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Janus fluid with fixed patch orientations: Theory and simulations
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We study thermophysical properties of a Janus fluid with constrained orientations, using analytical
techniques and numerical simulations. The Janus character is modeled by means of a Kern—Frenkel
potential where each sphere has one hemisphere of square-well and the other of hard-sphere charac-
ter. The orientational constraint is enforced by assuming that each hemisphere can only point either
North or South with equal probability. The analytical approach hinges on a mapping of the above
Janus fluid onto a binary mixture interacting via a “quasi” isotropic potential. The anisotropic nature
of the original Kern—Frenkel potential is reflected by the asymmetry in the interactions occurring
between the unlike components of the mixture. A rational-function approximation extending the cor-
responding symmetric case is obtained in the sticky limit, where the square-well becomes infinitely
narrow and deep, and allows a fully analytical approach. Notwithstanding the rather drastic approx-
imations in the analytical theory, this is shown to provide a rather precise estimate of the structural
and thermodynamical properties of the original Janus fluid. © 2013 American Institute of Physics.
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. INTRODUCTION

Janus fluids refer to colloidal suspensions formed by
nearly spherical particles with two different philicities evenly
distributed in the two hemispheres.!:> Under typical exper-
imental conditions in a water environment, one of the two
hemispheres is hydrophobic, while the other is charged, so
that different particles tend to repel each other, hence forming
isolated monomers. On the other hand, if repulsive forces are
screened by the addition of a suitable salt, then clusters tend
to form driven by hydrophobic interactions.?

This self-assembly mechanism has recently attracted in-
creasing attention due to the unprecedented improvement in
the chemical synthesis and functionalization of such colloidal
particles, that allows a precise and reliable control on the ag-
gregation process that was not possible until a few years ago.*
From a technological point of view, this is very attractive as it
paves the way to a bottom-up design and engineering of nano-
materials alternative to conventional top-down techniques.’

One popular choice of model describing the typical du-
ality characteristic of the Janus fluid is the Kern—Frenkel
model.® This model considers a fluid of rigid spheres hav-
ing their surfaces partitioned into two hemispheres. One of
them has a square-well (SW) character, i.e., it attracts other
similar hemispheres through a SW interaction, thus mimick-
ing the short-range hydrophobic interactions occurring in real
Janus fluids. The other part of the surface is assumed to have
hard-sphere (HS) interactions with all other hemispheres, i.e.,
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with both like HS as well as SW hemispheres. The HS hemi-
sphere hence models the charged part in the limit of highly
screened interactions that is required to have aggregation of
the clusters.

Although in the present paper only an even distribution
between SW and HS surface distributions will be considered
(Janus limit), other choices of the coverage, that is the fraction
of SW surface with respect to the total one, have been studied
within the Kern—Frenkel model.” In fact, one of the most at-
tractive features of the general model stems from the fact that
it smoothly interpolates between an isotropic HS fluid (zero
coverage) and an equally isotropic SW fluid (full coverage).®?

The thermophysical and structural properties of the Janus
fluid have been recently investigated within the framework
of the Kern—Frenkel model using numerical simulations,”'°
thus rationalizing the cluster formation mechanism charac-
teristic of the experiments.> The fluid-fluid transition was
found to display an unconventional and particularly inter-
esting phase diagram, with a re-entrant transition associated
with the formation of a cluster phase at low temperatures and
densities.” ' While numerical evidence of this transition is
quite convincing, a minimal theory including all necessary in-
gredients for the onset of this anomalous behavior is still miss-
ing. Two previous attempts are however noteworthy. Rein-
hardt et al.'" introduced a van der Waals theory for a suitable
mixture of clusters and monomers that accounts for a re-
entrant phase diagram, whereas Fantoni et al.'>'? developed
a cluster theory explaining the appearance of some “magic
numbers” in the cluster formation. This notwithstanding, the
challenge of an analytical theory fully describing the anomaly
occurring in the phase diagram of the Janus fluid still remains.

The aim of the present paper is to attempt a new route
in this direction. We will do this by considering a Janus fluid

© 2013 American Institute of Physics
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within the Kern—Frenkel model, where the orientations of the
SW hemispheres are constrained to be along either North or
South, in a spirit akin to Zwanzig model for the isotropic-
nematic transition in liquid crystals.'*

Upon observing that under those conditions, one ends
up with only four possible different interactions (North-
North, North-South, South-North, and South-South), this con-
strained model will be further mapped onto a binary mixture
interacting via a “quasi” isotropic potential. Here the term
“quasi” refers to the fact that a certain memory of the orig-
inal anisotropic Kern—Frenkel potential is left: after the map-
ping, one has to discriminate whether a particle with patch
pointing North (“spin-up”) is lying above or below that with
a patch pointing South (“spin-down”). This will introduce an
asymmetry in the unlike components of the binary mixture,
as explained in detail below. In order to make the problem
tractable from the analytical point of view, the particular limit
of an infinitely narrow and deep square-well (sticky limit)
will be considered. This limit was originally devised by Bax-
ter and constitutes the celebrated one-component sticky-hard-
sphere (SHS) or adhesive Baxter model.'> By construction,
our model reduces to it in the limit of fully isotropic attractive
interactions. The latter model was studied within the Percus—
Yevick (PY) closure'® in the original Baxter work and in a
subsequent work by Watts et al.'” The extension of this model
to a binary mixture was studied by several authors.'®??> The
SHS model with Kern—Frenkel potential was also studied in
Ref. 23, via a virial expansion at low densities.

A methodology alternative to the one used in the above
studies hinges on the so-called “rational-function approxima-
tion” (RFA),”*?> and is known to be equivalent to the PY ap-
proximation for the one-component SHS Baxter model'> and
for its extension to symmetric SHS mixtures.!%222* The ad-
vantage of this approach is that it can be readily extended to
more general cases, and this is the reason why it will be em-
ployed in the present analysis to consider the case of asym-
metric interactions. We will show that this approach provides
a rather precise estimate of the thermodynamic and structural
properties of the Janus fluids with up-down orientations by
explicitly testing it against Monte Carlo (MC) simulations of
the same Janus fluid.

The remaining part of the paper is envisaged as follows.
Section II describes our Janus model and its mapping onto a
binary mixture with asymmetric interactions. It is shown in
Sec. III that the thermophysical quantities do not require the
knowledge of the full (anisotropic) pair correlation functions
but only of the functions averaged over all possible North or
South orientations. Section IV is devoted to the sticky-limit
version of the model, i.e., the limit in which the SW hemi-
sphere has a vanishing well width but an infinite depth lead-
ing to a constant value of the Baxter parameter t. The ex-
act cavity functions to first order in density (and hence exact
up to second and third virial coefficients) in the sticky limit
are worked out in Appendix A. Up to that point all the equa-
tions are formally exact in the context of the model. Then, in
Sec. V we present our approximate RFA theory, which hinges
on a heuristic extension from the PY solution for mixtures
with symmetric SHS interactions to the realm of asymmetric
SHS interactions. Some technical aspects are relegated to Ap-
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pendices B and C. The prediction of the resulting analytical
theory is compared with MC simulations in Sec. VI, where
a semi-quantitative agreement is found. Finally, the paper is
closed with conclusions and an outlook in Sec. VIIL.

Il. MAPPING THE KERN-FRENKEL POTENTIAL
ONTO A BINARY MIXTURE

A. The Kern—Frenkel potential for a Janus fluid

Consider a fluid of spheres with identical diameters o
where the surface of each sphere is divided into two parts.
The first hemisphere (the green one in the color code given in
Fig. 1) has a SW character, thus attracting another identical
hemisphere via a SW potential of width (. — 1)o and depth
€. The second hemisphere (the red one in the color code of
Fig. 1) is instead a HS potential. The orientational dependent
pair potential between two arbitrary particles u and v (u, v
=1, ..., N, where N is the total number of particles in the
fluid) has then the form proposed by Kern and Frenkel®

CD(r;uu ﬁ;u ﬁv) = ¢HS(r/w) + ¢SW(r/w)\I’(F;Ws ﬁ;u ﬁv),

2.1)
where the first term is the HS contribution
oo, 0<r <o,
¢us (r) = (2.2)
0, o<r,

and the second term is the orientation-dependent attractive
part, which can be factorized into an isotropic SW tail

—€, 0 <r<A\o,
2.3)
0, Ao <,

dsw (r) = {

multiplied by an angular dependent factor

1, ifm, T, >0andm, -1, <0,

q’@uv’ﬁuv ﬁv) = [

0, otherwise.

2.4)

FIG. 1. The Kern—Frenkel potential for Janus fluids.
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Here, T, = 1y, /rpu, where ry, =r, — ry, is the unit vector
pointing (by convention) from particle p to particle v and the
unit vectors n, and N, are “spin” vectors associated with the
orientation of the attractive hemispheres of particles x and v,
respectively (see Fig. 1). An attractive interaction then exists
only between the two SW portions of the surface sphere, pro-
vided that the two particles are within the range of the SW
potential.

B. Asymmetric binary mixture

We now consider the particular case where the only pos-
sible orientations of particles are with attractive caps pointing
only either North or South with equal probability, as obtained
by Fig. 1 in the limit n, =7Z, N, = —Z, and with Z pointing
North.

