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The one-dimensional penetrable-square-well fluid is studied using both analytical tools and
specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a
finite repulsive energy combined with a short-range attractive well. This is a many-body
one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove
theorem on the absence of phase transition does not apply. We determine a high-penetrability
approximation complementing a similar low-penetrability approximation presented in previous
work. This is shown to be equivalent to the usual Debye—Hiickel theory for simple charged fluids for
which the virial and energy routes are identical. The internal thermodynamic consistency with the
compressibility route and the validity of the approximation in describing the radial distribution
function is assessed by a comparison against numerical simulations. The Fisher—Widom line
separating the oscillatory and monotonic large-distance behaviors of the radial distribution function
is computed within the high-penetrability approximation and compared with the opposite regime,
thus providing a strong indication of the location of the line in all possible regimes. The
high-penetrability approximation predicts the existence of a critical point and a spinodal line, but
this occurs outside the applicability domain of the theory. We investigate the possibility of a
fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of
such a transition. Additional analytical arguments are given to support this claim. Finally, we find a
clustering transition when Ruelle’s stability criterion is not fulfilled. The consequences of these
findings on the three-dimensional phase diagrams are also discussed. © 2010 American Institute of

Physics. [doi:10.1063/1.3455330]

I. INTRODUCTION

Recent advances in chemical synthesis have unveiled
more and more the importance of soft-matter systems, such
as dispersions of colloidal particles, polymers, and their
combinations. Besides their practical interest, these new de-
velopments have opened up new theoretical avenues in (at
least) two instances. First, it is possible to experimentally
fine-tune the details of interactions (range, strength,...), mak-
ing these systems a unique laboratory for testing highly sim-
plified models within an effective-interaction approach
where the microscopic degrees of freedom are integrated out
in favor of renormalized macroparticle interactions. Second,
they offer the possibility of exploring new types of equilib-
rium phase behaviors not present in the simple-fluid para-
digm.

As early as in 1989, Marquest and Witten' suggested that
the experimentally observed crystallization in some copoly-
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mer micellar systems could be rationalized on the basis of a
bounded interaction, that is, an interaction that does not di-
verge at the origin. Successive theoretical work showed that
this class of bounded or ultrasoft potentials naturally arises
as effective interactions between the centers of mass of many
soft and flexible macromolecules, such as polymer chains,
dendrimers, star polymers, etc. (see, e.g., Ref. 2 for a refer-
ence on the subject). Two well-studied cases belonging to the
above class are the Gaussian core model (GCM) introduced
by Stillinger’ and the penetrable-sphere (PS) model intro-
duced in Refs. 1 and 4, whose freezing transition turns out to
display rather exotic features with no analog in the atomistic
fluid realm.

In the present paper, we shall consider a close relative of
the PS model, first introduced in Ref. 5, denoted as the
penetrable-square-well (PSW) model, where a short-range
attractive tail is added to the PS model just outside the core
region. In the limit of infinite repulsive energy, the PS and
PSW models reduce to the usual hard-sphere (HS) and
square-well (SW) models, respectively.

An additional interesting feature common to both PS and
PSW, as well as to all bounded potentials, is the fact that

© 2010 American Institute of Physics
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even when confined to one-dimensional (1D) systems, they
may exhibit a nontrivial phase diagram due to the penetra-
bility which prevents an exact analytical solution.

This is because particles cannot be lined up on a line
with a well defined and fixed ordering in view of the possi-
bility of reciprocal interpenetration (with some positive en-
ergy cost), thus lacking an essential ingredient allowing for
an exact solution in the respective hard-core counterparts
(HS and SW). It is then particularly useful to discuss some
motivated approximations in the 1D model which can then
be benchmarked against numerical simulations and subse-
quently exploited in the much more complex three-
dimensional (3D) case.

The aim of the present paper is to complete a study on
the 1D PSW model started in Refs. 5 and 6, as well as the
general results presented in Ref. 5, which are particularly
relevant in the present context. In the first paper of the
series,5 we introduced the model and discussed the range of
stability in terms of the attractive versus repulsive energy
scale. We provided, in addition, exact analytical results in the
low-density limit [second order in the radial distribution
function (RDF) and fourth order in the virial expansion] and
a detailed study of the Percus—Yevick and hypernetted-chain
integral equations. These were used in the following paper6
to propose a low-penetrability approximation (LPA) at finite
density which was then tested against numerical simulation.
This LPA is expected to break down in the opposite regime,
namely, when temperatures and densities are such that par-
ticles easily interpenetrate each other. In the present paper,
we address this latter regime by proposing a complementary
approximation [the high-penetrability approximation (HPA)]
and discussing its range of validity and the relationship with
the low-penetrability regime. Note that a similar matching of
the LPA and HPA has already been carried out by two of the
present authors in the framework of the PS model.”® It turns
out that the HPA in the context of bounded potentials coin-
cides with the linearized Debye-Hiickel (LDH) classical ap-
proximation originally introduced in the framework of the
Coulomb potential.9 It has been recently shown'? that two of
the three standard routes to thermodynamics (the energy and
the virial routes) are automatically consistent within the
LDH approximation, for any potential and dimensionality.
This means that a deviation from the third standard route to
thermodynamics (the compressibility route) can be exploited
to assess the degree of reliability of the high-penetrability (or
LDH) approximation. This is indeed discussed in the present
paper, where we also discuss the full hierarchy of approxi-
mations ranging from the full Debye—Hiickel approximation
to the simplest mean-spherical approximation (MSA).

In view of the boundness of the potential, the usual van
Hove no-go theorem'"*'? on the absence of phase transitions
in certain 1D fluids does not hold. It is then natural to ask
whether a phase transition occurs in the 1D PSW fluid by
noting that the addition of an attractive tail to the pair poten-
tial of the PS model extends the question to the fluid-fluid
transition, in addition to the fluid-solid transition possible
even within the PS model. In the present paper we confine
our attention to the fluid-fluid case only and discuss this
possibility using both analytical arguments and state-of-the-
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art numerical simulations.”*'® Our results are compatible
with the absence of such a transition, as we shall discuss.
This is also supported by recent analytical results'’ using a
methodology devised for 1D models with long-range
interactions.'® We discuss possible reasons for this and a
plausible scenario for the 3D case.

Finally, we note that the approach to a critical point is
frequently anticipated by the so-called Fisher—Widom (FW)
line" marking the borderline between a region with oscilla-
tory behavior in the long-range domain of the correlation
function (above the FW line) and a region of exponential
decay. We discuss the location of this line within the HPA
and again the matching of this result with that stemming
from the LPA.

