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Note: An exact scaling relation for truncatable free energies
of polydisperse hard-sphere mixtures
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Let us consider a polydisperse hard-sphere (HS) fluid
mixture in d dimensions with number density ρ = N/V, where
N is the total number of particles contained in a volume V. The
number of particles with a diameter between σ and σ + dσ is
Nx(σ )dσ , so that

∫ ∞
0 dσ x(σ ) = 1. The moments of the size

distribution are

Mn ≡
∫ ∞

0
dσ x(σ )σn. (1)

The particular case of a discrete s-component mixture is in-
cluded as x(σ ) = ∑s

i=1 xiδ(σ − σi) with
∑s

i=1 xi = 1.
Let aex[ρ, x(σ )] be the excess free energy per particle of

the system in units of kBT, where kB is the Boltzmann constant
and T is the absolute temperature. It is given by

aex[ρ, x(σ )] = −N−1 ln QN (V ), (2)

where

QN (V ) = V −N

∫
dr1 . . .

∫
drN

∏
1≤i<j≤N

�

(
rij − σi + σj

2

)

(3)

is the configuration integral, �(x) being the Heaviside step
function.

We now suppose that the mixture consists of a finite num-
ber N0 = x0N of point particles (i.e., σ i = 0 for 1 ≤ i ≤ N0)
plus N′ = N − N0 particles (N0 + 1 ≤ j ≤ N) with a certain
(continuous or discrete) size distribution x′(σ ). Thus,

x(σ ) = x0δ(σ ) + (1 − x0)x ′(σ ). (4)

The number density of the “bare” mixture is ρ ′ = N′/V = (1
− x0)ρ and its size moments are related to those of the original
composite mixture by

M ′
n =

∫ ∞

0
dσ x ′(σ )σn = Mn

1 − x0
, n ≥ 1. (5)

Setting σ i = 0 (1 ≤ i ≤ N0) in Eq. (3) we get

QN (V ) = (1 − V ′/V )N0QN ′(V ), (6)

where V ′ = vdN
′M ′

d = vdNMd is the volume excluded by
the N′ normal particles, vd = (π /4)d/2/�(1 + d/2) being
the volume of a d-dimensional sphere of unit diameter, and
QN ′ (V ) is the configuration integral of the bare mixture. In
the derivation of Eq. (6) one first integrates over the positions
of the point particles, obtaining (V − V ′)N

′
; the remaining in-

tegration over the normal particles is then the same as in the

system without point particles. Therefore, in the special case
(4), Eq. (2) becomes

aex[ρ, x(σ )] = −x0 ln (1 − vdρMd ) + (1 − x0)aex[ρ ′, x ′(σ )].
(7)

Let us now go back to the general polydisperse case and
assume a model free energy with “truncatable” structure,1–3

i.e., the excess free energy aex[ρ, x(σ )] depends on the size
distribution x(σ ) only through a finite number K of moments
{M1, M2,. . . , MK}. Dimensional analysis requires that the
dependence of aex on ρ and {M1, M2,. . . , MK} takes place
through the dimensionless combinations η and {m2,. . . , mK},
where η ≡ vdρMd is the packing fraction and mn ≡ Mn/M

n
1

are rescaled moments. Therefore, the truncatability hypothe-
sis can be written as

aex[ρ, x(σ )] = aex(η; m2, . . . , mK ). (8)

It is important to bear in mind that Eq. (8) is not a rigor-
ous property. For instance, Blaak4 has exactly evaluated the
fourth virial coefficient B4(σ i, σ j, σ k, σ 	) for d = 3 when
the four diameters are such that the smallest sphere (say 	)
fits in the inner space made by the other three spheres be-
ing tangent to each other. The analytic expression of B4(σ i,
σ j, σ k, σ 	) is given as a linear combination of terms of the
form σ

q1
i σ

q2
j σ

q3
k σ

q4
	 with q1 + q2 + q3 + q4 = 9. However,

while q1, q2, and q3 are always not larger than 3, terms with
up to q4 = 9 are present. This shows that the exact B4 is, in
contrast to what claimed in other works,5 incompatible with
Eq. (8), unless K ≥ 9. Notwithstanding this, the truncatabil-
ity hypothesis (8) is crucial from a practical point of view to
reduce from functional to algebraic the phase transition prob-
lem in polydisperse systems.2 Moreover, this hypothesis (with
K = 3) has recently received numerical support from simula-
tion data of three-dimensional polydisperse mixtures,6 even
for metastable states.