Under these conditions, one then notes that the Kern—
Frenkel potential (2.1)—(2.4) can be simplified by associating
a spin i = 1 (up) to particles with SW hemispheres pointing
in the North Z direction and a spin j = 2 (down) to particles
with SW hemispheres pointing in the South —Z direction, so
one is left with only four possible configurations depending
on whether particles of type 1 lie above or below particles of
type 2, as illustrated in Fig. 2. The relationship between the
genuine Janus model (see Fig. 1) and the up-down model (see
Fig. 2) is reminiscent to the relationship between the Heisen-
berg and the Ising model of ferromagnetism. From that point
of view, our model can be seen as an Ising-like version of the
original Janus model. A similar spirit was also adopted in the
Zwanzig model for the isotropic-nematic transition in liquid
crystals.'4

oy
o %

FIG. 2. (Top-left) A particle of type 1 is “below” another particle of type
1 providing SW/HS = HS interactions. (Top-right) A particle of type 1 is
“below” a particle of type 2 leading to SW/SW = SW interactions. (Bottom-
left) A particle of type 2 is “below” a particle of type 1 yielding HS/HS = HS
interactions. (Bottom-right) A particle of type 2 is “below” another particle
of type 2 thus leading again to HS/SW = HS interactions.
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The advantage of this mapping is that one can disregard
the original anisotropic Janus-like nature of the interactions
and recast the problem in the form of a binary mixture such
that the interaction potential between a particle of species i
located at r; and a particle of species j located at r, has the
asymmetric form

¢ij(r1, r2) = ¢;(r12)
= @;j(r12) ® (cos 1) + ¢;i(r2) ® (— cos b2),
2.5)

where cos 61, =T, - Z (recall our convention rj; =r; — )
and

dsw(r),

ifi=1and j =2,
0 (r) = fus(r) + {0 - /

otherwise. (2.6)

In Eq. (2.5) ® (x) = 1 and O for x > 0 and x < 0, respectively.

It is important to remark that, in general, ¢ (1) # @21 (r),
as evident from Eq. (2.6). Thus, the binary mixture is not nec-
essarily symmetric [unless € = 0 or A = 1 in Eq. (2.3)], un-
like standard binary mixtures where this symmetry condition
is ensured by construction. In the potential (2.5), there how-
ever is still a “memory” of the original anisotropy since the
potential energy of a pair of particles of species i and j sepa-
rated a distance r1, depends on whether particle j is “above”
(cos 81 > 0) or “below” (cos 8, < 0) particle i. In this sense,
the binary mixture obtained in this way is “quasi,” and not
“fully,” spherically symmetric.

Another important point to be stressed is that, while the
sign of cos6, represents the only source of anisotropy in
the above potential ¢;;(ry2), this is not the case for the corre-
sponding correlation functions, which will explicitly depend
upon the relative orientation cos 6, and not only upon its
sign. This applies, for instance, to the pair correlation func-
tions g;;(r) = g;;(r;0), as shown in Appendix A to first order
in density in the sticky limit (see Sec. IV). As an illustration,
Fig. 3 shows the first-order pair correlation functions ggll)(r)
and gilz)(r) as functions of the radial distance r for several ori-
entations 6.

As our aim is to remove the orientational dependence in
the original potential altogether, a further simplification is re-
quired to reduce the problem to a simple binary mixture hav-
ing asymmetric correlation functions dependent only on dis-
tances and not on orientations of spheres. This will be the
orientational average discussed in Sec. III.

lll. ORIENTATIONAL AVERAGE
AND THERMODYNAMICS

A. Orientational average

Most of the content of this section applies to a mix-
ture (with any number of components) characterized by any
anisotropic potential ¢;;(r) = ¢;;(—r) exhibiting the quasi-
isotropic form (2.5), where in general ¢;(r) # () if
i # j. In that case, we note that the thermodynamic quanti-
ties will generally involve integrals of the general form

lij = /drgij(r)fij(r) 3.1
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FIG. 3. (Top) Plot of g(lll)(r) as a function of r for (a) 6 = 0 and 7, (b)
6 =7 and 37”, and (c) § = 7. (Bottom) Plot of the regular part of gﬁlz) (r)
as a function of r for (a) § =0, b)) 6 =%, (c) =7, (d) 6 = 37”, and
(e) & = m. The interaction potential is given by Eq. (2.6) (sketched in Fig. 2),
except that the sticky limit with Baxter’s temperature T = 0.1 has been taken
(see Sec. IV).

with

Fij(r) = F;;(r)© (cos8) + Fj;j(r)® (—cosb), (3.2)
where in general F;(r) # Fj;(r) if i # j. This strongly suggests
that one can define the two orientational averages g;;(r) and
8i;(r) as

1
ghn =g,;0) = /0 d (cos0) g;;(r), (3.3)

0

d (cos0) g;;(r). 3.4
1

g,‘}(’") = gji(r) = /

Note that g;;(r) = g;’i (r), and this suggests the use of the no-
tation g;;(r) and g;;(r) instead of g;;- (r) and 8;;(r), respec-
tively. Taking into account Egs. (3.2)—(3.4), Eq. (3.1) becomes

1
h=3 / dr (3, (N Fy () + 3 F (O (B.5)

In the case of a double summation over i and j,
D xixilp =) xix; / drg,(nF;(r),  (3.6)
ij ij

where x; denotes the mole fraction of species i.

B. Thermodynamics of the mixture: Energy, virial,
and compressibility routes

We can now particularize the general result (3.6) to spe-
cific cases.

J. Chem. Phys. 138, 094904 (2013)

In the case of the internal energy, F;;(r) = ¢;;(r) and so
the energy equation of state can be written as'®

1
Uex = =P inxj/drgij (r) ¢i; (r)
ij

1 _ B (r
=3P E xixj/dryij (r) @ij(r)e Pei(3.7)
ij

where u. is the excess internal energy per particle, p is
the number density, 8 = 1/kgT (kg and T being the Boltz-
mann constant and the temperature, respectively), and y;;(r)
=g (r)eP?i) is the orientational average of the cavity func-
tion y;;(r) = g;;(r)ef?i®,

A similar result holds for the virial route to the equation
of state,

P

,OkBT

1
=1+ 5" izj:xixj /dr yij ()1 - Ve P - (3.8)

where P is the pressure. First, note that

Vi (r) = [d(p;r(r) ® (cosH) + d(p;r(r) ® (—cos 9)i|’r‘
—8(D)[wij(r) — @ji(N]Z. (3.9
Therefore,
r-Ve;r)y=r [% ® (cosh) + % ® (—cos 0):| ,
(3.10)
and thus

1 _ d _4,
Z=1+6pi2j:x,-xj/dryij (r)rd—re Bei) (3.11)

Finally, let us consider the compressibility route. In a
mixture, the (dimensionless) isothermal compressibility x 7 is
in general given by

1= (22
T ksT \3p )11y

=Y vEE [1+h O] (3.12)
i,j

where 71\,, (0) is proportional to the zero wavenumber limit of
the Fourier transform of the total correlation function #;;(r)
= g;;(r) — 1, namely

y0) = /57w, [ dri; )

— —pV;ixf /dr 0

(N +hi(l. (3.13)

In the specific case of a binary mixture considered here,
Eq. (3.12) becomes

e 14 x2711(0) + x1h2(0) — 2, /X1 x2h12(0)
4 (1 + A (O[] + h(0)] — h2,(0)

(3.14)
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Equations (3.7) and (3.11)-(3.13) confirm that the
knowledge of the two average quantities g;;(r) and
g;i(r) for each pair jj suffices to determine the ther-
modynamic quantities. In fact, Eqs. (3.7) and (3.11)-
(3.13) are formally indistinguishable from those corre-
sponding to mixtures with standard isotropic interac-
tions, except that in our case one generally has ¢;(r)
# @ji(r) and, consequently, g;;(r) # g ;;(r).

For future convenience, it is expedient to introduce the
Laplace transform of rg;;(r):

Gij(s) = /Ooodr e 'rg;;(r). (3.15)
Its small-s behavior is of the form?’
SGy(s) =1+ HPs> + Hs + ... (3.16)
where
00
H = /0 dr (—=r)"rh;(r). (3.17)
Thus, Eq. (3.13) becomes
hij(0) = —27p /xix; [H + HYY. (3.18)
Note that Eq. (3.16) implies
}i_l:r(l)szGij(s) =1, (3.19)
lim SZG’(S$ —=0. (3.20)

IV. THE STICKY LIMIT

The mapping of the Kern—Frenkel potential with fixed
patch orientation along the 7 axis onto a binary mixture rep-
resents a considerable simplification. On the other hand, no
approximation is involved in this mapping.

The presence of the original SW interactions for the ra-
dial part [see Eq. (2.3)] makes the analytical treatment of the
problem a formidable task. Progresses can however be made
by considering the Baxter SHS limit, for which a well defined
approximate scheme of solution is available in the isotropic
case for both one-component'3 and multi-component'8-22 flu-
ids. The discussion reported below closely follows the ana-
logue for Baxter symmetric mixtures.'*-?