The structure of this paper is as follows. We define the
PSW model in Sec. II. We then construct the HPA in Sec. III
and in Sec. IV we discuss some approximations related to it.
Section V contains a discussion on the routes to thermody-
namics, as predicted by the HPA. The structure predicted by
the approximation is compared with the Monte Carlo (MC)
data in Sec. VI. The FW line and the possibility of a fluid-
fluid transition are discussed in Sec. VII. The paper ends
with some concluding remarks in Sec. VIIL

Il. THE PSW MODEL

The PSW model is defined by the following pair
potential:s’6

+ € r<ao

re

Ppsw(r)=1—€,, o<r<o+A
0, r>o+A,

(2.1)

where A is the well width and €, and €, are two positive
constants accounting for the repulsive and attractive parts of
the potential, respectively. In the following, we shall restrict
our analysis to the case A/o<<l and €,>2¢€, where we
know the 1D model to be stable with a well defined thermo-
dynamic limit.” It is shown in Appendix A that more gener-
ally, the 1D PSW model is guaranteed to be stable if e,
>2(¢+1)g,, where ¢ is the integer part of A/o¢. For lower
values of €, the model may or may not be stable and we will
come back to this point in Sec. VII.

An important role in the following is played by the cor-
responding Mayer function:

Fesw(r) = vifus(r) + ¥ [O(r—0) = O(r— o - A)],

where y,=1-¢7P¢ is the parameter measuring the degree of
penetrability varying between O (free penetrability) and 1
(impenetrability), while 7y,=ef%—1>0 measures the
strength of the well depth. Here S=1/kzT with T as the
temperature and kg as the Boltzmann constant, fyg(r)
=—0(o-r) is the Mayer function for HSs and O(r) is the
Heaviside step function.

A detailed discussion of the limiting cases of the PSW
model can be found in Ref. 5. Here we merely note that the
PSW Mayer function fpgw(r) is immediately related to the
usual SW Mayer function by

fPSW(") = %fsw(") s

(2.2)

(2.3)
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fsw(r) = fus(r) + AO(r— 0) - O(r— o= A)], (2.4)

where we have introduced the ratio y=1v,/7,. At a given
value of €,/€,, 7y increases quasilinearly with e#%, its mini-
mum value y=¢,/€, corresponding to Be,— 0.

lll. THE HPA

In Ref. 6 we discussed a LPA to the PSW model. Within
this approximation, one assumes 1—7,=¢ P <1 so that the
repulsive barrier €, is sufficiently higher than the thermal
energy kgT, penetrability is small, and the system is almost a
hard-core one. The advantage of this theoretical scheme is
that one can use the general recipe leading to the exact so-
lution for the 1D SW problem—in fact, valid for any poten-
tial with a hard-core and short-range attractions—and per-
form some ad hoc adjustments to ensure that some basic
physical conditions on the RDF g(r) are satisfied. Compari-
son with MC simulations showed a good behavior of the
LPA even for Be,=2 (1—1,=0.14), provided the density was
moderate (po<<0.5).

The opposite limit y,<<1 is also inherently interesting
for several reasons. From a physical viewpoint this amounts
to starting from the ideal gas limit y,— 0 (one of the com-
mon reference systems for simple fluids) and progressively
building up interactions by increasing 7,. An additional
mathematical advantage stems from the simple
observation”®? that in the (exact) cluster expansion of g(r)
only the dominant chain diagrams need to be retained at all
orders, thus leading to the possibility of an exact summation
of those leading contributions. As we shall see shortly, this is
in fact a procedure known as the Debye—Hiickel approxima-
tion in the context of charged fluids.”"”

Our main goal is the computation of the cavity function
y(r)=eP?"g(r), from which one can immediately compute
the RDF g(r)=y(r)[1+f(r)]. In the PSW case one then has
from Eq. (2.3),

(I=y)y(r), r<i
g =y +y)y(r), 1<r<\ (3.1)
y(r), r>N\,

where A=1+A and, in conformity with previous work,”® w
have redefined all lengths in units of o so we set o=1 in
most of the following equations.

As shown in Ref. 20 for the PS case, the exact form of
the PSW cavity function in the limit y,—0 at finite 7y

=Y./ v, and py, is

y(r) =1+ yw(r), (32

where the function w(r) is defined through its Fourier trans-
form

)
1 Jsw(k) (3.3)

w(k) = py - .
1= py,fsw(k)

with fsw(k) being the Fourier transform of fey/(r). Note that

in the limit y,— 0 one has y,=~ B¢, and y=¢€,/€,.
Generalizing an analogous approximation in the context

of the PS model,”® our HPA consists of assuming Egs. (3.2)
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and (3.3) for finite, but small, values of y,. It is worth noting
that the combination of expressions (3.2) and (3.3) defines
what is usually referred to, in a different context, as the LDH
approximation,g’10 and this will be further elaborated below.

Equations (3.2) and (3.3) hold for any dimensionality. In
the specific 1D case, and taking into account Eq. (2.4), we
have

Fswlk) =2 f dr cos(kr)fsw(r)
0

:—%[(1 + y)sin k — vy sin Nk]. (3.4)

The function w(r) can be numerically evaluated in real space
by the Fourier inversion as

Saw(h)
1= pyofswik)

An explicit expression for the density expansion of w(r)
within the HPA is reported in Egs. (B7) and (B8) of Appen-
dix B, where the radius of convergence of the expansion is
also analyzed.

From Egs. (2.3), (3.1), and (3.2) the total correlation
function, h(r)=g(r)—1, within the HPA is easily obtained as

h(r) = yw(r)[1 + vfsw(r) ]+ vifsw(r) (3.6)

or in the Fourier space,

fsw( )
1 - P?’rfsw

w(r) = p%" dk cos(kr) (3.5)
0

h(k) = );f dk’ﬁw(k').fswdk— k') -

27 1 - pyfew(k')
(3.7)

From this equation it is straightforward to get the structure
factor

S(k)=1+ ph(k) = —
1= py,fsw(k)

L gy f d_/c'févv(k')st(lk—k'l)
== 2T 1= pyfew(k')

and the Fourier transform of the direct correlation function

(3.3)

¢(k)=h(k)/S(k). The zero wavenumber value of the structure
factor is

1 , f“’ dk  fow(k)

——————+p, T =

1+2py,(1-yA) 0 T1-pyfsw(k)
(3.9)

S(0)=

where we have taken into account that fSW(O)=—2(1 —vA).
This completes the calculation of the correlation functions
within the HPA.

IV. APPROXIMATIONS RELATED TO THE HPA

As anticipated in Sec. III, the HPA is the exact equiva-
lent to the well-known LDH approximation, which is widely
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used in the context of charged simple fluids.” The latter is
actually an intermediate step of a hierarchy of successive
approximations ranging from the simplest MSA to the full
nonlinear version of the Debye-Hiickél approximation (see
Ref. 11 in Ref. 10 for a discussion on this point). For the
PSW model—and more generally for any bounded
potential—the LDH approximation (the HPA in the present
language) is particularly relevant in view of the fact that one
can make fpgw(r) arbitrarily small by letting y,—0, thus
justifying the approximation of neglecting nonchain dia-
grams. It is then interesting to check the performance of the
other approximations included in the aforementioned class,
which will be translated in the present context for simplicity.

