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As is well known, approximate integral equations for liquids, such as the hypernetted chain �HNC�
and Percus–Yevick �PY� theories, are in general thermodynamically inconsistent in the sense that
the macroscopic properties obtained from the spatial correlation functions depend on the route
followed. In particular, the values of the fourth virial coefficient B4 predicted by the HNC and PY
approximations via the virial route differ from those obtained via the compressibility route. Despite
this, it is shown in this paper that the value of B4 obtained from the virial route in the HNC theory
is exactly three halves the value obtained from the compressibility route in the PY theory,
irrespective of the interaction potential �whether isotropic or not�, the number of components, and
the dimensionality of the system. This simple relationship is confirmed in one-component systems
by analytical results for the one-dimensional penetrable-square-well model and the
three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional
Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional
square-well model. © 2010 American Institute of Physics. �doi:10.1063/1.3367206�

I. INTRODUCTION AND STATEMENT OF THE
PROBLEM

According to equilibrium statistical mechanics,1–3 all the
relevant structural and thermodynamic properties of a one-
component fluid made of particles interacting via a pairwise
potential ��r�=��−r� are contained in the pair correlation
function g�r ;� ,��=g�−r ;� ,��, where � is the number den-
sity and �=1 /kBT is the inverse temperature. In particular,
the thermodynamic quantities of the fluid can be obtained
from g�r ;� ,�� through different routes. The most common
ones are the virial route

Z��,�� �
�p

�
= 1 +

�

2d
� dry�r;�,��r · �f�r;�� , �1.1�

the compressibility route

���,�� � ��
�p

��
�−1

= 1 + �� dr	�f�r;�� + 1�y�r;�,�� − 1
 , �1.2�

and the energy route

u��,�� =
d

2�
−

�

2
� dry�r;�,��

�

��
f�r;�� . �1.3�

In Eqs. �1.1�–�1.3�, p is the pressure, Z is the compressibility
factor, d is the dimensionality of the system, � is the isother-
mal susceptibility, u is the internal energy per particle, f�r�
�e−���r�−1 is the Mayer function, and y�r�
�exp����r��g�r� is the so-called cavity function. Note that

in Eq. �1.2� the integrand �f�r�+1�y�r�−1=g�r�−1�h�r� is
the total correlation function. It is related to the direct corre-
lation function c�r� through the Ornstein–Zernike �OZ�
relation3

h�r� = c�r� + �� dr�h�r − r��c�r�� . �1.4�

In terms of c�r�, the compressibility equation of state �1.2�
can be rewritten as

�−1 = 1 − �c̃ , �1.5�

where

c̃ =� drc�r� �1.6�

is the spatial integral of c�r� or, equivalently, its Fourier
transform at zero wave number.

Thermodynamic relations establish that

�−1��,�� =
�

��
��Z��,��� , �1.7�

�
�

��
u��,�� =

�

��
Z��,�� . �1.8�

Of course, the exact correlation function gexact�r ;� ,�� yields
functions Z�� ,��, ��� ,��, and u�� ,�� satisfying Eqs. �1.7�
and �1.8�. On the other hand, except in one-dimensional
problems restricted to nearest-neighbor interactions, the
function gexact�r ;� ,�� is not known and so one has to resort
to approximations. The price to be paid is that, in general, an
approximate function gapp�r ;� ,�� violates Eqs. �1.7� and
�1.8� and so it is thermodynamically inconsistent. There ex-
ists, however, a small number of approximations in which
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the energy route is consistent with the virial route, i.e., Eq.
�1.8� is verified. This class of approximations includes the
hypernetted chain4 �HNC� and the linearized Debye–Hückel5

theories for arbitrary potentials, the mean-spherical approxi-
mation �MSA� for soft potentials,6 and the hard-sphere limit
of the square-shoulder potential within any approximation.7,8

On the other hand, even in those cases the virial-
compressibility consistency condition, Eq. �1.7�, is not satis-
fied. In fact, some liquid state theories include one or more
adjustable state-dependent parameters which are tuned to
achieve thermodynamic consistency between two or more
routes. This is the case, for instance, of the modified HNC
closure,9,10 the Rogers–Young closure,11 the Zerah–Hansen
closure,12 the self-consistent OZ approximation,13 the hierar-
chical reference theory,14 Lee’s theory based on the zero-
separation theorems,15 the generalized MSA,16 or the
rational-function approximation.17