Let us start by rewriting Eq. (2.6) as

00, r <o,
@ij(r) =1 —€j, o <r <Ao, “.1)
0, r > Ao,

where €11 = €20 = €51 =0 and €, = € > 0. However, in this
section we will assume generic energy scales €;;. In that case,
the virial equation of state (3.11) becomes

)¥3y;j()\0) - yz’j(")
A3 —1

Z=1+4ny(0) — 120 ) xix;t;j ,
i,j

“4.2)

J. Chem. Phys. 138, 094904 (2013)

where n = %,00’3 is the packing fraction,

)= xix;,0r) (4.3)
ij
is the orientational average global cavity function, and
tj = L L e 2 (4.4)
12‘[,‘] 3

is a parameter measuring the degree of “stickiness” of the SW
interaction ¢;;(r). This parameter will be used later on to con-
nect results from numerical simulations of the actual Janus
fluid with analytical results derived for asymmetric SHS mix-
tures. Although Baxter’s temperature parameters 7; are com-
monly used in the literature, we will employ the inverse tem-
perature parameters ¢; = 1/127;; in most of the mathematical
expressions.

In the case of the interaction potential (4.1), the energy
equation of state (3.7) reduces to

ro
_ n E Beij 25
Uex = —12; > XiXj€jje " /(, drr y[j(")‘ 4.5)
¥

The compressibility equation of state (3.12) does not simplify
for the SW interaction.

Since the (orientational average) cavity function y;;(r)
must be continuous, it follows that

2i(r) =50’ O (r — o) — (P = 1) O (r — o).
(4.6)

5 we now consider the

Following Baxter’s prescription,'
SHS limit

r— 1, — (A — DeP = finite,

4.7
so that the well (4.1) becomes infinitely deep and narrow and
can be described by a single (inverse) stickiness parameter ;.
Note that in the present Janus case (€1; = €y = €21 =0, €13
= € > 0) one actually has t|; =t =t; =0and 1, = ¢
= 1/12z.

In the SHS limit (4.7), Egs. (4.2), (4.5), and (4.6) become,
respectively,

€ij — 00, l[j =

121,

ij

Z =1+4n3(0) —4n > xix;1;j[3y;;(0) + o3}, ()],
ij

(4.8)
Uy = — 121 inxjei.,-tijiij(a), 4.9)
i
gij(r) = yij(r)[(a (r—o)+t;08,(r —o0)]. (4.10)

In Eq (4.8), 7;1-(0')
limy 4 ;—rii j(r)|,:(,, which in principle differs from

must be interpreted as

4 1im; 1 ,;(r)|,—o.2* However, both quantities coincide in
the one-dimensional case?® and are expected to coincide in
the three-dimensional case as well. This is just a consequence
of th;expected continuity of dd—ji_i (r) at r = Ao in the SW
case.
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Thermodynamic consistency between the virial and en-
ergy routes implies

due 02 97
D it —.
p 3B 2 I ot

4.11
= > (4.11)

Using Eqgs. (4.8) and (4.9) and equating the coefficients of €;
in both sides, the consistency condition (4.11) yields

av,-_,-(a)}

XX, [@E,-(U) —3n a7

_ Vgelo) 9 —
= ;kae {—atij Tre o1y [3Yre(o) + Uyu(U)]} .
(4.12)

For distances r 2 o, the orientational averages of the cav-
ity functions can be Taylor expanded as

O(r — a)y;;(r) = O — o)[y;;(0) + ¥;;(0)r —o) +---].
4.13)
Hence, if we denote by Y;(s) the Laplace transform of
O — a)r?ij (r), Eq. (4.13) yields for large s
e”’sYi(s) = 0y,;(0) + [7;;(0) + oY ()]s +---.
4.14)
According to Egs. (3.15) and (4.10), the relationship between
the Laplace function Gy;(s) and Y;(s) is
Gii(s) =Yi(s) + Uzlij?ij(d)em-
Inserting Eq. (4.14) into Eq. (4.15), we obtain the following
large-s behavior of G;(s):

(4.15)

" Gij(s) = 0°1;;y;;(0) + 0y (0)s !
+13;,(0) + 0;;(0))s > + O 7).
(4.16)

A consequence of this is

lim,, oo €7 G (s)

(4.17)

- : = 0tjj.
lim_, oo s[e7°Gj(s) — lim,_, oo €7 G (5)]

V. A HEURISTIC, NON-PERTURBATIVE
ANALYTICAL THEORY

A. A simple approximate scheme within
the Percus-Yevick closure

The Ornstein—Zernike (OZ) equation for an anisotropic
mixture reads'®

hij(ri2) = c;j(ri2) + o Zxk / dr3z hig(riz)cg;(rz)
%

= Cij(l'lz)+,02xk/d1'3 cik(ri3)hij(raz),
k

G.D

where ¢;;(r) is the direct correlation function. The PY closure
reads

cij(r) = gi;(0)[1 — 7™, (5.2)

J. Chem. Phys. 138, 094904 (2013)

Introducing the averages c;;(r) =¢;j(r) and cl.;(r) =cji(r)
for ¢;;(r) in a way similar to Eqgs. (3.3) and (3.4), Eq. (5.2)
yields

Cij(r) = gL — P, (5.3)

Thus, the PY closure for the full correlation functions c;;(r)
and g;;(r) translates into an equivalent relation for the orienta-
tional average functions ¢;;(r) and g;;(r). A similar reasoning,
on the other hand, is not valid for the OZ relation. Multiplying
both sides of the first equality in Eq. (5.1) by ®(cos6,) and
integrating over cos 61, one gets

1
hij(ri2) = Cij(ra) +p Y _ % f dry / d (cos 012)
x 0

X hir(riz)cg(ra). (5.4)

The same result is obtained if we start from the second
equality in Eq. (5.1), multiply by ®(—cos 8,), integrate over
cos 01,, and make the changes ry; — —ryz, r;3 - —ry3, and
i <> j. Equation (5.4) shows that in the case of anisotropic po-
tentials of the form (2.5) the OZ equation does not reduce to a
closed equation involving the averages E_i(r) and ¢;;(r) only,
as remarked.

In order to obtain a closed theory, we adopt the heuristic
mean-field decoupling approximation

1
/dm/ d (cos 012) hix(ri3)cj(r)
0

— / drs hig (ri3)cy; (r3). (5.5)
Under these conditions, the true OZ relation (5.4) is replaced
by the pseudo-OZ relation

hij(ri2) = ¢ (ra) + p Zxk f drs hig(ri3)cej(r). - (5.6)
X

This can then be closed by the PY equation (5.3) and standard
theory applies. An alternative and equivalent view is to con-
sider ¢;;(r) not as the orientational average of the true direct
correlation function ¢;;(r) but as exactly defined by Eq. (5.6).
Within this interpretation, Eq. (5.3) then represents a pseudo-
PY closure not derivable from the true PY closure (5.2).

Within the above interpretation, it is then important to
bear in mind that the functions g; j(r) obtained from the solu-
tion of a combination of Egs. (5.3) and (5.6) are not equivalent
to the orientational averages of the functions g;;(r) obtained
from the solution of the true PY problem posed by Eqs. (5.1)
and complemented by the PY condition (5.2). As a conse-
quence, the solutions to Egs. (5.3) and (5.6) are not expected
to provide the exact g,;(r) to first order in p, in contrast to
the true PY problem. This is an interesting nuance that will be
further discussed in Sec. V C 3.

The main advantage of the approximate OZ relation (5.6)
in the case of anisotropic interactions of the form (2.5) is that
it allows to transform the obtention of an anisotropic function
gij(r), but symmetric in the sense that g;;(r) = g;;(—r), into
the obtention of an isotropic function g;;(r), but asymmetric
since g;;(r) # g;;(r). In the case of the anisotropic SHS po-
tential defined above, we can exploit the known solution of
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the PY equation for isotropic SHS mixtures to construct the
solution of the set made of Eqgs. (5.3) and (5.6). This is done
in Subsection V B by following the RFA methodology.

B. RFA method for SHS

Henceforth, for the sake of simplicity, we take o = 1 as
length unit. The aim of this section is to extend the RFA ap-
proximation proposed for symmetric SHS mixtures>*?> to the
asymmetric case.

We start with the one-component case.?® Let us introduce
an auxiliary function F(s) related to the Laplace transform
G(s) of rg(r) by

)

se

(5.7)

The next step is to approximate F(s) by a rational function,

S
Fis)= 22, (5.8)
L(s)
with S(s) = S@ + §SWs + §Ps? + 53 and
L(s)=LO + LWs + L@, (5.9)
Note that lim,_ o F(s)/s = 1/L® = finite, so that
lim_, o e*G(s) = finite, in agreement with Eq. (4.16).
Furthermore, Eq. (3.19) requires F(s) + pe~* = O(s3),
so that SO = —pL® O = HLO LWy,
S = p(LM — JL® — L@). Taking all of this into ac-
count, Eq. (5.7) can be rewritten as
-5 L
Gy = £ L& (5.10)
2521 — A(s)’
where

Ay =2 [(1 —e)L(s)— LOs + <1L<0> _ L<1>) s2] .
57 2

(5.11)

In the case of a mixture, G(s), L(s), and A(s) become matrices
and Eq. (5.10) is generalized as

Gij(s) = (L(S) (= A i, (5.12)
where | is the 1dent1ty matrix and
Lij(s) = L + L{s + Ls”, (5.13)
Ay(s) = p= | (1 —e™)L LY
ij(s) = P (I —e™)Lij(s) — L;;'s
(o) e (5.14)
5 ij ij N . .