On top of the hierarchy of approximations there is the
nonlinear HPA (nlHPA)

y(r) = e, (4.1)

which is equivalent to the nonlinear Debye—Hiickél approxi-
mation, as remarked. The HPA, Eq. (3.2), is obtained upon
linearizing the exponential, an approximation valid again in
the limit y,<<1. An additional approximation—denoted here
as the modified HPA (mHPA)—can be considered with the
help of Eq. (3.6) by neglecting the quadratic term in v,. This
yields

h(r) = y[w(r) + fsw(r)].
This is equivalent to keeping only the first term on the right-

hand side of Eq. (3.7), which implies &(k)=1,fsw(k) or, in
real space,

C(”) =fPsw(")~

The lowest rank in the hierarchy is occupied by the MSA,
which is obtained from Eq. (4.3) upon linearization of the
Mayer function fpgw(r),

c(r) == Bpsw(r).

Since w(r) is a convolution, it must be continuous at r
=1 and r=A\. It follows that the approximations with a con-
tinuous cavity function at =1 and r=N\ are nlHPA and HPA.
For instance, in mHPA (4.2) the cavity function is y(r)=1
+yw(r)/[1+7y,fsw(r)] so that one has y(17)—y(1%)
=yw(D)(1+y)(1=y) (T+yy)™"  and  yA)-y(\)
=yw\) y(1+yy,)™".

It has been shown in Ref. 10 that the virial and energy
routes to thermodynamics (to be discussed below) are con-
sistent with one another within the HPA, for any potential
and any dimensionality. A similar statement holds true for
soft potentials within the MSA.*! This clearly includes the
PSW potential in both cases.

It is interesting to make contact with previous work car-
ried out by Likos et al** ona general class of unbounded
potentials which are free of attractive parts, thus resulting
particularly useful in the context of the fluid-solid transition.
In Ref. 22, the MSA given in Eq. (4.4) along with the spin-
odal instability to be discussed in detail in Sec. VII, has been
introduced for a general class of unbounded potentials in-
cluding the PS as a particular case. This has been further
elaborated and extended to include the GCM in Ref. 23. In
both cases, the authors discuss directly the 3D case so that a

(4.2)

(4.3)

(4.4)
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direct comparison with the present work cannot be drawn at
the present stage, but they also provide a detailed discussion
of various approximations, within the general framework of
density functional theory, that provides a unified framework
where even the present model could be included.

V. EQUATION OF STATE

Given an approximate solution of a fluid model there are
several routes to the equation of state which, in general, give
different results. The most common are three:’ the virial, the
compressibility, and the energy route. The consistency of the
outcome of these different routes can be regarded as an as-
sessment on the soundness of the approximation. For some
particular approximations it may also happen that the consis-
tency of two of the three routes is automatically enforced
(see Ref. 10 and references therein for a detailed discussion
on this point). This is the case of the HPA, where the virial
and energy routes coincide, as anticipated. Hence, the con-
sistency with the compressibility route will provide a rough
estimate of the regime of validity of the HPA within a phase
diagram for the PSW potential.

Let us briefly recall’ the methods to compute the com-
pressibility factor, Z=p/p, associated with the three differ-
ent routes. The virial route is defined by

Z=1- pﬂJ drry(r)e PP ' (r), (5.1)
0
which, using standard manipulations,9 yields
Z=1+py[(1+yy(1) = y(\N)]. (5.2)

Thus the problem is reduced to the computation of the cavity
function y(r) which, in the present context, follows from
Egs. (3.2) and (3.5).

Next, we consider the compressibility route,

1 (? dp’'
4.1 f "
pJo S(0)
where the integral can be readily evaluated with the help of
Eq. (3.9).

Regarding the energy route, we start from the internal
energy per particle

(5.3)

u= i o fo " drd(ng(), (5.4)

which yields

1 ! »
u=—+¢(l- %)pf dry(r) - €,(1 + Va)pf dry(r).

2B 0 1
(5.5)

In the above equation, the expressions given by Egs. (2.1)
and (3.1) have been used. In order to obtain Bp from u we
exploit the following standard thermodynamic identity:'0

(ﬁ_) (@)
P\ Vg )

thus leading to

(5.6)
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FIG. 1. Plot of the compressibility factor Z=8p/p as computed from the
virial (-energy) route to the pressure for €,/€,=2 and A/o=1. Results for
three different reduced temperatures kz7/€,=8,10,12 are displayed.

B du
Z=1+p| dp'\ — ) .
0 p/p

We have used the exact consistency between the virial and
energy routes within the HPA as a test of the numerical cal-
culations.

Figure 1 depicts the results of the virial—and hence en-
ergy, as remarked—route under the condition €,/€,=2,
which constitutes the borderline range of stability of the 1D
PSW model with A/ o< 1.° Under this demanding condition,
we have considered three reduced temperatures from
kgT/€,=8 to kzT/€,=12, whereas the width of the well has
been fixed to the value A/o=1. We remark that po is not
limited in values from above due to the boundness of the
potential. The clear downturn of all three curves for suffi-
ciently large reduced density po is a consequence of the
existence of a maximum density p,.. [see Eq. (B10)], be-
yond which the HPA breaks down, as described at the end of
Appendix B. In particular, the values of the maximum den-
sity for €,/ €,=2 and A/ o=1 are p,,,0=4.94, 6.15, and 7.36
at kgT/€,=8, 10, and 12, respectively, in agreement with
Fig. 1.

We compare in Fig. 2 the results from the virial
(-energy) and the compressibility routes with MC
simulations™ for an intermediate value of the reduced tem-
perature (kzT/€,=10) and other parameters as before. Rather
interestingly, the virial (-energy) route appears to reproduce
rather well the numerical simulation results up to the region
where the artificial downward behavior shows up, whereas
the compressibility route begins to deviate for densities po
>3.

As the temperature increases the HPA theory clearly re-
mains a good approximation for a larger range of densities.
We can naturally measure this by the requirement that virial
(-energy) and compressibility routes are consistent within a
few percent. This is indeed shown in Fig. 3, where we depict
a transition line separating a “reliable” from an “unreliable”
regime, as measured by the relative deviation of the two
routes (here taken to be 5%), for four choices of the model
parameters: (€,/€,,A/0)=(2,1), (2,0.5), (5,1), and (5,0.5).
The value A/0=0.5 is frequently used in the SW

(5.7)
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1.8

v'irial(-énergy'/) —
compressibility - - - -
MC O

FIG. 2. Comparison between the compressibility factor Z=£p/o from the
virial(-energy) and the compressibility route to the pressure. The circles
represent MC simulation results. Chosen parameters are €,/€,=2, A/o=1,
and kzT/ €,=10.

counterpart.”> We observe that the region 0=p= py,(T)
where the HPA is reliable is hardly dependent on A/ o [com-
pare curves (a), (b) for €,/€,=5 and (c), (d) for €,/€,=2 in
Fig. 3]. On the other hand, at given values of A/ and
kgT/€,, the range 0= p=p;;.(T) decreases with increasing
€,/ €, [compare curves (a), (d) for A/o=0.5 and (b), (c) for
A/o=1 in Fig. 3], as expected. However, this effect is much
less important if the increase of €,/¢€, takes place at fixed
kgT/ €, (see inset of Fig. 3). It is interesting to note that as
illustrated in Fig. 2, the HPA virial route keeps being reliable
up to a certain density higher than py;,.