The thermodynamic inconsistency problem manifests it-
self at the level of the virial coefficients Bn���. They are
defined by the series expansion

Z��,�� = 1 + �
n=1

�

Bn+1����n. �1.9�

Likewise, the series expansion of the isothermal susceptibil-
ity, the internal energy, and the cavity function in powers of
density can be written as

���,�� = 1 + �
n=1

�

�n+1����n, �1.10�

u��,�� =
d

2�
+ �

n=1

�

un+1����n, �1.11�

y�r;�,�� = 1 + �
n=1

�

yn�r;���n. �1.12�

Inserting Eq. �1.12� into Eq. �1.1� one can express Bn in
terms of an integral involving yn−2

Bn,v��� =
1

2d
� dryn−2�r;��r · �f�r;��, n � 2, �1.13�

where we use the subscript “v” to emphasize that Eq. �1.13�
gives the nth virial coefficient through the virial route. Simi-
larly, insertion of Eq. �1.12� into Eqs. �1.2� and �1.3� yields

�2��� =� drf�r;�� , �1.14�

�n��� =� dr�f�r;�� + 1�yn−2�r;��, n � 3, �1.15�

un��� = −
1

2
� dryn−2�r;��

�

��
f�r;��, n � 2. �1.16�

Use of the thermodynamic relations �1.7� and �1.8� allows
one to express the virial coefficients Bn from the coefficients
�n and un, respectively, as

Bn,c��� = −
1

n
�
m=1

n−1

mBm,c����n+1−m���, n � 2, �1.17�

un��� =
1

n − 1

�

��
Bn,e���, n � 2. �1.18�

Here the subscripts “c” and “e” denote virial coefficients
obtained via the compressibility and energy routes, respec-
tively. Obviously, the exact functions yn

exact give consistent
virial coefficients, i.e., Bn,v

exact=Bn,c
exact=Bn,e

exact. As said above,
the HNC theory provides consistent thermodynamic proper-
ties through the energy and virial routes only, i.e., Bn,v

HNC

=Bn,e
HNC�Bn,c

HNC. Except for a few cases,5–8 an approximate
theory generally predicts different sets of thermodynamic
quantities from the three routes. This is the case of the well-
known Percus–Yevick �PY� theory,1–3 i.e., Bn,v

PY �Bn,e
PY�Bn,c

PY.
Most of the liquid state theories, including HNC and PY,

give the exact cavity function to first order in density and
hence provide the exact second and third virial coefficients.
Therefore, the fourth virial coefficient is usually the earliest
one revealing the approximate nature of the theory. In prin-
ciple, the two HNC coefficients �B4,v

HNC=B4,e
HNC and B4,c

HNC� and
the three PY coefficients �B4,v

PY, B4,e
PY, and B4,c

PY� are unrelated.
On the other hand, recent analytical evaluations of the fourth
virial coefficient for the three-dimensional penetrable-sphere
potential18 and for the one-dimensional penetrable-square-
well potential19 show a remarkably simple relationship be-
tween B4,v

HNC and B4,c
PY, namely

B4,v
HNC��� = 3

2B4,c
PY��� , �1.19�

where, according to Eq. �1.17�

B4,c = 1
4 �2�2�3 − �2

3 − �4� . �1.20�

The two potentials considered in Refs. 18 and 19 have two
common features: they are �i� bounded and �ii� stepwise con-
stant. Thus, it might be the case that the relation �1.19� is
closely connected to one or both features, not being gener-
ally valid. The aim of this paper is to show that this is not the
case by proving Eq. �1.19� for any dimensionality d and any
potential ��r�. Furthermore, we will show that Eq. �1.19� can
be extended to fluid mixtures with any number of compo-
nents.

This paper is organized as follows. The diagrammatic
representation of the cavity function to second order in den-
sity and of the fourth virial coefficient is presented in Sec. II.
This is followed by the mathematical proof of Eq. �1.19�,
where use is made of identities derived in the Appendix.
Section III provides a few examples where Eq. �1.19� is nu-
merically verified. Next, it is shown in Sec. IV that the re-
sults remain valid in the more general case of a multicom-
ponent fluid. Finally, the results are discussed in Sec. V.