Note that lim,_ A;;(s) = finite, so that lim,_qs>G;;(s)
= finite # O by construction. Analogously, lim,_,, ¢°G;;(s)
= finite also by construction.

The coefficients LE?), Lgl.), and ng.) are determined by en-
forcing the exact conditions (3.19), (3.20), and (4.17). The de-
tails of the derivation are presented in Appendix B and here
we present the final results. The coefficients LEJO-) and Ll(.jl.) do
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not depend upon the first index i and can be expressed as lin-
ear functions of the coefficients {L(z)}:

1+2n 127) 5
LY =2 - LY (515
ij JT(l —n)? 1 Z KLk ( )
1+n/2 2
LY =2 - L?, 5.16
ij 7'[(1 _ ,7)2 1— Z XLk ( )

and the coefficients LEJZ-) obey the closed set of quadratic
equations

2
Ly _, 1402 60
tjj (1 - 77)2 1-n n

6
(R
+ ;r] ;kaik ij .

x (L + L)
5.17)

This closes the problem. Once LEJZ-) are known, the contact
values are given by

LY

yii(1) = (5.18)

2t

Although here we have taken into account that all the
diameters are equal (0;; = o = 1), the above scheme can
be easily generalized to the case of different diameters with
the additive rule o; = (0; + 0;)/2. For symmetric interac-
tions (i.e., t;j = t;) one recovers the PY solution of SHS
mixtures for any number of components.’>?* It is shown in
Appendix C that the pair correlation functions g;;(r) derived
here are indeed the solution to the PY-like problem posed by
Egs. (5.3) and (5.6).

C. Caseofinterest: tj1 = o =1 =0

In the general scheme described by Eqgs. (5.12)—(5.18),
four different stickiness parameters (11, #12, f21, and #;) are
in principle possible. With the convention that in #; the parti-
cle of species i is always located below the particle of species
J» we might consider the simplest possibility of having only
one SHS interaction t;, = ¢t = 1/127 and all other HS inter-
actions (t;] = typ = t; = 0), as illustrated in Fig. 2. This is
clearly an intermediate case between a full SHS model (;; = ¢
= 1/127) and a full HS model (¢; = 0), with a predominance
of repulsive HS interactions with respect to attractive SHS in-
teractions. This is meant to model the intermediate nature of
the original anisotropic Kern—Frenkel potential that interpo-
lates between a SW and a HS isotropic potentials upon de-
creasing the coverage, that is, the fraction of the SW surface
patch with respect to the full surface of the sphere.

1. Structural properties
If 1y, =ty = 1y = 0, Eq. (5.17) implies L'? = L)
= L(221) = 0. As a consequence, Eq. (5.17)fori =1andj =2
yields a linear equation for L(lzz) whose solution is
1+4+n/2 t
l—n 1—n+6nt

LY =2n (5.19)
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According to Eq. (5.18),

_ 14+1n/2 ( 6nt )
1) = 1-— . 5.20
yioD) (1 —n)y 1— 7 +6nt (5.20)
Next, Egs. (5.15) and (5.16) yield
0 0
Ly _ Ly _ 142 (5.21)
2w 2 (1 —n)?’ '
Ly Ly _ 1+2p 12
—= === = — ——x1y,(1), 5.22
- o d—n? 1- nx1J’12( ) ( )
) )
Ly _ Ly _1+u2 (5.23)
2 2 (1 —n)?’ '
LY LY 1+g2 e _
=2 e Y. (5.24)

2t 27 (1—n2 1-—7p
Once the functions Lj;(s) are fully determined, Eq. (5.12)
provides the Laplace transforms Gj;(s). From Eq. (4.15) it fol-
lows that Y11(s) = G11(s), Y22(s) = G2a(s), Y21(s) = G2 (s),
and

Yia(s) = Gials) — ty (e

A numerical inverse Laplace transform®® allows one to ob-
tain g,,(r), 82(r), g, (r), and y,,(r) for any packing frac-
tion 7, stickiness parameter = 1/12t, and mole fraction x;.
In what follows, we will omit explicit expressions related to
82,(r) since they can be readily obtained from g, ,(r) by the
exchange x| <> x;.

The contact values Eij(ﬁ) = y,.j(l) with (i, j) # (1, 2)
cannot be obtained from Eq. (5.18), unless the associated #;
are first assumed to be nonzero and then the limit #; — 0
is taken. A more direct method is to realize that, if 7; = 0,
Eq. (4.16) gives

(5.25)

2,(17) = lim e'5Gyi(s), G, j)#(1,2).  (526)
The results are
_ _ 14n/2 6nt _
B =Tul) = T~ T, 627
_ _ 1+n/2
gu(1H =y, = a—n (5.28)
I R -y 120t
(1) = (1 — 7])2 (1 X1XQ—1 — i 6171‘) . (529)

It is interesting to note the property g;;(17) + g, (17)
=Vp(1) + g5 (17).

To obtain the equation of state from the virial route we
will need the derivative ¥|,(1). Expanding ¢*G12(s) in powers
of s~ and using Eq. (4.16), one gets

2 —4n—Tn?
3| —————— + 12x1x27
14+n/2

Vo) _
() A=

91—n2
21+4n/2]"

(5.30)
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2. Thermodynamic properties
a. Virial route. According to Eq. (4.8),
Z' = 14+4ny(1) — 4x1x2mt[3y1,(1) + ¥, (1D)]

1+3n_ _
= Zys — 4xixant |:3 =7 (D) + y/12(1)1| )
(5.31)
where the superscript v denotes the virial route and
1+2n+3n?
Zhs = —1 (532)
(I—mn)

is the HS compressibility factor predicted by the virial route
in the PY approximation.

b. Energy route. From Eq. (4.9) we have

MCX —_
- = —12x1xmty,(1).

(5.33)

The compressibility factor can be obtained from ue via the
thermodynamic relation (4.11), which in our case reads
dusfe _ 197 _ 02
on € df ot
Thus, the compressibility factor derived from the energy route
is

[ uex(n, t)/e
74 =74 4 p— [ a0
s+ 15, /o iz

(5.34)

In(1+£2)

u n -
:ZHS_3x1x2m 4ty (1) + =

(5.35)

where Zjjg plays the role of an integration constant and thus
it can be chosen arbitrarily. It can be shown?®3? that the en-
ergy and the virial routes coincide when the HS system is the
limit of a square-shoulder interaction with vanishing shoulder
width. From that point of view one should take Zjjq = Zg in
Eq. (5.35). On the other hand, a better description is expected
from the Carnahan—Starling (CS) equation of state

l+n+n*—n
1—-n3

Henceforth we will take Ziig = Z53.

758 = (5.36)

c. Compressibility route. Expanding s°Gj(s) in powers
of s it is straightforward to obtain Hi(jl) from Eq. (3.16). This
allows one to use Egs. (3.14) and (3.18) to get the inverse
susceptibility x, "as

o1 T+2n 1420 = 24x1000n(1 — n)y (1)

Xt = s
A=t | [ 2may,0 T
142 142n+36x1 X212 ¥ 1,(1)

(5.37)

that, for an equimolar mixture (x| = x, = %), reduces to

T (I =031 — 4+ 6n0[(1 — N2+ 3014 — )]’
(5.38)
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The associated compressibility factor is then

R Y _
zZ¢ = —/ dn' x;' (). (5.39)
nJo
The above integral has an analytical solution, but it is too cum-
bersome to be displayed here.

3. Low-density expansion

In the standard case of SHS mixtures with symmetric co-
efficients in the potential parameters, the PY closure is known
to reproduce the exact cavity functions to first order in density
and thus the third virial coefficient (see Appendix A 2). How-
ever, this needs not be the case in the present RFA description
for the asymmetric case, as further discussed below. Note that
here, “exact” still refers to the simplified problem (orienta-
tional average + sticky limit) of Secs. III and IV.

The expansion to first order in density of the Laplace
transforms Y;;(s) obtained from Eqs. (4.15), (5.12)—(5.14) and
(5.19)—(5.24) is

Vi) =e (" +sD+Y)p+-,  (540)

where the expressions of the first-order coefficients Yi(jl)(s)
will be omitted here. Laplace inversion yields

V) =T = AT, (5.41)

where y;;> (7)|exact are the exact first-order functions given by
Egs. (A37)-(A39) and the deviations Ayi(; )(r) are

2

2t
AT () = ©Q2 — r)x;— cos™! (5.42)
r

r
2’

AT () = 0@ =i (2/1=r/4—reos™ 2). (543)

AT () = AT ). (5.44)
In the case of the global quantity () the result is
V) = YV Olexaer = ATV, (5.45)
where y“) (7")|exact 18 given by Eq. (A40) and
ATD(r) = 02 — r)xleZth cos™! % (5.46)

While the main qualitative features of the exact cavity func-
tion are preserved, there exist quantitative differences. The
first-order functions i(lll)(r), yé‘;(r), and i(l)(r) predicted by
the RFA account for the exact coefficient of ¢ but do not in-
clude the exact term of order 7> proportional to 7~'cos ~!(r/2).