As said above, in Ref. 6 we introduced a LPA that was
accurate for states where the penetrability effects were low
or moderate. The LPA is complemented by the HPA pre-
sented in this paper. It is then interesting to compare the
regions where each approximation can be considered reliable
according to the same criterion as in Fig. 3. This is shown in

4.0

35 "
3.0 f

2.5 o

20 |

PlimC®

15}
1.0}
05

0.0 . + . .
0 2 4 6 8 10
kg T/e,

FIG. 3. Rough estimate of the region of reliability for the HPA, on the basis
of the consistency between the virial (-energy) and compressibility routes, in
the reduced density po vs reduced temperature kz7/e€, plane. Here the
curves (a)-(d) correspond to (€./€,,A/0)=(5,0.5), (5,1), (2,1), and (2,0.5),
respectively. The region below each curve represents states where the rela-
tive deviation between the virial (-energy) route and the compressibility one
is smaller than 5% and hence regarded as reliable. The inset shows the

curves in the po vs kzT/ €, plane for (€,/€,,A/0)=(2,1) (dashed line) and
(5,1) (solid line).
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/
7
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©
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04}

02}

0.0
kg T/e,

FIG. 4. Regions of reliability for the LPA and the HPA in the reduced
density po vs reduced temperature kzT/ €, plane. Here €./€,=5 and A/o
=1. The labels LPA, HPA, and LPA+HPA indicate the regions where only
the LPA, only the HPA, or both approximations are reliable, respectively.

Fig. 4 for the case €,/€,=5 and A/o=1. The two transition
lines split the plane into four regions: a region where only
the LPA is reliable, a region where only the HPA is reliable,
a region where both approximations are reliable (and provide
equivalent results), and a region where none of them is suf-
ficiently good. The latter region shrinks as €,/€, decreases
(thanks to the HPA) or A/ o decreases (thanks to the LPA).

VI. STRUCTURE

As an additional test of the soundness of the HPA, we
also study the RDF g(r)=h(r)+1, which can easily be ob-
tained from Egs. (3.1) and (3.2), or equivalently from Egq.
(3.6), once the auxiliary function w(r) has been determined.
For a sufficiently high temperature (and hence high penetra-
bility), the HPA is clearly well performing, as can be inferred
from Fig. 5, when compared with standard NVT MC results.
Here we have considered the same parameters as in the pre-
ceding section (€,/€,=2 and A/o=1) at a corresponding
high-temperature value kz7/€,=10 and a density po=1.5,
where overlappings are unavoidable. Under these conditions,
there is no visible difference among the various approxima-
tions considered in Sec. I'V. The excellent performance of the

1.10

1.05 |

1.00 |

0.90

0.85 |

0.80

rlc

FIG. 5. Results for the RDF g(r) as a function of r/o with €,/€,=2,
A/o=1, kzT/€,=10, and po=1.5. Predictions from the HPA (solid line) are
compared with MC results (circles).

2.0
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i MC ©
0.5 HPA ——
AHPA - - - -
mHPA -
MSA — — —
0.0 U LA
2 3 4 s
rlc

0.0

nIHPA
mHPA
MSA

2 3

4 5

rlc

FIG. 6. Comparison of different approximations in the results for the RDF
g(r) vs r/o. Chosen parameters are €,/€,=2, A/o=1, and po=1.5. MC
results (circles) are compared with the HPA (solid line), the nIHPA (dashed
line), the mHPA (short dashed line), and the MSA (long dashed line). The
two different panels refer to different reduced temperatures: kzT/€,=5
(top panel) and kzT/€,=3 (bottom panel). Note that both panels are drawn
within the same scale.

HPA observed in Fig. 5 agrees with the reliability criterion of
Fig. 3 since the state kz7/€,=10 and po=1.5 is well below
the curve (c) corresponding to €,/€,=2 and A/o=1.

As we cool down, significant differences among various
approximations (HPA, nlHPA, mHPA, and MSA) begin to
appear, as depicted in Fig. 6, where results corresponding to
temperatures kz7/€,=5 (top panel) and kzT/€,=3 (bottom
panel) are reported within the same scale. The states
kpT/€,=5 and po=1.5 are still lying in the reliable region of
Fig. 3, but close to the boundary line (c), while the states
kpT/€,=3 and po=1.5 are clearly outside that region. In the
case kpT/€,=5 the HPA and its three variants are practically
indistinguishable, except in the region 0<r<o, which is
very important to describe the correct thermodynamic behav-
ior, where the best agreement with MC data corresponds to
the nIHPA, followed by the HPA. The two approximations
that do not preserve the continuity of the cavity functions
(mHPA and MSA) overestimate the jump at r=o¢. In the
lower temperature case kzI/€,=3 all the approximations
overestimate the oscillations of the RDF. Interestingly, the
HPA captures quite well the values of g(r) near the origin.
The worst overall behavior corresponds again to the MSA,
which even predicts negative values of g(r) for r/oc=<1.
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FIG. 7. An additional comparison of different approximations in the results
for the RDF g(r) vs r/ 0. Here fixed parameters are €,/€,=5 and A/ 0=0.5.
MC results (circles) are compared with the HPA (solid line), the nIHPA
(dashed line), the mHPA (short dashed line), and the MSA (long dashed
line). The top panel refers to the state kz7/€,=5 and po=1.5, whereas the
bottom panel refers to kzT/€,=2 and po=0.8. In the bottom panel the MSA
is not depicted. Again both panels are on the same scale.

Additional insights can be obtained by decreasing the
range of interactions, in close analogy with what we consid-
ered in previous work for the complementary LPA.°® This is
reported in Fig. 7 for cases €,/€,=5 and A/o=0.5 with
(kgT/€,,po)=(5,1.5) (top panel) and (kzT/€,,po)=(2,0.8)
(bottom panel). Again we stress that the same scale is used
for both panels in order to emphasize the effect of lowering
the temperature. Clearly this is a more demanding situation.
In fact, both states are above curve (a) of Fig. 3 and thus
outside the corresponding reliability region. Therefore, clear
deviations from MC results appear in all considered approxi-
mations, especially in the lower temperature case kzT/€,=2
(bottom panel). Yet, the HPA is still a reasonably good ap-
proximation that follows the main qualitative features of the
correct g(r). In the higher temperature case kzT/€,=5 the
only noticeable limitations of the HPA practically take place
near the origin, this deficiency being largely corrected by the
mHPA.

