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Communication: Inferring the equation of state of a metastable hard-sphere
fluid from the equation of state of a hard-sphere mixture at high densities
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A possible approximate route to obtain the equation of state of the monodisperse hard-sphere system
in the metastable fluid region from the knowledge of the equation of state of a hard-sphere mixture at
high densities is discussed. The proposal is illustrated by using recent Monte Carlo simulation data
for the pressure of a binary mixture. It is further shown to exhibit high internal consistency. © 2011
American Institute of Physics. [doi:10.1063/1.3663206]

As is well known, simulation studies of the metastable
fluid branch of the one-component hard-sphere (HS) system,
especially near the putative glass transition, are extremely dif-
ficult. This is due to the natural tendency of the system to crys-
tal formation. On the other hand, the introduction of a certain
degree of size polydispersity hinders the formation of local
ordered configurations, thus providing access to disordered
states. The question naturally arises as to whether it is possi-
ble to infer the equation of state of the underlying metastable
pure fluid from measurements made on the polydisperse one.
The aim of this work is to provide a constructive affirmative
answer to that question using recent simulation data of the
equation of state of a HS binary mixture at high densities.1

One of the great assets of using the distribution function
approach in the theory of liquids is the ability to link the struc-
tural properties (radial distribution functions) and the thermo-
dynamic properties (internal energy, pressure, chemical po-
tential, ...) of a given system. In the case of a multicomponent
additive HS mixture, such a link leads to a particularly sim-
ple form of the equation of state. Let ρ be the number density
of the mixture and xi = ρ i/ρ, where ρ i is the number den-
sity of species i, be the mole fraction of species i. Also, let
σij = 1

2 (σi + σj ), where the diameter of a sphere of species i
is σ ii = σ i, be the distance of separation at contact between
the centers of two interacting particles, one of species i and
the other one of species j. In terms of the packing fraction
η = (π /6)ρ〈σ 3〉, where 〈σn〉 ≡ ∑N

i=1 xiσ
n
i and N is the num-

ber of components, the compressibility factor of the mixture Z
= p/ρkBT (p being the pressure, kB the Boltzmann constant,
and T the absolute temperature) is given by

Z(η) = 1 + 4η

〈σ 3〉
N∑

i,j=1

xixjσ
3
ij gij (σ+

ij ). (1)

Here, gij (σ+
ij ) are the contact values of the radial distribution

functions gij(r), r being the distance. Thus, one only needs
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to specify these contact values in order to get the equation
of state of the mixture. Unfortunately, no exact analytical re-
sults are available for them, although many valuable approxi-
mate expressions have been derived or proposed and they may
also be determined from computer simulations. Among the
analytical expressions for the contact values, one should es-
pecially mention the ones which follow from the solution of
the Percus–Yevick (PY) equation of additive HS mixtures by
Lebowitz2 given by

gPY
ij (σ+

ij ) = 1

1 − η
+ 3

2

η

(1 − η)2

σiσj 〈σ 2〉
σij 〈σ 3〉 , (2)

and the results obtained from the scaled particle theory
(SPT),3–8 namely,

gSPT
ij (σ+

ij ) = 1

1 − η
+ 3

2

η

(1 − η)2

σiσj 〈σ 2〉
σij 〈σ 3〉

+3

4

η2

(1 − η)3

(
σiσj 〈σ 2〉
σij 〈σ 3〉

)2

. (3)

Since neither the PY nor the SPT lead to particularly accu-
rate values when compared with simulation results, Boublík9

and, independently, Grundke and Henderson10 and Lee and
Levesque11 proposed an interpolation between the PY and
the SPT contact values, yielding what we will refer to as the
BGHLL values,

gBGHLL
ij (σ+

ij ) = 1

1 − η
+ 3

2

η

(1 − η)2

σiσj 〈σ 2〉
σij 〈σ 3〉

+1

2

η2

(1 − η)3

(
σiσj 〈σ 2〉
σij 〈σ 3〉

)2

. (4)

These contact values, when substituted into Eq. (1), lead
to the widely used and rather accurate Boublík–Mansoori–
Carnahan–Starling–Leland (BMCSL) equation of state9, 12

for HS mixtures. Refinements of the BGHLL values have
subsequently been introduced, among others, by Henderson
et al.,13–21 Matyushov and Ladanyi,22 and Barrio and Solana23

to cope with the so-called colloidal limit of binary mixtures.
On a different path, but also having to do with the col-
loidal limit, Viduna and Smith24, 25 have proposed a method to
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obtain contact values of the radial distribution functions of HS
mixtures from a given equation of state.