In the case of y(llz)(r) and i(;l)(r) the exact term of or-

der t proportional to 2,/1 —r2/4 —rcos~!(r/2) is lack-
ing. Also, while the combination iﬁll)(r) —i—i(zlz)(r) - i(ll;(r)
—i(zll)(r) vanishes in the RFA, the exact result is propor-
tional to 27~ 'cos ~!(7/2). In short, the RFA correctly accounts
for the polynomial terms in yl(]1 ) (7)]exact but misses the non-
polynomial terms.

J. Chem. Phys. 138, 094904 (2013)

As for the thermodynamic quantities, expansion of
Egs. (5.31), (5.35), and (5.39) gives

4
Z'=14+41 —3x1xt)n+ 10 [1 — 6x1x21 (1 — §t>:| n?

+ 0@, (5.47)

6
Z" =144 —=3x1xt)n + 10 [1 — 6x1x2t (1 — gt)] n’

+0®@?), (5.48)

: 8
Z¢=14+4( —=3x;x20) 5 + 10 [1 — 6x1 X2t (1 — gt):| n*

+ 0. (5.49)

Comparison with the exact third virial coefficient, Eq. (A50),
shows that the coefficient of 72 is not correct, with the ex-
act factor 4 — 3+/3/m ~ 2.35 replaced by 2, 3, and 4 in
Egs. (5.47)—(5.49), respectively. One consequence is that the
virial and energy routes predict the third virial coefficient
much better than the compressibility route. A possible im-
provement is through the interpolation formula

2" =a(2" + 2§ — Zs) + (1 — ) 2", (5.50)
where o = 3+/3/m — 1 ~ 0.65 with the proviso that Zys
= Zgg in Eq. (5.35). Equation (5.50) then reduces to the CS
equation of state if # = 0 and reproduces the exact third virial
coefficient when ¢ # 0.

4. Phase transition and critical point

In the limit of isotropic interaction (#; = t), our model
reduces to the usual SHS Baxter adhesive one-component
model. In spite of the fact that the model is, strictly speak-
ing, known to be pathological,® it displays a critical be-
havior that was numerically studied in some details by MC
techniques.’>3* The corresponding binary mixture also dis-
plays well defined critical properties that, interestingly, are
even free from any pathological behavior.?! Moreover, the
mechanism behind the pathology of the isotropic Baxter
model hinges crucially on the geometry of certain close-
packed clusters involving 12 or more equal-sized spheres.’!
On the other hand, our Janus model, having frozen orienta-
tions, cannot sustain those pathological configurations.

Within the PY approximation, the critical behavior of the
original one-component Baxter SHS model was studied us-
ing the compressibility and virial routes,'> as well as the en-
ergy route,'” in the latter case with the implicit assumption
Z!s = Z53. Numerical simulations indicate that the critical
point found through the energy route is the closest to numeri-
cal simulation results.?>3?

As the present specific model (with, #;; = 15;/5)) is, in
some sense, intermediate between the fully isotropic Bax-
ter SHS one-component model (that has a full, albeit pecu-
liar, gas-liquid transition) and the equally isotropic HS model
(that, lacking any attractive part in the potential, cannot have
any gas-liquid transition), it is then interesting to ask whether
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TABLE I. Location of the critical point in the RFA, according to different
routes.

Route Te e Z
Virial, Eq. (5.31) 0.02050 0.1941 0.3685
Energy, Eq. (5.35) 0.0008606 0.2779 0.2906
Hybrid virial-energy, Eq. (5.50) 0.01504 0.1878 0.3441

in the equimolar case (x; = x, = %) it still presents a critical
gas-liquid transition.

The answer depends on the route followed to obtain the
pressure. As seen from Eq. (5.38), the compressibility route
yields a positive definite x; ! so that no critical point is pre-
dicted by this route. On the other hand, an analysis of the
virial [Eq. (5.31)], energy [Eq. (5.35) with Zjj4 = Zﬁg], and
hybrid virial-energy [Eq. (5.50)] equations of state reveals the
existence of van der Waals loops with the respective critical
points shown in Table I. The energy route predicts a critical
value 7, about 20 times smaller than the values predicted by
the other two routes.

As an illustration, Fig. 4 shows the binodal and a few
isotherms, as obtained from the virial route.

0.024 ——————————————1——
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0.008
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002 F i i
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FIG. 4. Binodals from the RFA virial route in the equimolar x; = % case.

The phase diagram is depicted in the (, 7) plane (solid line, top panel) and
in the (n~!, nZ?) plane (dashed line, bottom panel). A few characteristic
isotherms are plotted in the bottom panel. The critical point is found at 7,
~ 0.1941, . >~ 0.02050, and n.Z. >~ 0.07153 (indicated by a circle in both
panels).
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5. A modified approximation

The failure of the RFA to reproduce the exact cavity func-
tions to first order in density (and hence the third virial coef-
ficient) for asymmetric interactions (¢; # t;;) reveals the price
paid for using the orientationally averaged quantities g;;(r)
instead of the true pair correlation functions g;;(r).

A simple way of getting around this drawback for suffi-
ciently low values of both 1 and ¢ consists of modifying the
RFA as follows:

¥, () = ¥,0) + AT (1)p. (5.51)
where the functions Aiﬁ})(r) are given by Eqgs. (5.42)—(5.44).
We will refer to this as the modified rational-function ap-
proximation (mRFA). Note that Eq. (5.51) implies that g; ; (r)
— 8,;(r) + A} (r)p, except if (i, ) = (1, 2), in which case
£12(r) = E1a() + AYR (o + AV (D4(r — Dt

Since the extra terms in Eq. (5.51) are proportional to ¢ or
£, this modification can produce poor results for sufficiently
large stickiness (say, ¢ = 1) as, for instance, near the critical
point.

VI. NUMERICAL CALCULATIONS
A. Details of the simulations

In order to check the theoretical predictions previously
reported, we have performed NVT (isochoric-isothermal)
MC simulations using the Kern—Frenkel potential defined in
Egs. (2.1)—~(2.4) with a single attractive SW patch (green in
the color code of Fig. 1) covering one of the two hemispheres,
and with up-down symmetry as depicted in Fig. 2. Particles
are then not allowed to rotate around but only to translate
rigidly.

The model is completely defined by specifying the rela-
tive width A — 1, the concentration of one species (mole frac-
tion) x; = 1 — xy, the reduced density p* = ,003, and the
reduced temperature T * = kgT/e.

In order to make sensible comparison with the RFA
theoretical predictions, we have selected the value A — 1
= 0.05 as a well width, which is known to be well represented
by the SHS limit,** and use Baxter’s temperature parameter
T =[43 — (/T — D]7! [see Eq. (4.4)] instead of T *.
It is interesting to note that, while the unconventional phase
diagram found in the simulations of Ref. 7 corresponded to a
larger well width (A = 1.5), the value A = 1.05 is in fact closer
to the experimental conditions of Ref. 3.

During the simulations we have computed the ori-
entational averaged pair correlation functions defined by
Egs. (3.3) and (3.4), accumulating separate histograms when
zp — z1 > 0 or z; — zp > 0 in order to distinguish between
functions g,,(r) = gi5(r) and g5, (r) = g;,(r).

The compressibility factor Z = BP/p has been evaluated
from the values of y;;(r) at r = o and r = Ao by following
Eq. (4.2) with t;; = (121)‘18,-18]-2, and the reduced excess in-
ternal energy per particle u}, = u./€ has been evaluated di-
rectly from simulations.

In all our simulations, we used N = 500 particles, peri-
odic boundary conditions, an equilibration time of around 10°
MC steps (where a MC step corresponds to a single particle
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FIG. 5. Snapshot of an equilibrated MC simulation under non-equimolar
conditions (x; = 1/5) with Baxter temperature r = 0.1 and density
p* =0.3. In the simulations we used a total number of particles N = 500.

displacement), and a production time of about 10® MC steps
for the structure calculations and up to 5 x 10% MC steps for
the thermophysical calculations. The maximum particle dis-
placement was determined during the first stage of the equili-
bration run in such a way as to ensure an average acceptance
ratio of 50% at production time.

B. Results for non-equimolar binary mixtures

As a preliminary attempt, we consider a binary mixture
under non-equimolar conditions, to avoid possible patholo-
gies arising from the symmetry of the two components akin
to those occurring in ionic systems. As we shall see below, no
such pathologies are found.

In the present case, we consider a system with x; = 1/5
and x, = 1 — x; = 4/5, so that the majority of the spheres have
(green) attractive patches pointing in the direction of —Z.

A snapshot of an equilibrated configuration is shown in
Fig. 5. This configuration was obtained using N = 500 parti-
cles at p* = 0.3 and Baxter temperature T = 0.1 (correspond-
ing to T* >~ 0.354).

