R� . �2.39�

Therefore, the denominator in Eq. �2.36� never vanishes and
the isothermal compressibility is well defined. This agrees
with van Hove’s classical proof7 that no phase transition can
exist in this class of nearest-neighbor 1D models.

Let us now obtain the KBIs in the infinite dilution limit
xA→0. In that limit, Eqs. �2.25�–�2.27� and �2.30� become

KAA =
	BB���
	AB

2 ���
, KBB =

1

	BB���
, KAB =

1

	AB���
, �2.40�

�T = −
	BB���
	BB� ���

. �2.41�

Analogously, from Eqs. �2.31�–�2.34� one gets

GAB = −
	BB� ���
	BB� ���

+ 2
	AB� ���
	AB���

, �2.42�

GAA = −
	BB� ���
	BB� ���

+ 4
	AB� ���
	AB���

− 2
	AA���	BB� ���

	AB
2 ���

, �2.43�

GBB = −
	BB� ���
	BB� ���

+ 2
	BB� ���
	BB���

, �2.44�


AB = 2	BB� ���	 1

	BB���
−

	AA���
	AB���
 . �2.45�

Note that special care is needed to obtain KAA and GAA.
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D. Chemical potentials and solvation Gibbs energies

Finally, let us get an explicit expression for the chemical
potential. From the KB theory of solution we have2,8

1

kBT
� ��A

�xA
�

P,T
=

1

xA
−

�TxA
AB

1 + �TxAxB
AB

=
1

xA
−

1

xB

�1 − 4xAxB�1 − R� − 1
�1 − 4xAxB�1 − R�

, �2.46�

where in the last step we have made use of Eq. �2.39�. Inte-
gration over xA yields

�A

kBT
= const + ln xA + ln�1 − 2xB�1 − R�

+ �1 − 4xAxB�1 − R�� . �2.47�

For pure A �xB=0�, we have

�A
P

kBT
= const + ln 2. �2.48�

The solvation Gibbs energy of A in pure A may be obtained
from Eq. �2.47� as2,9


�A
� = �A − kBT ln��A�A� , �2.49�

where �A=h /�2�mAkBT is the momentum partition function
of A in 1D systems. Similarly,


�A
�P = �A

P − kBT ln��A
P�A� , �2.50�

where �A
P is the density of pure A at the same T and P as the

mixture. Taking the limit xB→0 in Eqs. �2.25� and �2.30� one
has

�A
P = −

	AA���
	AA� ���

. �2.51�

The excess solvation Gibbs energy relative to the solva-
tion Gibbs energy in pure A is defined as



�A
� = 
�A

� − 
�A
�P. �2.52�

This quantity may be calculated from Eqs. �2.47�–�2.52� with
the result



�A
�

kBT
= ln	1

2
− xB�1 − R� +

1

2
�1 − 4xAxB�1 − R�


+ ln
�A

P

�T
. �2.53�

III. A SAMPLE OF RESULTS

Let us start considering a binary system composed of
�additive� hard rods of different diameters �lengths� �AA,
�BB, and �AB= ��AA+�BB� /2. The Laplace function 	���s�
defined by Eq. �2.19� is

	���s� =
e−s���

s
. �3.1�

In this case the parameter defined in Eq. �2.28� is R=1 and
thus the limit R→1 must be taken in Eq. �2.27� with the

result KAB=1 /	AB���. The general scheme of Sec. II can be
used to obtain the KBIs explicitly

GAB = −
�AA + �BB + ��AA�BB

1 + ��xA�AA + xB�BB�
, �3.2�

GAA = GAB + �BB − �AA, �3.3�

GBB = GAB + �AA − �BB, �3.4�

so that 
AB=0. Figure 1 shows the values of G�� for a di-
ameter ratio �BB /�AA=2 and a thermodynamic state
P�AA /kBT=1. These results are in perfect agreement with
those calculated in part I.1

FIG. 2. The KBI GAA for SW particles with parameters given in Eq. �3.7�
and kBT / 
�AA
=1, P� /kBT=1. The lines are obtained from the exact expres-
sions presented in Sec. II C, while the circles are the data obtained in Ref. 1.