To conclude this section, it is worthwhile comparing the
two complementary approaches HPA and LPA at a case
where both are expected to be reliable, according to the dia-
gram of Fig. 4. This is done in Fig. 8 for €,/€,=5, A/o=1,
kgT/€,=2, and pa=0.2. We observe that both approxima-
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FIG. 8. Comparison of different approximations in the results for the RDF
g(r) vs r/o. Chosen parameters are €,/€,=5, A/o=1, kzT/€,=2, and po
=0.2. MC results (circles) are compared with the HPA (solid line) and the
LPA (dashed line).

tions agree well each other and with MC data, except in the
region 1 <r/o<A/o, where the HPA RDF presents an arti-
ficial curvature.

VIl. FW LINE AND FLUID-FLUID TRANSITION

We now turn to an interesting point raised in previous
work,’ namely, the question of whether the model can dis-
play a phase transition in spite of its 1D character. The exis-
tence of general theorems—all essentially based on the origi-
nal van Hove’s result''—on the absence of phase transitions
for a large class of 1D models with short-range interactions
is well established.'> PSW and PS models, however, do not
belong to the class for which these general theorems hold.
This is because boundness allows multiple, partial (or even
total) overlapping at some energy cost, thus rendering the
arguments used in the aforementioned theorems invalid.

On the other hand, none of these theorems provide a
general guideline to understand whether a 1D model may or
may not display a nontrivial phase transition, and one has
then to rely on the specificity of each model. As discussed in
our previous work,6 it is instructive to first address the sim-
pler question of the location of the FW line. This is a line
separating two different regimes for the large-distance be-
havior of the RDF g(r) in the presence of competing
repulsive/attractive interactions.'’ The rationale behind the
FW line is that on approaching the critical points where at-
tractions become more and more effective, the behavior of
correlation functions must switch from oscillatory (character-
istic of repulsive interactions) to exponential with a well de-
fined correlation length £. In the previous work, we analyzed
the location of this line for PSW within the LPA. Here we
extend this analysis to the HPA regime and discuss the com-
patibility of the two results.

Let us first briefly recall the main points of the analysis,
referring to Ref. 6 for details. From Eq. (3.1) we note that the
asymptotic behavior of g(r) is the same as that of y(r). In
view of Eq. (3.2), this is hence related to w(r), whose
asymptotic behavior is governed by the pair of conjugate
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poles of W(k) with an imaginary part closest to the origin. If
the real part of the pair is zero, the decay is monotonic and
oscillatory otherwise.

According to Eq. (3.3), the poles of w(k) are given by

pYfswlk) = 1.

Let k= *ix be the imaginary pole and k= *i(x" = iy) be the
pole with the imaginary part closest to the origin. The FW
line is determined by the condition x=x'. This gives, at a
given temperature, three equations in the three
unknowns—x, y, and p.6 More specifically, after some alge-
bra, one gets

(7.1)

Xsinh x sinh(Ax)[cos y — cos(\y)]
X

= sinh x cosh(\x)sin(\y)(cos y — 1)

—sinh(\x)cosh x sin y[cos(\y) — 1], (7.2)
inh(\ Ay) -1 -
_ s1r? (Ax) cos(\y) il (73)
sinhx cosy—1
1
= (7.4)

P= 2_)/, v sinh(Ax) = (1 + y)sinh x

The inverse of the parameter x represents the correlation
length £=1/x. From a practical point of view it is more con-
venient to use x rather than kz7/€, as a free parameter to
construct the FW line. In that way, Eq. (7.2) becomes a tran-
scendental equation that gives y as a function of x; once y(x)
is known, the solution to Eq. (7.3) gives kzT/ €, as a function
of x; finally, insertion of y(x) and kgzT(x)/€, into Eq. (7.4)
provides p(x). The corresponding values of the pressure are
obtained from either Eq. (5.2) (virial-energy route) or
Eq. (5.3) (compressibility route).

We observe that 7 decreases as x decreases, until a
critical value T, is found in the limit x—0. In that limit,
Egs. (7.2)—(7.4) simplify to

)\yC[COS Ve~ COS()\yC)]
= Sin()\yc)(cos Ye— 1) — A\ sin yC[COS()\yC) - l]v

(7.5)
Ay, -1 -
Ye= {A—COS( Yool _ 1] , (7.6)
cos y.— 1
1 1
=— . 7.7
Pe 27r ’YCA -1 ( )

At the critical point (T, p)=(T.,p.), one has x=0 or, equiva-
lently, £— 0. Therefore, at this point w(r) does not decay for
long distances and in the Fourier space one has w(k) ~ k>
and S(k)~ k=2 for short wave numbers. The condition S(k)
~ k72 is also satisfied for T<T, if po=[27y,(yA/oc-1)]"', in
agreement with Eq. (3.9). This defines in the p-T plane a
spinodal line or locus of points of infinite isothermal com-
pressibility (within the compressibility route). The spinodal
line cannot be extended to temperatures larger than the criti-
cal value 7, because [2y,(yA/o-1)]"'=py0 if T=T,,
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FIG. 9. Plot of the FW transition line in the po vs kgT/ €, plane with A/ o=1
and €,/€,=10 (top panel) and €,/€,=5 (bottom panel). The long dashed
curves are the spinodal lines predicted by the HPA. The FW and spinodal
lines meet at the critical point (denoted by a circle).

where p,,., 1S the maximum density beyond which the HPA
is unphysical at a given temperature (see Appendix B). We
further note that the spinodal line only has a lower density
(or vaporlike) branch, thus hampering the interpretation of
(T.,p.) as a conventional critical point.

The above features are already suggestive of considering
the HPA spinodal line as an artifact of the theory when used
in a region of parameter space where the approximation is
invalid. Additional support to this view stems from the fact
that the HPA keeps predicting a spinodal line and a critical
point even in the SW case (€,/€,— and y,— 1), a clearly
incorrect feature. As we shall discuss further below, special-
ized numerical simulations coupled with a recent analytical
studyl7 strongly support the absence of any phase transition
in the present 1D PSW model.

In Fig. 9 we report the comparison between the FW
lines, as predicted by the LPA and the HPA, in the po versus
kgT/ €, plane for A/o=1 and two different energy ratios,
€./€,=10 and €,/€,=5. The spinodal line predicted by the
HPA is also included. As said above, the FW and spinodal
lines meet at the critical point. While at high temperatures
(above kgT/€,=3) there is a remarkable agreement between
the two approximations (LPA and HPA), deviations occur at
lower temperatures.