Note that the above chosen state point (p* = 0.3 and
7 = 0.1) lies well inside the critical region of the full
Baxter SHS adhesive model as obtained from direct MC
simulations,*>3* although of course the present case is ex-
pected to display a different behavior as only a fraction of
about x1x, = 4/25 of the pair contacts are attractive.

A good insight on the structural properties of the sys-
tem can be obtained from the computation of the radial distri-
bution functions g, (r), g1>(r) = g12(r), g,,(r) = 8, (r), and
82,(r). This is reported in Fig. 6 for a state point at density p*
= 0.5 and Baxter temperature v = 0.2 (corresponding to 7 *
2~ 0.457). Note that in the case of the pair (1, 2) what is actu-
ally plotted is the cavity function y,(r) rather than g ,(r), as
explained in the caption of Fig. 6.
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FIG. 6. Comparison between MC simulations and the theoretical predictions
from RFA (top) and mRFA (bottom) for the orientational averaged distribu-
tion functions g (r), y(r), g»1(r), and g,,(r) under non-equimolar condi-
tions (x; = 1/5) at density p* = 0.5 and Baxter temperature v = 0.2. The
dashed vertical line indicates the range r = A = 1.05 of the (1, 2) SW interac-
tion used in the simulations. Note that the radial distribution function g,(r)
is obtained in the MC case by multiplying y,(r) in the region 1 < r < A
= 1.05 by the factor e!/7" ~ 8.93; in the theoretical cases (SHS limit) g, (r)
is obtained by adding the singular term (12r)_1§12(1)8+(r — 1) to y(r).
The error bars on the MC data are within the size of the symbols used.

The relatively low value T = 0.2 gives rise to clearly
distinct features of the four MC functions g;;(r) (which
would collapse to a common HS distribution function in
the high-temperature limit T — o0). We observe that g,,(r)
~ g, (r) > g,;(r) > ¥;5(r) in the region 1 < r < 1.5
Moreover, g;(r) and g,(r) exhibit a rapid change around
r = 2. This is because when a pair (1, 1) is separated a dis-
tance r & 2 there is enough room to fit a particle of species
2 in between and that particle will interact attractively with
the particle of the pair (1, 1) below it. In the case of the pair
(1, 2) separated a distance r =~ 2, the intermediate particle can
be either of species 1 (interacting attractively with the particle
of species 2 above it) or of species 2 (interacting attractively
with the particle of species 1 below it). The same argument
applies to a pair (2, 2) separated a distance r & 2, but in that
case the intermediate particle must be of species 1 to produce
an attractive interaction; since the concentration of species 1
is four times smaller than that of species 2, the rapid change
of gy (r) around r = 2 is much less apparent than that of
g11(r) and g,(r) in Fig. 6. On the other hand, in a pair (2, 1)
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separated a distance r & 2 an intermediate particle of either
species 1 or of species 2 does not create any attraction and
thus g,,(r) is rather smooth at r = 2. In short, the pair correla-
tion function g,,(r) exhibits HS-like features, g,,(r) exhibits
SW-like features (very high values in the region 1 <r < X and
discontinuity at = A due to the direct SW interaction; rapid
change around » = 2 due to indirect SW interaction), while
211(r) and g,,(r) exhibit intermediate features (rapid change
around r = 2 due to indirect SW interaction).

It is rewarding to notice how well the MC results are re-
produced at a semi-quantitative level by the RFA theory (top
panel of Fig. 6), in spite of the various approximations in-
volved. In this respect, it is worth recalling that while MC
simulations deal with the real Kern—Frenkel potential, albeit
with constrained angular orientations, the RFA theory deals
with the asymmetric binary mixture resulting from the map-
ping described in Sec. II, and this represents an indirect test
of the correctness of the procedure. In addition, the RFA does
not attempt to describe the true SW interaction (i.e., finite A
— 1 and T*) but the SHS limit (X — 1 - Oand T* — 0
with finite 7). This limit replaces the high jump of g,(r)
in the region 1 < r < A by a Dirac’s delta at r = 17 and
the rapid change of g,,(r), g,,(r), and g,,(r) around r = 2
by a kink. Finally, the RFA worked out in Sec. V B results
from a heuristic generalization to asymmetric mixtures (t;
# 7j;) of the PY exact solution for SHS symmetric mixtures
(tij = 7ji),'%2%% but it is not the solution of the PY theory
for the asymmetric problem, as discussed in Sec. V A. As
a matter of fact, the top panel of Fig. 6 shows that some of
the drawbacks of the RFA observed to first order in density
in Sec. V C 3 [see Eqgs. (5.41)—(5.44)] remain at finite den-
sity: in the region 1 < r < 1.5 the RFA underestimates v,,(r),
211(r), and g,,(r), while it overestimates g,,(r). These dis-
crepancies are widely remedied, at least in the region 1 < r
< 1.25, by the mRFA approach [see Eq. (5.51)], as shown
in the bottom panel of Fig. 6. In particular, the contact val-
ues are well accounted for by the mRFA, as well as the prop-
erty g,,(r) >~ g,,(r). We have observed that the limitations of
the correlation functions g;;(r) predicted by the RFA become
more important as the density and, especially, the stickiness
increase and in those cases the mRFA version does not help
much since the correction terms Aig})(r) p, being proportional

to p and to ¢ or 2, become too large.

Next we consider thermodynamic quantities, as repre-
sented by the compressibility factor Z = BP/p and the ex-
cess internal energy per particle uey /€, both directly accessi-
ble from NVT numerical MC simulations. These quantities
are depicted in Fig. 7 as functions of the reduced density p*
and for a Baxter temperature T = 0.1. In both cases, the results
for the RFA theory are also included. In the case of the com-
pressibility factor, all four routes are displayed: compressibil-
ity [Egs. (5.20), (5.37), and (5.39)], virial [Egs. (5.20), (5.30)
and (5.31)], energy [Eq. (5.20) and (5.35) with Zs = ZG31,
and hybrid virial-energy [Eq. (5.50)]. In the case of uc/€,
only the genuine energy route, Eq. (5.33), is considered. Note
that all RFA thermodynamic quantities, including Eq. (5.39),
have explicit analytical expressions.

The top panel of Fig. 7 shows that up to p* ~ 0.7 the
MC data for the compressibility factor are well predicted by
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FIG. 7. Comparison of MC simulations and RFA theory for the thermody-
namics. Both the compressibility factor Z = SP/p (top) and the excess inter-
nal energy per particle uex /€ (bottom) are displayed as functions of density
for the non-equimolar case x; = 1/5 and for Baxter temperature v = 0.1. In
the case of the compressibility factor (top), results for all four routes (com-
pressibility, virial, energy, and hybrid virial-energy) are reported.

the theoretical Z" and, especially, Z* and Z"". Beyond that
point, the numerical results are bracketed by the compress-
ibility route, that overestimates the pressure, and the hybrid
virial-energy route, that on the contrary underestimates it. It
is interesting to note that, while Z¥ < Z"* < Z* to second
order in density [cf. Eqs. (5.47), (5.48), and (5.50)], the dif-
ference Z' — Zps grows with density more rapidly than the
difference Z" — Zji5 and so both quantities cross at a cer-
tain density (p* ~ 0.567 if x; = 1/5 and T = 0.1). Therefore,
even though Z¥ < Z" (because Z};s < Zgs), Z'" is no longer
bracketed by Z" and Z" beyond that density (p* ~ 0.567 in
the case of Fig. 7). On balance, the virial-energy route appears
to be the most effective one in reproducing the numerical sim-
ulations results of the pressure at x; = 1/5 and 7 = 0.1.

As for the internal energy, the bottom panel of Fig. 7
shows that the RFA underestimates its magnitude as a di-
rect consequence of the underestimation of the contact value
v1,(1) [see Eq. (5.33)]. Although not shown in Fig. 7, we have
checked that the internal energy per particle obtained from the
virial equation of state (5.31) via the thermodynamic relation
(5.34) exhibits a better agreement with the simulation data
than the direct energy route.
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FIG. 8. Same as in Fig. 5, but for an equimolar mixture (x; = x, = 1/2).

C. Results for equimolar binary mixtures

Having rationalized the non-equimolar case, the equimo-
lar (x; = x, = 1/2) case can now be safely tackled. The
equimolarity condition makes the system be more akin to the
original Janus model (see Fig. 1) since both spin orientations
are equally represented.

We start with the snapshot of an equilibrated configura-
tion at density p* = 0.3 and Baxter temperature T = 0.1, that
are the same values used in the non-equimolar case. From
Fig. 8 it can be visually inspected that, in contrast to the non-
equimolar case of Fig. 5, the number of particles with spin
up matches that with spin down. This equimolar condition
then facilitates the interpretation of the corresponding struc-
tural properties, as illustrated by the radial distribution func-
tion g;;(r) given in Fig. 9.