FIG. 1. The KBIs G�� for hard rods of different diameters �BB /�AA=2 and
P�AA /kBT=1.
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Having established that the programs give the correct
results for hard rods, we next present results for a mixture of
particles’ interaction via SW potential of the form

U���R� = �� , R 
 ���

���, ��� 
 R 
 ��� + ���

0, R 
 ��� + ���,
� �3.5�

where ���
0. For this SW potential the Laplace function
	���s� is

	���s� =
e−s���

s
�e−���/kBT − �e−���/kBT − 1�e−s���� , �3.6�

and again the general results of Sec. II provide the KBIs
explicitly.

We have taken the following values for the potential
parameters:

�AA = �BB = �AB = � ,

�AA = �BB = �AB =
1

5
� , �3.7�

�BB


�AA

= �, �AB = − ��AA�BB.

The thermodynamic variables are T, P, and xA. In all the
calculations we choose kBT / 
�AA
=1 and P� /kBT=1 to com-
pare the present results with those of part I.

Figures 2–4 show the values of GAA, GBB, and GAB for

FIG. 3. The KBI GBB for SW particles with parameters given in Eq. �3.7�
and kBT / 
�AA
=1, P� /kBT=1. The lines are obtained from the exact expres-
sions presented in Sec. II C, while the circles are the data obtained in Ref. 1.

FIG. 4. The KBI GAB for SW particles with parameters given in Eq. �3.7�
and kBT / 
�AA
=1, P� /kBT=1. The lines are obtained from the exact expres-
sions presented in Sec. II C, while the circles are the data obtained in Ref. 1.

FIG. 5. Values of 
AB for SW particles with parameters given in Eq. �3.7�
and kBT / 
�AA
=1, P� /kBT=1. The lines are obtained from the exact expres-
sions presented in Sec. II C, while the circles are the data obtained in Ref. 1.
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these systems for various values of � ranging from �=
−0.001 to �=−1, and from �=−1 to �=−11.10 Figure 5 shows
the values of 
AB=GAA+GBB−2GAB in the entire range of
composition. In all the cases the agreement with the results
of part I is quantitative.

The KBIs in the infinite dilution limit �xA→0�, as ob-
tained from Eqs. �2.42�–�2.44�, are plotted in Fig. 6 as func-
tions of −� for the same system as that of Figs. 2–5. We
observe that both GAB and GBB are hardly sensitive to the
value of �. In contrast, the solute-solute KBI, GAA, is strongly
influenced by the solvent-solvent potential depth, increasing
both for small and for large values of 
�
. A careful inspection
of the explicit expressions �2.42�–�2.44� in the limit 
�
→�
shows that, while GAB and GBB tend to the same constant
value, GAA diverges as GAA�exp��
�BB
−2
�AB
� /kBT�. This
phenomenon might be relevant to the study of hydrophobic
interactions, as discussed in Ref. 9.

IV. DISCUSSION AND CONCLUSION

In part I we calculated all the KBIs in an indirect way.1

We first calculated the excess functions from the partition
function of the system, then we used the inversion of the KB
theory2 to calculate the KBIs. This lengthy procedure might
have introduced accumulated errors. Some readers of part I
have expressed doubts regarding the reliability of the results
calculated along this procedure. In fact some have also
claimed that there might be a miscibility gap, which we

might have missed by this indirect and lengthy calculations.
In this paper we have repeated the calculations of the KBIs
directly from the same program that was designed to calcu-
late the pair correlation functions in mixtures of two compo-
nents in 1D system.

The agreement between the two methods was satisfying,
it also lent credibility to the inversion procedure and encour-
aged us to extend the calculations of the KBIs for aqueou-
slike mixtures.9 We hope to report on that in the near future.

Regarding the question of miscibility gap we have
shown that the inequality

1 + �TxAxB
AB � 0, �4.1�

always holds in these mixtures, as shown by Eq. �2.39�.
From the KB theory2,8 of solution we have the equation

� �2g

�xA
2 �

P,T

=
1

xB
� ��A

�xA
�

P,T
=

kBT

xAxB�1 + �TxAxB
AB�
, �4.2�

where g=G / �NA+NB� is the Gibbs energy of the system per
mole of mixture. It follows from Eqs. �4.1� and �4.2� that g is
everywhere a concave �downward� function of xA. Therefore,
there exists no region of compositions where the system is
not stable, hence no phase transition in such a system.
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