The objective now is to prove that, once the ansatz (8) is
assumed, the exact relationship (7) imposes a constraint under
the form of a scaling law for aex(η; m2, . . . , mK ). First, note
that, in the case of Eq. (4), Eq. (5) gives

m′
n = (1 − x0)n−1mn, n ≥ 2. (9)

Next, assuming Eq. (8) and making use of Eq. (7) one obtains

aex(η; m2,m3, . . . , mK ) + ln(1 − η)

= λ[aex(η; λm2, λ
2m3, . . . , λ

K−1mK ) + ln(1 − η)], (10)
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where λ = 1 − x0. The scaling property (10) is the main result
of this Note. It implies the equivalent form

aex(η; m2,m3, . . . , mK )

= − ln(1 − η) + 1

m2
A

(
η;

m3

m2
2

, . . . ,
mK

mK−1
2

)
, (11)

where the scaling function A remains undetermined. In
the special case of a one-component system, mn = 1 and
thus

A(η; 1, . . . , 1) = aex
pure(η) + ln(1 − η), (12)

where aex
pure(η) is the excess free energy of the pure

fluid. Scaling relations similar to (10) and (11) can be
obtained for the compressibility factor Z ≡ p/ρkBT,
where p is the pressure, by the thermodynamic relation
Z = 1 + η∂aex/∂η.

Equation (11) constrains possible theoretical models with
truncatable structure. In fact, it represents a significant re-
duction in the number of “degrees of freedom” of the ex-
cess free energy of a polydisperse HS fluid. The exact free
energy aex is a functional of the size distribution x(σ ) and
thus it has an infinite number of degrees of freedom. The
truncatability hypothesis reduces the number of independent
variables to the first K moments {Mn, n = 1, . . . , K}, apart
from the number density ρ. Dimensional analysis trivially re-
duces that number to K − 1 dimensionless moments {mn, n
= 2, . . . , K}, as indicated in Eq. (8). Further, Eq. (11) makes
explicit the dependence on m2, thus reducing the effective
number of independent quantities to K − 2 ratios mn/mn−1

2
(n = 3, . . . , K).

The exact excess free energy in the one-dimensional case
(d = 1) is aex = − ln(1 − η) and thus it trivially verifies
Eq. (11) with A = 0. The exact result for hard disks (d
= 2) is not known. However, assuming truncatability with K
= 2, Eqs. (11) and (12) imply

aex(η; m2) = − ln(1 − η) + 1

m2

[
aex

pure(η) + ln(1 − η)
]
.

(13)

This result agrees with that derived by independent
methods7–9 and includes Jenkins and Mancini’s equation of
state10 as a particular case. Finally, let us consider the three-
dimensional case (d = 3) with K = 3. Now the scaling func-
tion A(η; y) depends on the ratio y = m3/m2

2 but otherwise
it is arbitrary. Let us assume the explicit functional form
A(η; y) = y−2

[
A0(η) + A1(η)y

]
. Equation (12) then im-

plies that A0(η) = aex
pure(η) + ln(1 − η) − A1(η). Therefore,

Eq. (11) yields

aex(η; m2,m3) = − ln(1 − η) + m3
2

m2
3

[
aex

pure(η) + ln(1 − η)
]

+
(

m2

m3
− m3

2

m2
3

)
A1(η), (14)

where the function A1(η) is not constrained by Eq. (12).
Equation (14) with A1(η) = 3η/(1 − η) has been derived by
a different route9, 11, 12 and includes, as particular cases, the
scaled particle theory,13–18 the virial Percus–Yevick,19 and
the Boublík–Mansoori–Carnahan–Starling–Leland20, 21 equa-
tions of state. More generally, Eq. (14) with free A1(η) or
Eq. (11) with K = 3 and free A(η, y) can be useful to infer the
equation of state of the pure system in the metastable region
from measurements made on multi-component systems.22
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