This was obtained at a Baxter temperature 7 = 0.2 and
a density p* = 0.5, a state point that is expected to be out-
side the coexistence curve (see below), but inside the lig-
uid region. Again, this is the same state point as the non-
equimolar case previously discussed. Now g;(r) = g (r)
(independently computed) as it should. Notice that the main
features commented before in connection with Fig. 6 per-
sist. In particular, g,,(r) > g,,(r) = g,(r) > y,(r) in the re-
gion 1 < r < 1.5, g, (r) = g5,(r) and g,,(r) present rapid
changes around r = 2, and g,,(r) exhibits a HS-like shape.
Also, as before, the RFA captures quite well the behaviors of
the correlation functions (especially noteworthy in the case
of g;; = g2). On the other hand, the RFA tends to underes-
timate y,,(r) and g,(r) = g,,(r) and to overestimate g,,(r)
in the region 1 < r < 1.5. The use of the modified version
(mRFA) partially corrects those discrepancies near contact,
although the general behavior only improves in the case of
81 (1)

Comparison between Figs. 6 and 9 shows that y,(r)
and g,;(r) are very weakly affected by the change in com-
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FIG. 9. Same as in Fig. 6, but for an equimolar mixture (x; = xy = 1/2).

position. In fact, the spatial correlations between particles of
species 1 and 2 mediated by a third particle (i.e., to first or-
der in density) depend strongly on which particle (1 or 2)
is above o below the other one but not on the nature of the
third intermediate particle, as made explicit by Eqgs. (A38)
and (A39). Of course, higher-order terms (i.e., two or more
intermediate particles) create a composition-dependence on
¥12(r) and g5, (r), but this effect seems to be rather weak. On
the contrary, the minority pair increases its correlation func-
tion g,,(r), while the majority pair decreases its correlation
function g,,(r) in the region 1 < r < 1.5 when the composi-
tion becomes more balanced. Again, this can be qualitatively
understood by the exact results to first order in density [see
Eq. (A37)].

D. Preliminary results on the critical behavior

One of the most interesting and intriguing predictions
of the RFA is the existence of a gas-liquid transition in the
equimolar model, despite the fact that only one of the four
classes of interactions is attractive (see Sec. V C 4). The elu-
siveness of this prediction is reflected by the fact that the com-
pressibility route does not account for a critical point and, al-
though the virial and energy routes do, they widely differ in its
location, as seen in Table I. In this region of very low values
of 7 the hybrid virial-energy equation of state is dominated by
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the virial one and thus the corresponding critical point is not
far from the virial value.

A simple heuristic argument can be used to support the
existence of a true critical point in our model. According to
the Noro—Frenkel (NF) generalized principle of correspond-
ing states,® the critical temperatures of different systems of
particles interacting via a hard-core potential plus a short-
range attraction are such that the reduced second virial co-
efficient B = B,/BI" has a common value B3¢ ~ —1.21.
In our model, the reduced second virial coefficient is
B} =1-3t/4=1-—1/167 [see Eq. (A49)]. Thus, assum-
ing the NF ansatz, the critical point would correspond to
tNF ~ 0.028, a value higher than but comparable to that listed
in Table I from the virial route.

From the computational point of view, a direct assess-
ment on the existence of a gas-liquid transition in the present
model is not a straightforward task. Unlike the original SHS
Baxter model, a Gibbs ensemble MC (GEMC) calculation
for a binary mixture is required to find the coexistence lines.
We are currently pursuing this analysis that will be reported
elsewhere. As a very preliminary study, we here report NVT
results with values of the Baxter temperature close to the crit-
ical value TNF =~ 0.028 expected on the basis of the NF con-
jecture. More specifically, we have considered 7 = 0.030,
0.0205, and 0.018 (corresponding to T* ~ 0.251, 0.229, and
0.223, respectively). The numerical results for the pressure,
along with the RFA theoretical predictions, are displayed in
Fig. 10.

We observe that at T = 0.030 (top panel) the four theo-
retical routes clearly indicate a single-phase gas-like behavior
with a monotonic increase of the pressure as a function of the
density, in consistence with the value 7, >~ 0.0205 obtained
from the RFA virial route. On the other hand, the MC data
show a practically constant pressure between p* = 0.2 and
p* = 0.4, which is suggestive of T = 0.030 being close to
the critical isotherm (remember that tCNF ~ (0.028). The mid-
dle panel has been chosen to represent the critical isotherm
predicted by the RFA-virial equation of state. In that case,
the simulation data present a clear van der Waals loop with
even negative pressures around the minimum. A similar be-
havior is observed at 7 = 0.018 (bottom panel), except that
now the RFA-virial isotherm also presents a visible van der
Waals loop. Whereas the observation of negative values of
isothermal compressibility in the MC simulations can be at-
tributed to finite-size effects and are expected to disappear in
the thermodynamic limit, these preliminary results are highly
supportive of the existence of a gas-liquid phase transition in
our model with a critical (Baxter) temperature 7. ~ 0.03.

In view of the extremely short-range nature of the poten-
tial, the stability of the above liquid phases with respect to the
corresponding solid ones may be rightfully questioned.” This
is a general issue—present even in the original Baxter model,
as well as in the spherically symmetric SW or Yukawa po-
tentials with sufficiently small interaction range*®—3°—that is
clearly outside the scope of the present paper. In any case,
it seems reasonable to expect that at sufficiently low tem-
perature and high density the stable phase will consist of an
fce crystal made of layers of alternating species (1-2-1-2----)
along the z direction.
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FIG. 10. MC simulation data for the scaled pressure nZ = %03 BP as
a function of p* at T = 0.030 (top panel), 0.0205 (middle panel), and
7 = 0.018 (bottom panel) in an equimolar mixture. Densities higher than p*
= 0.7 are not shown because at these very low temperatures the particles tend
to overlap their SW shells and then the calculations slow down considerably.
Also shown are the theoretical results for the four routes of the RFA.

VIl. CONCLUSIONS AND FUTURE PERSPECTIVES

We have studied thermophysical and structural proper-
ties of a Janus fluid having constrained orientations for the
attractive hemisphere. The Janus fluid has been modeled us-
ing a Kern—Frenkel potential with a single SW patch point-
ing either up or down, and studied using numerical NVT MC
simulations.
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The above model has been mapped onto an asymmet-
ric binary mixture where the only memory of the original
anisotropic potential stems from the relative position along
the z-axis of particles of the two species 1 and 2. In this way,
only one [(1, 2) with our choice of labels] out of the four pos-
sible interactions is attractive, the other ones [(1, 1), (2, 1),
and (2, 2)] being simply HS interactions.

In the limit of infinitely short and deep SW interactions
(sticky limit), we discussed how a full analytical theory is
possible. We developed a new formulation for asymmetric
mixtures of the rational-function approximation (RFA), that is
equivalent to the PY approximation in the case of symmetric
SHS interactions, but differs from it in the asymmetric case.
Results from this theory were shown to be in nice agreement
with MC simulations using SW interactions of sufficiently
short width (5% of particle size), both for the structural and
the thermodynamic properties.

The above agreement is rather remarkable in view of the
rather severe approximations involved in the RFA analysis —
that are however largely compensated by the possibility of
a full analytical treatment— and, more importantly, by the
fact that simulations deal with the actual Kern—Frenkel poten-
tial with up-down constrained orientations of the patches and
SW attractions, while the RFA theory deals with the obtained
asymmetric binary mixture and SHS interactions. We regard
this agreement as an important indication on the correctness
of the mapping.

Within the RFA approximation, all three standard routes
to thermodynamics (compressibility, virial, and energy) were
considered. To them we added a weighted average of the virial
and energy routes with a weight fixed as to reproduce the ex-
act third virial coefficient. Somewhat surprisingly, our results
indicate that only the compressibility route fails to display a
full critical behavior with a well-defined critical point. The
existence of a critical point and a (possibly metastable) gas-
liquid phase transition in our model (despite the fact that at-
tractive interactions are partially inhibited) are supported by
the NF generalized principle of corresponding states®> and by
preliminary simulations results. We plan to carry out more de-
tailed GEMC simulations to fully elucidate this point.

The work presented here can foster further activities to-
ward an analytical theory of the anomalous phase diagram in-
dicated by numerical simulations of the (unconstrained) Janus
fluid. We are currently working on the extension of the present
model allowing for more general interactions where the red
hemispheres in Fig. 2 also present a certain adhesion (e.g.,
Tip < T = Ty = Ty < o0). This more general model (to
which the theory presented in Sec. V B still applies) can be
continuously tuned from isotropic SHS (z;; = 7) to isotropic
HS interactions (7;; — o0). The increase in the (Baxter) crit-
ical temperatures and densities occurring when equating the
stickiness of both hemispheres would then mimic the corre-
sponding increase in the location of the critical point upon an
increase of the patch coverage in the Kern—Frenkel model.”
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APPENDIX A: EXACT LOW-DENSITY PROPERTIES
FOR ANISOTROPIC SHS MIXTURES

1. Cavity function to first order in density

To first order in density, the cavity function of an
anisotropic mixture is
1

Yii(®) = 14y (0)p + O(p?), (A1)
where
yl(])(l') = Zxkyi(j!;)k(r)’ (A2)
k
with
Vi) = / dr’ fie(r') fi (r — ). (A3)

Here, f;;(r) = e #%i®™ — 1 is the Mayer function. In the par-
ticular case of the anisotropic SHS potential considered in this
paper,
Jij(r) = fus(r) + 8(r — DIt;j © (cos0) +t;; © (—cos )]
= ﬁHS(r) +1,;8(r — 1) © (cos 0), (A4)

where 1;; = 1;; — 1,

fus(r) = =0 —=r), i) = fus(r) +1;:8( = 1).