As in the original work by Fisher and Widom," we also
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FIG. 10. Same as in Fig. 9, but in the po/€, vs kzT/€, plane. Note that
while in the LPA the three routes to the pressure are not distinguishable one
from the other on the graph scale, for the HPA the difference between the
virial and the compressibility route is noticeable at low temperatures.

report the FW line in the po/ €, versus kzT/ €, plane (see Fig.
10), where again we compare the lines as derived from the
HPA and LPA schemes. For the energy ratio €,/€,=10 (top
panel) we see that the HPA and the LPA give qualitative
similar forms of the FW line with a significant deviation at
low temperatures, where again the HPA FW line is inter-
rupted at 7=T,. Note that while all three standard routes give
practically identical results within the LPA, the virial
(-energy) route in the HPA differs from the compressibility
one at low temperatures (more than 5% for kzT/€,<1.2).
For consistency, the HPA spinodal line is obtained via the
compressibility route only. Similar features occur for the sec-
ond lower value of the energy ratio, namely, €,/€,=5 (bot-
tom panel). Again, the LPA and HPA lines are qualitatively
similar, the three routes in the LPA provide indistinguishable
results, and the virial and energy routes in the HPA deviate
more than 5% for kzT/€,=<1.2. The main distinctive feature
in this case €,/€,=5 is a marked upswing of the tail of the
FW line, absent in the previous case €,/€,=10. This means
that on increasing penetrability—that is, on decreasing
€,/ €,—the transition from oscillatory (above the line) to
monotonic (below the line) behaviors occurs at a higher pres-
sure and a higher density for a fixed temperature kz7/ €,
Despite the important differences in the steps followed
to derive the LPA and the HPA, it is noteworthy that they
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agree in the qualitative shape of the FW lines (even though
the HPA predicts a spurious spinodal line). It is then reason-
able to expect that the true FW line should interpolate the
LPA line at low temperatures with the HPA line at high tem-
peratures.

Finally, we now tackle the issue of the existence of a
phase transition for the PSW 1D model. In view of the HPA
results on the seemingly existence of a spinodal line (and
hence of a critical point), we consider here the fluid-fluid
transition. As we shall see, our numerics is compatible with
the absence of such a transition, thus supporting the view
that the above findings of a spinodal line is indeed a conse-
quence of the application of the HPA to a regime where the
theory is not valid.

As the FW line always anticipates the critical point, as
remarked, we can then look for the existence of a fluid-fluid
coexistence line in the region predicted by the interpolation
of the LPA and HPA FW lines. We have carried out extensive
simulations of the PSW fluid using the Gibbs ensemble MC
techniques and employing all standard improvements sug-
gested in literature.>™'® In order to validate our code, we
tested it against the case of the 1D SW potential, where exact
analytical predictions for all thermodynamic quantities are
available.

We have used up to 1000 particles and carefully scanned
the temperature range 0.1 <kpT/€,<2.0 and the density
range 0.1 <po<6, as suggested by the FW line (see Fig. 9).
We have also considered different values of €,/€, and A/ o
for cases giving a significant overlapping probability. In all
the cases we have not found any signature of a fluid-fluid
phase separation.

Although the absence of a critical transition is always
much more difficult to assess as opposed to its presence, the
first scenario is consistent with more than one indication. The
first indication stems from a lattice model counterpart of the
1D PSW model. This is discussed in Appendix C, where the
lattice version of the PSW model is constructed following
standard manipulations with the result that no phase transi-
tions are present for finite occupancy. An additional evidence
supporting the absence of any fluid-fluid or freezing transi-
tion stems from the very recent exact analytical work alluded
carlier'” which, using the methodology presented in Ref. 18,
concludes that no phase transitions are present for the PSW
and PS models in 1D.

In our simulations we have also investigated values of
€,/ €, and A/ o which violate Ruelle’s stability criterion (see
Appendix A) and thus the 1D PSW model is not necessarily
stable in the thermodynamic limit. Here the phenomenology
turns out to be much more interesting. For sufficiently low
temperatures and sufficiently high densities we observe the
formation of a “blob” of many-particle clusters (each made
of a large number of overlapping particles) having a well
defined and regular distribution on the axis, and occupying
only a portion of the system length. In the blob phases the
energy per particle grows with the number of particles, thus
revealing the absence of a thermodynamic limit. The transi-
tion from a “normal” phase to a blob phase if €,/€,<2(¢
+1), where ¢ is the integer part of A/ o, is illustrated in Fig.
11. This figure shows the RDF at po=6 (top panel) and po
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FIG. 11. Plot of the RDF g(r) obtained from MC simulations for €,/ €,=2,
A/o=1.5, kgT/€,=10, and po=6 (top panel) and po=8 (bottom panel).

=8 (bottom panel) for €,/€,=2, A/o=1.5, and kzT/€,=10.
At the lower density the structure of the PSW fluid is quali-
tatively not much different from that expected if €/€,
>2(€+1) (compare, for instance, with Fig. 6). However, the
structure at the higher density is reminiscent of that of a
solid, except that the distribution of particles does not span
the whole length (here L=N/p=62.50). Instead, the particles
distribute into a few clusters regularly spaced with distance
1.170 so that the particles of a given cluster interact attrac-
tively with all the particles of the nearest- and next-nearest-
neighbor clusters. Note that the number of particles within
any given cluster is not necessarily identical. It is also worth
noticing that in spite of the huge difference in the vertical
scales of both panels in Fig. 11, they are consistent with the
condition fé/zdrh(r)z—l 12p.

The decay of the peaks of g(r) is mainly due to the lack
of translational invariance, i.e., the first and last clusters have
only one nearest-neighbor cluster, the first, second, next-to-
last, and last clusters have only one next-nearest-neighbor
cluster, and so on.

We stress that the above phenomenon is specific of
bounded potentials, such as PSW, and has no counterpart in
the hard-core domain. It is then plausible to expect their
appearance even in the corresponding 3D versions of these
models where freezing transition (and phase separation for
SW) is present but could both be hampered by the presence
of this clustering phenomenon in the region of parameter
space where Ruelle’s stability criterion is violated. This
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would extend the interesting phenomenology already estab-
lished for the PS case.”> Work along these lines on the 3D
case is underway and will be reported elsewhere.

Viil. CONCLUSIONS

In this paper we have completed the study initiated in
previous work™® on the PSW model in 1D. This is a model
combining the three main ingredients present in many
colloidal-polymer solutions, namely, repulsions, attractions,
and penetrability. While the first two are ubiquitous even in
simple fluids, the latter is a peculiarity of complex fluids
where there exist many examples of colloid-polymer systems
which are penetrable (with some energy cost) to some extent,
and they involve both steric repulsions and short-range at-
tractions. This model then captures all these crucial features
at the simplest level of description within an implicit solvent
description.