II. PROOF OF THE RELATIONSHIP B4,v
HNC= „3/2…B4,c

PY

Statistical-mechanical methods allow one to express the
functions yn�r ;�� as sums of n-particle multiple integrals of
products of Mayer functions. These integrals are conve-
niently represented by diagrams.1–3 In particular
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�2.1�

�2.2�

The open circles represent two fixed root points separated by
a vector r12=r, the filled circles represent field points to be
integrated out, and each bond represents a Mayer function.
For instance,

�2.3�

�2.4�

where di�dri and f ij = f ji� f�ri−r j ;��. The factors 2 and 4
affecting the first and second diagrams of Eq. �2.2�, respec-
tively, reflect the degeneracies of those diagrams with respect
to the exchange of field points or of root points. As will be
seen in Sec. IV, these degeneracies are broken down in the
multicomponent case.

Both the HNC and the PY approximations are consistent
with Eq. �2.1� but not with Eq. �2.2�. In the case of HNC, the
last diagram on the right-hand side of Eq. �2.2� is neglected,
while PY neglects the last two diagrams. More in general,
imagine an approximation that includes those last two dia-
grams but with weights �1 and �2, respectively,

�2.5�

The class of functions y2
��1,�2��r ;�� includes the exact, HNC,

and PY functions as special cases

y2
exact�r;�� = y2

�1,1��r;�� ,

y2
HNC�r;�� = y2

�1,0��r;�� , �2.6�

y2
PY�r;�� = y2

�0,0��r;�� .

Substitution of Eq. �2.5� into Eq. �1.13� for n=4 yields

�2.7�

where here one of the root points has become a field point
and a dashed bond represents a term of the form r ·�f�r�. For
instance,

�2.8�
Note that the one-root diagrams do not depend on the loca-
tion of the root, so they can be expressed as zero-root dia-
grams divided by the d-dimensional volume V. For example,

�2.9�

In the case of the isothermal susceptibility coefficients,
Eqs. �1.14�, �1.15�, �2.1�, and �2.5� give

�2.10�

�2.11�

�2.12�
In Eq. �2.12� we have taken into account that

�2.13�

Equations �1.20� and �2.10�–�2.12� readily give

�2.14�

where use has been made of the properties

�2.15�

Equation �2.14� can also be obtained from Eq. �1.5�. This is
the path followed in Sec. IV for the multicomponent case.

Now, in order to connect Eqs. �2.7� and �2.14�, we need
to make use of the following properties2 �see the Appendix
for a derivation�

�2.16�

�2.17�

�2.18�

Therefore, Eq. �2.7� can be rewritten as
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�2.19�

Comparison between Eqs. �2.14� and �2.19� shows that

B4,v
�1,�2���� =

3

2 + �1
B4,c

��1,�1���� , �2.20�

provided that

�2 =
3�1

2 + �1
. �2.21�

This is the main result of this paper. If �1=1 then �2=1 and
we recover the exact consistency condition: B4,v

exact=B4,c
exact. On

the other hand, the choice �1=0 yields the sought result, Eq.
�1.19�.

It is quite apparent that the Eq. �2.20� is, from a math-
ematical point of view, more general than �1.19�. Let us de-
fine the ��1 ,�1�-subclass of approximations as the one com-
patible with Eq. �2.5� with 0��1=�2�1. Analogously, we
define the �1,�2�-subclass of approximations as the one with
�1=1 and 0��2�1. Obviously, any approximation retain-
ing the exact y2�r� �i.e., �1=�2=1� belongs to both sub-
classes. On the other hand, the PY and HNC theories are
members of the ��1 ,�1�-subclass and �1,�2�-subclass, re-
spectively. Equations �2.20� and �2.21� then state that, for
any ��1 ,�1�-subclass approximation, there exists a specific
�1,�2�-subclass approximation, such that the compressibility
and virial values, respectively, of B4 are proportional each
other. The connection between both subclasses is schemati-
cally illustrated in Fig. 1. Interestingly, the largest deviation

of the proportionality factor from 1 occurs at �1=0, i.e., in
the case of the PY and HNC pair.

III. NUMERICAL EXAMPLES

As said in Sec. I, the simple relationship �1.19� derived
in the preceding section is confirmed by analytical results for
the three-dimensional penetrable-sphere model18 and for the
one-dimensional penetrable-square-well potential.19 The ana-
lytical derivation of the exact, HNC, and PY expressions of
the fourth virial coefficient was possible in Refs. 18 and 19
thanks to the simplicity of the interaction models �stepwise
constant�. In general, however, the computation of B4 is a
complicated task that requires numerical methods, especially
in the case of continuous potentials.