In the search for a more general framework able to deal
with arbitrary spatial dimension d and number of components
N, in our previous work26–31 we have introduced a methodol-
ogy that provides the contact values of the radial distribution
functions of d-dimensional multicomponent hard-core mix-
tures. In our approach, we have taken into account exact re-
sults that these contact values should satisfy, namely, the limit
in which one of the species, say i, is made of point particles,
i.e., σ i → 0, the limit when all the species have the same
size, {σ k} → σ , the limit stemming from a binary mixture in
which one of the species (say i = 1) is much larger than the
other one (i.e., σ 1/σ 2 → ∞) but occupies a negligible vol-
ume (i.e., x1(σ 1/σ 2)d → 0), and the limit when the mixture is
in contact with a hard wall. We have further assumed that, at
a given packing fraction η, the dependence of gij (σ+

ij ) on the
parameters {σ k} and {xk} takes place only through the scaled
quantity

zij ≡ σiσj

σij

〈σd−1〉
〈σd〉 . (5)

That is, we have specifically assumed that

gij (σ+
ij ) = G(η, zij ), (6)

where, for a given d, the function G(η, z) is universal in the
sense that it is a common function for all the pairs (i, j), re-
gardless of the composition, size distribution, and number of
components of the mixture. This “universality” assumption
has successfully been tested in different contexts for HS mix-
tures in the stable fluid region (see Refs. 27–31 for details).

As can be seen in Eqs. (2)–(4), the corresponding con-
tact values are consistent with the assumption (6), where zij is
given by Eq. (5) with d = 3 and G(η, zij ) has a linear (PY)
or quadratic (SPT and BGHLL) dependence on zij. In a more
general and flexible approach, the contact values are given
by28–30

gij (σ+
ij ) = G0(η) + G1(η)zij + G2(η)z2

ij + G3(η)z3
ij ,

(7)
where

G0(η) = 1

1 − η
, G1(η) = 3η

2 (1 − η)2 , (8)

G2(η) = 3η2

4 (1 − η)3 − 2 − η

1 − η
G3(η), (9)

G3(η) = (1 − η)
[
gSPT

p (η) − gp(η)
]

(10)

with

gSPT
p (η) = 1 − η/2 + η2/4

(1 − η)3
(11)

being the contact value of the pure HS fluid in the SPT
(Ref. 3) and gp(η) being the contact value of the pure HS
fluid, which remains unspecified until one chooses a partic-
ular equation of state for this latter system. Note that, if one
chooses gp(η) = gSPT

p (η), Eq. (7) reduces to Eq. (3). On the
other hand, Eq. (7) accommodates any desired function gp(η),

thus extending the contact value of the pure fluid to the con-
tact values of a mixture with arbitrary composition, number
of components, and size distribution. Inserting Eq. (7) into
Eq. (1), one obtains

Z(η) = 1

1 − η
+

( 〈σ 〉〈σ 2〉
〈σ 3〉 − 〈σ 2〉3

〈σ 3〉2

)
3η

(1 − η)2

+〈σ 2〉3

〈σ 3〉2

[
Zp(η) − 1

1 − η

]
, (12)

where Zp(η) = 1 + 4ηgp(η) is the compressibility factor of
the pure HS fluid. It can be checked that insertion of the PY,
SPT, and Carnahan–Starling32 (CS) expressions for Zp(η) into
Eq. (12) yields their respective PY, SPT, and BMCSL exten-
sions to mixtures.

Very recently, Odriozola and Berthier,1 in the search for a
thermodynamic signature of the glass transition in HSs, have
reported Monte Carlo (MC) simulation values of the radial
distribution functions and the compressibility factor for a HS
binary mixture up to a packing fraction of η � 0.63. In view
of these new results, one can now investigate whether (i) our
proposal (Eq. (12)), used in a different way, allows us to infer
the equation of state of the pure HS fluid in the metastable
region, and (ii) the related proposal (Eq. (7)) still holds for
high densities.

Let us begin by noting that Eq. (12) expresses Z(η) in
terms of Zp(η) and known functions of η. In turn, one may
invert Eq. (12) and express Zp(η) in terms of Z(η), namely,

Zp(η) = 1

1 − η
−

( 〈σ 〉〈σ 3〉
〈σ 2〉2

− 1

)
3η

(1 − η)2

+〈σ 3〉2

〈σ 2〉3

[
Z(η) − 1

1 − η

]
. (13)

Equation (13) allows one to obtain indirectly the equation of
state of the pure HS fluid for high densities beyond the freez-
ing transition from the knowledge of the equation of state of
a given mixture in the same density region.