The main new point of this paper was to present an
additional and complementary approximation, denoted as the
HPA, valid in regimes complementary to those valid for the
low-penetrability scheme LPA discussed in Ref. 6. While the
idea behind the LPA was to modify the exact relations valid
for the 1D SW fluid—and in fact for any fluid with a hard-
core and short-range attraction—to allow penetrability
within some reasonable approximation, the driving force be-
hind the HPA is the fact that for bounded potential the Mayer
function can be made arbitrarily small by considering suffi-
ciently high temperatures. As a consequence, only the linear
chain diagrams need to be retained at each order in the clus-
ter expansion. As it turns out,lo this is tantamount to consid-
ering the celebrated Debye—Hiickel theory for charged fluids,
and we have considered here the soundness of this approxi-
mations at various regimes as compared to specialized MC
simulations. The latter were also compared with other ap-
proximations which parallel the entire hierarchy of approxi-
mations in the framework of charged fluids, ranging from the
most sophisticated nonlinear Debye—Hiickel theory to the
simplest MSA. We have assessed the regime of reliability of
these approximations both for thermodynamic and correla-
tion functions by comparison with MC simulations and by
internal consistency between different routes to thermody-
namics.

Next we have also discussed the location of the FW line,
separating oscillatory from monotonic behavior in the corre-
lation function, within the HPA and compared with that ob-
tained from the LPA introduced in previous work.® In agree-
ment with previous findings, we find that penetrability
enhances the region where correlation functions have a
monotonic regime. The FW lines derived from the HPA and
LPA schemes are found to be in qualitative agreement, thus
making drawing of a line interpolating the high- and low-
temperature regimes possible.

As a final point, we investigated the possibility of a
fluid-fluid transition. This possibility arises because the
boundness of the potential renders the van Hove theorem on
the absence of phase transition for 1D model with short-
range interactions nonapplicable. In fact, the HPA is seen to
predict a critical point where the FW line meets a spinodal
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line. However, this prediction takes place in a region of den-
sities and temperatures where the HPA is not reliable. A care-
ful investigation using both NVT and Gibbs ensemble MC
techniques akin to those exploited in the investigations of the
analog problem for the 3D SW model yields negative results.
These findings are also supported by analytical arguments
based on the lattice gas counterpart where the absence of
transition can be motivated by the absence of an infinite
occupancy of each site, as well as by an exact analytical
proof17 of a no-go theorem proving the absence of any phase
transition in this model, which is in agreement with, and
beautifully complements, our work.

In our quest for a possible thermodynamic transition in
the 1D PSW model we have explored values of the energy
ratio €,/ €, and well width A/ o for which the stability of the
system in the thermodynamic limit is not guaranteed by
Ruelle’s criterion.’®?” We have found that as the temperature
decreases and/or the density increases, a transition from a
normal fluid phase to a peculiar solidlike phase takes place.
The latter phase is characterized by the formation of clusters
of overlapping particles occupying a small fraction of the
available space and with nonextensive properties. This clus-
tering transition pre-empts both the fluid-fluid and fluid-solid
transitions.

In view of the results presented here, it would be very
interesting to discuss the phase diagram of the corresponding
3D PSW model. The phase diagram of the SW model
(€,/€,—») is indeed well established and includes both a
fluid-solid transition—present even in the HS counterpart—
and a fluid-fluid transition line. The latter is present for any
value of €, and A/o but is stable against freezing only for
A/o>0.25, the depth of the well being irrelevant.”® The re-
sults presented here strongly suggest the importance of the
additional parameter €,/ €,. A first interesting issue would be
the Ruelle instability in 3D. A straightforward extension of
the arguments presented in Appendix A predicts a guaranteed
stability for €./€,>12 (if A/o<1), but the actual onset of
the instability cannot be assessed through these arguments.
One could expect that for sufficiently high penetrability (i.e.,
€,/ €,< 12 and high density) a phenomenon akin to the “clus-
tering” transition found here could be present. In the case
€./€,>12, where the clustering transition is not expected,
the interesting point is to assess the influence of the ratio
€,/ €, on the location of the fluid-fluid critical point and co-
existence line. All of these open the possibility of a rich and
interesting phase diagram which would complement that al-
ready present in a general class of bounded potentials with
no attractive tails.”**> We note that the high-penetrability
regime is indeed the realm of the HPA presented here, which
can be obviously extended to 3D. Work on the 3D PSW
model including the above points and other aspects is under-
way and will be reported elsewhere.
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APPENDIX A: RUELLE’S STABILITY CRITERION

Let us consider the 1D PSW model characterized by
€/€, and A/o. Let us call £ the integer part of A/a, i.e.,
{=A/o<{+1. According to Ruelle’s criterion, a sufficient
condition of thermodynamic stability is??7

N-1 N

Uy, ....xy) =2 2 $llx—x|)=-NB

i=1 j=it+l

(A1)

for all configurations {x;}, where B is a fixed bound.

Given the number of particles N, we want to obtain the
configuration with the minimum potential energy Uy. With-
out loss of generality we can see any given configuration as
a set of M clusters (1 =M =N), each cluster i being made of
s; overlapping particles (i.e., any pair of particles of a given
cluster is separated a distance smaller than o). In Ref. 5 we
proved that for a fixed value of M the minimum energy cor-
responds to s;=s=N/M, all the particles of each cluster be-
ing located at the same point and the centers of two adjacent
clusters being separated a distance o. Therefore, we can re-
strict ourselves to this class of ordered configurations and use
s as the variational variable.

The repulsive contribution to the potential energy is

s(s—1)

Un(s)=M €. (A2)

To compute the attractive contribution we need to take into
account that all the particles of a given cluster interact attrac-
tively with the particles of the €+ 1 nearest clusters. The total
number of pairs of interacting clusters are (€+1)[M—(¢€
+D)]+€+({=1)+(£=2)+ - +1=(£+1)(M—-1-€/2). There-
fore,

£+2
i )szea. (A3)

US(s) =— (€ + 1)<M— :

The total potential energy Uy=Uy+ Uy, is
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(A4)

)
S |S€,.

We then see that the value that minimizes Upy(s) is

€—(€+ 1)(N—
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Y.
T2 T2+ e, ||

This value is only meaningful if €,/2(€+1)e, < 1. Otherwise,
s.=1. In summary, the absolute minimum value of Uy is

(AS)

N +1 €, 2
- —\€&+N €l 1- , €<2(€+1)g,
2 €+2 2(€+ 1)e,
Un=Up(s.) = 0in (A6)
—(€+l)<N— 5 )ea, €>2(+1)g,.
[
Therefore, if €,>2(€+1)e, the potential energy is N (=" 1
bounded from below by —NB with B=({+1)¢, and thus the i‘;{rl fﬁ Zr(k+ l-f)n -1 O(=r), n>0, (B6)

system is stable in the thermodynamic limit. On the other
hand, if €,<2(€+1)e, there exist configurations that violate
Ruelle’s criterion and so the thermodynamic stability of the
system is not guaranteed.

APPENDIX B: DENSITY EXPANSION OF w(r) WITHIN
THE HPA

Starting from Eq. (3.3) and for py,|fsw(k)|<1, the
Fourier transform w(k) can be expanded in power series as

(k) = 2 (py,)" " faw(k).