As a numerical test of Eq. �1.19�, we have numerically
evaluated B4

exact, B4,v
HNC, B4,c

HNC, B4,v
PY, and B4,c

PY for two one-
dimensional interaction models. The first one is the conven-
tional Lennard-Jones �LJ� potential:

��r� = 4	��


r
�12

− �


r
�6
 . �3.1�

This is an unbounded potential, repulsive for r�21/6
 and
attractive for r�21/6
. As a second example, we have con-
sidered the bounded, purely repulsive Gaussian core model20

��r� = 	 exp�− �r/
�2� . �3.2�

The results are displayed in Figs. 2 and 3, respectively. In the
case of the LJ potential, Fig. 2 shows that the best general
agreement with the exact results is provided by B4,c

HNC and the
worst by B4,v

PY. As the temperature increases, B4,c
PY eventually

becomes quite accurate. What is more important from the
point of view of this work is that the numerical values of
�3 /2�B4,c

PY are practically indistinguishable from those of
B4,v

HNC, in agreement with Eq. �1.19�.
Regarding the Gaussian core potential, Fig. 3 shows that

B4,c
PY provides the best description for kBT /	
0.9, while

FIG. 1. The diagonal �labeled c� and vertical �labeled v� lines represent the
��1 ,�1�-subclass and the �1,�2�-subclass of approximations, respectively.
Both lines intersect in the exact case �1=�2=1, while the other ends corre-
spond to the PY and HNC approximations, respectively. The virial-route
value of the fourth virial coefficient in any �1,�2�-subclass approximation is
related to the compressibility-route value in a given ��1 ,�1�-subclass ap-
proximation. This is represented by the dots connected by dashed lines.

FIG. 2. Temperature dependence of the fourth virial coefficient for the one-
dimensional LJ potential. The thin line with triangles represents the exact
results, while B4,v

HNC, B4,c
HNC, B4,v

PY, and B4,c
PY are represented by the thick solid,

dotted, dashed, and dash-dotted lines, respectively. The circles represent the
values of �3 /2�B4,c

PY, which fall on the B4,v
HNC curve.
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B4,v
HNC does for kBT /	�0.9. It is also noteworthy that B4,c

HNC

�B4,v
PY for the whole temperature range shown. Again, the

numerical results confirm Eq. �1.19�.
As a final test, we have turned our attention to the pio-

neering numerical evaluation by Barker and Henderson21 of
the fourth virial coefficient �they also considered the fifth
one� for the three-dimensional square-well �SW� potential

��r� = �� , r � 
 ,

− 	 , 
 � r � �
 ,

0, r � �
 .
� �3.3�

The results for a potential range �=1.5 are displayed in Fig.
4. In this case, B4,v

HNC and B4,c
PY give the most accurate results

for 1
kBT /	
1.5 and kBT /	�1.5, respectively. Moreover,
both approximations are observed to be consistent with Eq.
�1.19� within unavoidable numerical uncertainties.

IV. EXTENSION TO FLUID MIXTURES

So far, in Secs. I–III we have assumed a one-component
fluid. However, the main result of this paper, Eq. �1.19�, can
be extended to the case of a mixture, as shown below.

Let us consider a multicomponent fluid made of an arbi-
trary number of species with mole fractions xi, at density �,
and inverse temperature �. The interaction potential
between a particle of species i and a particle of species
j is �ij�r�=� ji�−r�. The pair correlation and cavity
functions are gij�r ;� ;� ; 	xk
� and yij�r ;� ;� ; 	xk
�
=exp���ij�r��gij�r ;� ;� ; 	xk
�, respectively. The multicom-
ponent version of Eq. �1.1� is simply

Z = 1 +
�

2d
�
i,j

xixj� dr yij�r�r · �f ij�r� . �4.1�

The compressibility equation of state for the multicomponent
case is more conveniently expressed as a generalization of
Eq. �1.5� rather than of Eq. �1.2�. It is given by

�−1 = 1 − ��
i,j

xixjc̃ij , �4.2�

where c̃ij = c̃ji are spatial integrals of the direct correlation
functions cij�r�. The latter are defined in terms of the total
correlation functions hij�r��gij�r�−1 via the OZ relation

hij�r� = cij�r� + ��
k

xk� dr� hik�r − r��ckj�r�� . �4.3�

This equation yields

h̃ij = c̃ij + ��
k

xkh̃ikc̃kj , �4.4�

where again the tilde denotes spatial integration.
Let us now consider the virial expansion. The virial co-

efficients Bn are still defined by Eq. �1.9�, but now they can
be expressed in terms of composition-independent coeffi-
cients. For instance