Taking as input the MC data of Odriozola and Berthier1

for the pressure of the binary mixture they studied (x1 = x2

= 1
2 , σ2/σ1 = 7

5 ), we first computed the corresponding com-
pressibility factor Z(η) and then substituted the values of this
latter on the right-hand side of Eq. (13) to infer the compress-
ibility factor Zp(η) of the pure HS fluid in the metastable fluid
region. The results appear as full circles in Fig. 1, where we
have also included the accurate molecular dynamics (MD)
simulation data reported by Kolafa et al.33 in the metastable
region. Figure 1 incorporates as well the curves correspond-
ing to the CS compressibility factor and to a free volume com-
pressibility factor of the form Zfv(η) ≡ d/(1 − η/ηc), with d
= 3 and where ηc � 0.668 is the only fitting parameter. The
inset contains the same data and curves, this time in the repre-
sentation 1/Zp(η) vs η. It is interesting to point out the high de-
gree of consistency in the region 0.48 ≤ η ≤ 0.54 between the
MD simulation data for the true monodisperse HS system33

and the values inferred via Eq. (13) from the MC simulation
data for the binary mixture reported in Ref. 1. Furthermore,
assuming that the present results for Zp(η) are correct for
η > 0.54, we observe that the CS compressibility factor
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FIG. 1. Compressibility factor Zp(η) of the HS metastable fluid as a function
of the packing fraction. Filled circles: results from Eq. (13); open diamonds:
simulation data from Ref. 33; full line: compressibility factor corresponding
to the CS equation of state; dashed line: compressibility factor arising from
free volume considerations. The inset shows the same data in a different rep-
resentation.

remains accurate in the metastable fluid region up to η � 0.58.
On the other hand, beyond η � 0.58 it is the free volume fit
that gives an adequate description. We note that Odriozola and
Berthier1 fitted the compressibility factor of the mixture in the
region 0.58 ≤ η ≤ 0.63 also with a free volume form, except
that they obtained ηc = 0.669 and adjusted the prefactor to be
d′ = 2.82 instead of d = 3. In view of Eq. (12), we find that
the ratio d′/d = 0.94 can be explained by the factor multiply-
ing Zp, namely, 〈σ 2〉3/〈σ 3〉2 � 0.93, so that both free volume
forms are fully compatible.

Once we have examined the possibility to infer the com-
pressibility factor for a HS fluid in the metastable fluid region
from the high density results of the compressibility factor of a
binary mixture with x1 = x2 = 1

2 , σ2/σ1 = 7
5 , we will check

on the consistency of our approach by testing the validity of
Eq. (7). Since it is reasonable to expect that an accurate value
of gp(η) should lead to accurate values of gij (σ+

ij ), in order to
assess the merits of our proposal, we take for the contact value
of the pure HS fluid the one that comes from the Zp(η) that we
obtained from the use of Eq. (13). The results for all pairs 11,
22, and 12 are shown in Fig. 2, where we have also included
the simulation data of Odriozola and Berthier1 for these radial
distribution functions for comparison. As clearly seen in this
figure, the agreement between our computed values and those

FIG. 2. Contact values at high density of the radial distribution functions of a
binary mixture with x1 = x2 = 1

2 and σ2/σ1 = 7
5 . Open symbols, with solid

lines drawn to guide the eye, are the results of Eq. (7), while the filled sym-
bols are simulation data from Ref. 1: g11(σ+

1 ) (red circles); g22(σ+
2 ) (black

squares); g12(σ+
12) (blue triangles).

of simulation is very good. This lends support to the use of
Eq. (7) also for high densities.

In summary, in this paper we have proposed a new route
to derive the equation of state of a metastable HS fluid. In con-
trast with our previous work, which rested on the notion that
the easier system was the pure HS fluid, while the complicated
one was the HS multicomponent mixture, here we have used
the simulation results for a HS binary mixture at high density
to infer the equation of state of a metastable one-component
HS fluid. Although not shown, we have also checked that
if, instead of using the simulation data for the pressure of
the mixture, we use the simulation data for the contact val-
ues of the radial distribution functions g11(σ+

1 ), g22(σ+
2 ), and

g12(σ+
12) to compute the compressibility factor of the mixture

Z(η), the results that we get for Zp(η) are practically indistin-
guishable from the ones shown in Fig. 1.

On a different path, we have also shown that our recipe
to obtain contact values of the radial distribution functions of
multicomponent HS mixtures from the contact value of the
radial distribution function of the pure HS fluid also works
for high densities. Given the fact that studying metastable HS
fluids directly in simulations is very difficult, the present ap-
proach is offered as a possible useful alternative. Of course,
one cannot reach definite conclusions concerning this alter-
native on the basis of the results of the single binary mixture
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analyzed in this paper. However, the consistency in very many
aspects of our approach as well as its relative simplicity is en-
couraging. We hope that the above serves to motivate more
simulation studies such as the one by Odriozola and Berthier1

for other mixtures at high density. Once they become avail-
able, the usefulness of our proposal may further be assessed.
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