(B1)
n=2
Upon inverse Fourier transform one then has
w(r) =2 (py,)""w,(r). (B2)
n=2
where
w,(r) = f —e”"f'sw(k) (B3)
Equation (3.4) can be rewritten as
~ i . . . .
Fsw(k) = L1+ (" —e™) = pe™ -] (B4)
Therefore,
_ n m n—m n—m
Faw=5 S (1))
m=0 p=0 ¢=0 p q
X(— 1)m+p+q(1 + ,y)m,)/l—meik[Zp—m+(2q—n+m))\].
(BS)

The origin (k=0) is a regular point of fgw(k) and hence
of fgw(k) [but not of each separate term in Eq. (B5)], so we
can choose to save the point k=0 in Eq. (B3) either from
above or from below. Here we do it from above with the
result

where the path £ in the complex k plane goes from k=-% to
k=+ and closes itself on the upper plane if >0 and in the
lower one if r<<0. In Eq. (B3) we then find

Eﬁzm( )(p)( q’”)(—nmwwuﬂw-m

m=0 p=0 ¢=0

><[—r—2p+m—(2q—n+m))\]”_1
(n-1)!

O[-r-2p+m—(2g—-n+m)\].

(B7)
It is interesting to note that w,(r)=0 if r>An. Thus Eq. (B2)
can be rewritten as

©

wir)= 2

n=max{2,[r/\]}

(py)" " w(r), (B8)

where [r/\] is the integer part of r/A\.

The radius of convergence of series (B8) depends on
temperature and can be obtained by the same arguments as in
the PS case.” From the denominator of Eq. (3.3), it follows
that the series converges provided that p<p.,,,, where
(B9)

(')/rpconv |fSW|de

Here |fswlmax denotes the absolute maximum value of
[fsw(k)|. From Eq. (3.4) if y<(\3—
responds to k=0, ie., I‘fVSW|max=_fSW(O), and SO ¥ Pcony
=(1-—vyA)~!/2. On the other hand, if y>(\3=1)"! the maxi-
mum value |fw|max takes place at k# 0 and s0 ,pony Must
be obtained numerically. For sufficiently large values of yA

one has |}SW|max=fSW(O) so that /yrpconvz('}’A_l)_l/2 and
this coincides with the maximum physical density (see be-
low). Figure 12 shows y,p.ny as a function of yA for two
values of A/co. In the PS limit (yA— 0) one has ¥,pconv=3
As the strength of the attractive part of the potential (mea-
sured by the product yA) increases, the radius of conver-
gence first grows, reaches a maximum, and then decays.

1)~! that maximum cor-
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FIG. 12. Plot of the radius of convergence ¥,p.o, 0 and of the maximum
density y,pn.x0 Vs YA/ o for A/o=0.5 and A/o=1.

Except when yA is so large that |fw|ma=/fsw(0), the

maximum |fsw| e corresponds to a negative value of fey (k)
and so the singularity responsible for the radius of conver-
gence is located on the negative real axis. Therefore, w(r) is
still well defined beyond the radius of convergence, i.e., for
P> Peony- On the other hand, analogous to the PS case, %
the HPA for the PSW fluid becomes unphysical, at a given
temperature, for densities larger than a certain value pp,.«
given by the condition

(VPmar) ™ = o0 (B10)

where f is the absolute maximum value of fqw(k). Since

X < | Fswlmax it is obvious that py. = peony- For sufficiently
large values of yA (actually, for temperatures below the criti-

cal value 7, defined in Sec. VII) one has fi*=fow(0), and so
¥Pmax=(YA—1)71/2. In that case, the line of maximum den-
sity becomes a spinodal line, as discussed in Sec. VII. Figure
12 also includes a plot of y,p.,. as a function of yA for the
same two values of A/a. Note the kink of the curve y,pp.x
for A/o=1 at the critical point (y.A/oc=2.11 and v,p,
=0.45) so that Y,pm=(yA-1)"1/2 (spinodal line) if
yA/o>2.11.

APPENDIX C: THE PSW LATTICE GAS

Consider the PSW model in 1D. The grand partition
function is

ePr

E(u,LT)= 2, —\| — | ZyL,T), C1
(u.L.T) %N!(AT) WLT) cn

where Ay is the thermal de Broglie’s wavelength and

1 N
ZN(L,T)=f drl,...,drNeXp[—ﬂE E (f)(l‘l—rj)]
L

i j=1
(C2)

We now discretize the length L as a sum of N.>1 cells
of size a=L/N, with occupancy n,, a=1,...,N.. The value
of a is chosen in the interval c<a<<o+A, with A<o so
that two particles in the same cell are assumed to interact
repulsively and two particles in adjacent cells are assumed to
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interact attractively. The integral can then be approximated
as [;dr=aN, and the configurational partition function Zy as

N,
1 & ~
Zy(L.T) =~ a" 2, 5N,Eanaexp[—ﬁ5 > xaﬁqbaﬁ]zv!.
{na} a,B=1

(C3)

In Eq. (C3) the & function accounts for the constraint N
=3, and the factor N! of the indistinguishability of the
particles. Also we have introduced y,z accounting for multi-
interactions among cells and (Zaﬁ which is equal to e, if
= and equal to —€, for nearest-neighboring (nn) cells. Not-
ing that each particle in an a-cell can either interact with
n,—1 other particles within the same cell or with nz particles
within a nn SB-cell, we see that

N,
q ~ 1
2 Xaﬁd)aB: — €& 2 nanﬁ+ 561‘2 na(na_ 1) (C4)
(apB) @

1
2 af=1

Substituting into Eq. (C1) we then find

“ N
— a
‘:'(lu"L’ T) = E (A_eﬁ'u> E 6N,Ea;m

N=0 T {nt
1 -
Xexpl—ﬁEE xamaﬁ}. (C5)
@B

Because of the 6, the two sums can be inverted and the sum
over N can be explicitly carried out thus obtaining

€ 2 nanﬁ

E(u.L.T)=2 exr{—ﬁ(—
(ap)

{not
+ %erz ng(n,—1)— >, na):| . (C6)

with =pu+(1/8)In(a/A;).

Assume a finite length L (and hence a finite number of
cells N,.) with periodic boundary conditions. The above par-
tition function can then be solved by standard transfer matrix
techniques

NC
EwLn= 2 Il4a,,, =Tra", (€7)

{nl,...nN(} a=1

where we have introduced the matrix
A, , = & 1 1)
nytg eXp| — B — € gt 4 na(na_ ) + nﬁ(nﬁ_ )
7
If N, is finite, one then has in the thermodynamic limit
N 1
lim —log E(u,L,T) = —log Ay, (C9)
LHOOL a

where A is the largest eigenvalue of the matrix. Clearly this
is analytic and no phase transitions are possible for finite
occupancy N..
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