B2 = �
i,j

xixjBij , �4.5�

B3 = �
i,j

xixjxkBijk, �4.6�

B4 = �
i,j,k,�

xixjxkx�Bijk�. �4.7�

As for the correlation functions, the generalization of Eq.
�1.12� reads

yij�r� = 1 + �
n=1

�

yij;n�r��n. �4.8�

A similar expansion can be carried out for hij�r� and cij�r�. In
particular,

h̃ij;0 = f̃ i j , �4.9�

h̃ij;n = ỹij;n + fy˜

ij;n, n � 1, �4.10�

FIG. 3. Same as in Fig. 2, but for the one-dimensional Gaussian potential.
Note that the B4,c

HNC and B4,v
PY curves are hardly distinguishable in this case.

FIG. 4. Same as in Fig. 2, but for the three-dimensional SW potential with
�=1.5. The data have been extracted from Fig. 10 of Ref. 21.
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c̃ij;0 = f̃ i j , �4.11�

c̃ij;1 = ỹij;1 + fy˜

ij;1 − �
k

xk f̃ ik f̃ kj , �4.12�

c̃ij;2 = ỹij;2 + fy˜

ij;2 − �
k

xk f̃ ik�ỹkj;1 + fy˜

kj;1�

− �
k

xk f̃ jk�ỹki;1 + fy˜

ki;1� + �
k,�

xkx� f̃ ik f̃ k� f̃�j . �4.13�

In these equations, fy˜

ij;n denotes the spatial integral of
f ij�r�yij;n�r�.

The coefficients yij;n�r� in Eq. �4.8� are polynomials of
degree n in the mole fractions. In particular

yij;1�r� = �
k

xkyij�k�r� , �4.14�

yij;2�r� = �
k,�

xkx�yij�k��r� . �4.15�

Analogously

cij;2�r� = �
k,�

xkx�cij�k��r� . �4.16�

From Eqs. �1.7� and �4.2� it follows that the fourth virial
coefficient provided by the compressibility route is

B4,c = −
1

4�
i,j

xixjc̃ij;2, �4.17�

so that

Bijk�,c = − 1
24�c̃ij;k� + c̃ik;j� + c̃i�;jk + c̃jk;i� + c̃j�;ik + c̃k�;ij� .

�4.18�

The function yij�k�r� is represented by the same diagram
as in Eq. �2.1�, except that the two root points must be la-
beled with i and j and the field point must be labeled with k.

Consequently, ỹij�k= f̃ ik f̃ kj. Thus, Eq. �4.13� yields

c̃ij;k� = ỹij;k� + fy˜

ij;k� − 1
2 � f̃ ikfy˜

kj;� + f̃ i�fy˜

�j;k + f̃ jkfy˜

ki;�

+ f̃ j�fy˜

�i;k� − f̃ ik f̃ k� f̃�j . �4.19�

As for the function yij�k��r�, it is represented by the same
diagrams as in Eq. �2.2�, except that �a� the root points are
labeled with i and j, while the field points are labeled with k
and �, and �b� the first and second diagrams on the right-
hand side of Eq. �2.2�, with their corresponding factors, ac-
tually become 2 and 4 labeled diagrams, respectively. In
other words, each diagram is replaced by a symmetrized sum
of topologically analogous diagrams, divided by its number,
so that the symmetry property yij�k��r�=yij��k�r� is preserved.
We will refer to this process of generating the diagrams of
the multicomponent case from those of the one-component
case as symmetrization.

Analogously to Eq. �2.5�, we can introduce the class of
approximations yij�k�

��1,�2��r�. Therefore, Eqs. �4.1� and �4.7� im-
ply that Bijk�,v

��1,�2� is given by Eq. �2.7�, except that again each
diagram is symmetrized to preserve the symmetry of Bijk�

under any permutation of indices. In the case of Bijk�,c
��1,�2�, use

of Eqs. �4.18� and �4.19� shows that it is given by Eq. �2.14�,
again with the symmetrization criterion.

The properties �2.16�–�2.18� do not necessarily hold for
individual labeled diagrams, but they do when again each
diagram is replaced by its symmetrized sum. As a conse-
quence, one has

Bijk�,v
�1,�2� =

3

2 + �1
Bijk�,c

��1,�1� �2 =
3�1

2 + �1
. �4.20�

This generalizes Eq. �2.20�, and hence Eq. �1.19�, to the case
of an arbitrary mixture.

V. DISCUSSION

Most of the integral equation theories are consistent with
the exact correlation functions to first order in density, Eq.
�2.1�, so that they agree with the exact third virial coefficient.
Therefore, the fourth virial coefficient is the earliest one that,
not only differs from theory to theory, but even among dif-
ferent thermodynamic routes within the same theory. Thus, if
one considers the two most studied liquid state theories
�HNC and PY� and the three most standard thermodynamic
routes �virial, compressibility, and energy�, there are in prin-
ciple six alternative approximations for the fourth virial co-
efficient of a given interaction model. Actually, this number
is reduced from six to five because the HNC theory belongs
to the “exclusive” class of approximations that are thermo-
dynamically consistent with respect to the energy and virial
routes,4–6 without being forced to do so.

The main aim of this paper has been to prove that the
number of independent predictions given by the HNC and
PY approximations further reduces from five to four because
the fourth virial coefficient obtained from the virial route in
the HNC theory is exactly three halves the value obtained
from the compressibility route in the PY theory, for any in-
teraction potential, any number of components, and any di-
mensionality. This result has been derived as a special case
of a more general mathematical property described by Eqs.
�2.20� and �2.21� and graphically sketched by Fig. 1.

It is interesting to remark that, as a simple corollary of
Eq. �1.19�, the Boyle-like temperature TB4

at which B4=0 is
the same in the PY-c and HNC-v approximations. Since both
predictions cross at T=TB4

, none of them is closer to the
exact value than the other one for the whole temperature
range, as illustrated by Figs. 2–4.

One may reasonably wonder if a relation similar to Eq.
�1.19� extends to higher-order virial coefficients. While we
are not in conditions of ascertaining this possibility at this
point, it is at least clear from Fig. 12 of Ref. 21 that the ratio
B5,v

HNC /B5,c
PY is not a constant.

In conclusion, we expect that the simple relationship
�1.19� can help to gain new insight into the general thermo-
dynamic inconsistency problem, as well as into the connec-
tion between the HNC and PY theories. From that point of
view, the result �1.19� has a clear pedagogical value, espe-
cially taking into account the scarcity of exact and general
results in statistical mechanics. On the other hand, from a
more practical viewpoint, Eq. �1.19� can be useful to test the
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correctness of analytical evaluations and/or the accuracy of
numerical computations of B4 in the HNC and PY frame-
works, especially in the case of mixtures.
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APPENDIX: PROOF OF EQS. „2.16…–„2.18…

In this Appendix we derive the identities �2.16�–�2.18�.
For simplicity, we will consider here zero-root diagrams,
which are just V times the corresponding one-root diagrams
�cf. Eq. �2.9��. Also, we will introduce diagrams such that an
arrow on a solid bond from point i to point j represents a
term f ijrij while an arrow on a dashed bond represents a term
�ij f ij. For instance,

�A1�

1. Proof of Eq. „2.16…

Let us start from

�A2�

Now, taking into account that �12f12=−�2f12, we can inte-
grate by parts with the result

�A3�

where use has been made of the properties �2 ·r12=−d and
�2f24=�24f24. Moreover, upon writing the second term on
the right-hand side of Eq. �A3�, we have exploited the invari-
ance of the zero-root diagrams under rotation and reflection.
Next, making r24=−r12+r13+r34, one has

�A4�

Integration by parts of the last term on the right-hand side
yields

�A5�

From Eqs. �A4� and �A5� one gets

�A6�

Substitution of Eq. �A6� into Eq. �A3� gives Eq. �2.16�.

2. Proof of Eq. „2.17…

Steps similar to those of Eq. �A3� lead to

�A7�

�A8�

Next, setting r14=r12+r24, one has

�A9�

Combining Eqs. �A7�–�A9� we get

�A10�

Finally, Eqs. �A7� and �A10� give Eq. �2.17�.

3. Proof of Eq. „2.18…

Again, integration by parts yields

�A11�

Also, the equality r24=−r12+r14 gives

�A12�

Equation �2.18� directly follows from Eqs. �A11� and �A12�.
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