(A5)
Inserting Eq. (A4) into Eq. (A3), we get

Yir@® =02 —7) {%(2 =) (4 +r) = (i + ;)T 2 — 1)

o
+ it 2 [2«3@) + ;] — (1 + 1) Ar)

+ (i + tk_jtk,-)ﬁ(r) + tl.;tk_j Eo(r)} , (A6)

where
Ar) = /dr’B(r’ DO —-Ir—rDO(), (A7)
L(r) = /dr’S(r’ —Dé(r —r'| — 1O (), (A8)

Lo(r) = /dr’é(r’ —DS(r—=r|—1)0E)B(z —7).

(A9)
It can be proved that
72 —r), J1—r2/4<cosb <1,
A(r) = { A(r/2,0), |cosf| < \/m7
0, —1 <cosh < —/1—r2/4,
(A10)
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27/, V1 —r2/4 <cosf <1,
L) ={L@/2,6), |cosd| < /1—r2/4, (Al1)
0, —1 <cosf < —/1—r2/4,
27/, V1 —7r2/4 <cosh <1,
Lo(r) = Lo(r/2,0), 0<cosf </1—r2/4, (Al2)
0, cosf <0,
where
A0, 0) = 2mO(cos§) — 1l — 20 sin—! ——080
’ V1= sin6
)
vV 0 — (2
g VT T (A13)
cosf
L(,0) = 9 AL, 0)
YR Y
1[n ) £ cosf :|
= | T +sin! ———— |, (A19)
¢ [2 V1= £2sin6
Lo(€,0) = L(¢,0) — L(¢, T — 6)
2 ,  Lcosf
= Zgin !l — 27 (A15)
14 sinf+/1 — ¢2

In Egs. (Al1) and (A12) we have omitted terms proportional
to 8(r) since they will not contribute to g;;(r). Note the sym-
metry relations A(r) + A(—r) =7 (2 —r), L(r)+ L(-r)
=2m/r, L(r) — L(—1) = Lo(r) — Lo(—T).

The orientational average

1 /2 1
S = [ dosinoylfia (A16)
0

becomes

yl(jl)k(r) =02-r) {%(2 =)@ +7r) = (i + )T — 1)

1 -
+ tyitj 2 [zs(r) + ;} — (e + 1) Ar)

+ (Ut + 10 £0r) + liklkao(r)} : (A17)

where
Ay =n@2 —r)(1 =1 —r2/4) + A(r/2), (A18)
L(r) = 27”(1 —V1—=7r2/4) + L(r/2), (A19)
Lo(r) = 27”(1 — V1 —=r2/4) + Lo(r/2), (A20)

with

o /2
A) = / df sinbA(L, 0)
s

sin™! ¢

=21 =02 —nl—1)+20cos ' €, (A2])
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_ /2
L(E):/ do sin@L(L, 0)

sin~!' ¢

1
= Z(m/ 1— 2 —cos™'¢), (A22)
_ /2
Lo(0) = / ~dO sin0Lo(L. 0)
sin”' £
1
= Z(n 1—€2—2cos™'2). (A23)

2. Second and third virial coefficients

The series expansion of the compressibility factor Z in
powers of density defines the virial coefficients:

Z=1+4Byp+Bsp"+---. (A24)
Using Eq. (A1) in Eq. (4.8), one can identify
2w
B, = ? 1 —3ZX,'.X]'I,'J' y (A25)

ij
21

B=7
ij.k

3% (D]

(A26)

xixjx[(1 = 3855 (1) —

According to Eq. (A17),

_fjl)k( ) = — (ki + 1ji)7 + tit 2w — (1 + tk_f)z(l)

- (t,-;tjk + ) L) + 115 Lo(), (A27)

=’

Vit (1) = =37 + (e + 1307 — tut 527 — (t7 + ;) A (1)
+ (i + ) (D) + 1t Lo(1), (A28)

where
A1) = 4?” —V3, A= -5 (A29)
L) = %’T, L= —%(27( —/3), (A30)
Loh=2. L= (n ~23). (A31)

The second and third virial coefficients can also be ob-
tained from the compressibility equation (3.14). To that end,
note that

hij(0) = B (0)p + R 00 + -+, (A32)
where, according to Eq. (3.13),
2
R0) = xixj2m ( S+ t,,) , (A33)
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n0) = Jxix2m {tﬂ“)(l) + 1575 (1)

2
+ / dr P’[3(r) + y]}<r>]} (A34)
1

Inserting this into Eq. (3.14) and making use of Egs. (A17)—
(A23), one gets XT_I =1+2Byp +3B3p* + - - -, with B, and
B3 given by Eqgs. (A25) and (A26), respectively. Furthermore,
it can be checked that the exact consistency condition (4.12)
is satisfied by Eqgs. (A1), (A2), (A27), and (A28). The veri-
fication of these two thermodynamic consistency conditions
represent stringent tests on the correctness of the results de-
rived in this appendix.

3. Case lji =t =151 =0

In the preceding equations of this appendix we have as-
sumed general values for the stickiness parameters #;. On
the other hand, significant simplifications occur in our con-
strained Janus model, where #; = 15;16,,. More specifically,

yr)=0@e-r) {—(2 — 1A 4r)—xt[rQ2—7)

—tL(r) + 1 Lo(r)] } ; (A35)

YR =02 —r) [%(2 — P+ —1tAD], (A36)
—(1) T 2
Y (r)=02-r) [E(Z—V) @4+r)

2t or
—xpmwt(2—r — —cos )| (A37)

Tr
—(1) T 2
Vi, (r) =02 —r) {5(2 —r)y@+r)

—t[ﬂ(Z—r)—Z 1—r2/4 + rcos™! g]}

(A38)
) = 02 —r) {%(2 — PG +r)
it [z 1—r2/4 —rcos™! %} } . (A39)
V() = 02 — r) [%(2 — P4 +r)

t
— Xx1x27t <2 —r——cos”! Z) :| , (A40)
Tr 2

5 2t
O = 22— xymt (1 . ) ,

B (A41)
4
2-i(2-v).

FH(1) = (A42)
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Ty =22 _r
()_ t(\/_ 3), (A43)
_(1) L) =- 37 + xot |:71 — —(7T + \/_)] (Ad4)
' 3w 27
2 (== +1—, (A45)
—(1)/(1) - _ 3_7[ + tZ (A46)
4 3’
y (1) = M i (1- 1 (A47)
12 142 3 ’
y(l),(l) =— 377[ + x1x22t [ﬂ - ;(TF + \/3):| ) (A48)
6
;Bz =4(1 —3x1x20), (A49)

(&) m=0fi-ouse[1-2 (s-22) ],

(A50)
Hex _ —12nx1x2t{1+§|:1—‘—‘<4—3£> t:|r]}
€ 2 5 b4
+Om?). (AS1)

A(I;’)PE(I;I)DIX B: EVALUATION OF THE COEFFICIENTS
L;’, L', AND L

In order to apply Egs. (3.19) and (3.20), it is convenient
to rewrite Eq. (5.12) as

1
Z_L(S) = Q(s) - [1 = A(s)], B
s

where we have introduced the matrix Q as
Qij(s) = '5°Gy;(s). (B2)
Thus, Egs. (3.19) and (3.20) are equivalent to
Qij(s) = 1+ 5+ OG> (B3)

Expanding A;;(s) in powers of s and inserting the result into
Eq. (B1), one gets
o

=L

)
oLy =1~ > Ay, (B4)

k

1
) (1) 4 40
ki =1- D (Ay +AY). (B5)
k
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where
Lo Lo L®
AP = (1o | — L Uy U
I n+3) ®+2)! @+

(B6)
Equations (B4) and (B5) constitute a linear set of equa-
tions which allow us to express the coefficients Lf;)) and ngl.)

in terms of the coefficients {L(Z)} The result is given by
Egs. (5.15) and (5.16).

It now remains the determination of Lg). This is done by
application of Eq. (4.17), i.e., the ratio first term to second
term in the expansion of e*G;(s) for large s must be exactly
equal to #;;. This is the only point where the stickiness param-
eters of the mixture appear explicitly.

The large-s behavior from Eq. (5.12) is
LY + L + L@ - D)l + 0672,

(B7)

2’ Gij(s) =
where

L o 1 2
D;; = px; <§LEJ-) - ij) + Ll(j)

= px; <L<2> — IL) (B8)
—-n

Comparison of Eq. (4.16) with Eq. (B7) yields Eq. (5.18) and

127; Ly

Oij

=L+ LDy, (BY)
k=1

()

L
—L =L+ ZL(Z)ij. (B10)

Taking into account Egs. (5.16) and (B8), Eq. (B10) becomes
Eq. (5.17).

APPENDIX C: RECOVERY OF THE PSEUDO-PY
SOLUTION

The aim of this appendix is to prove that the pair cor-
relation functions g;;(r) obtained from the RFA method in
Sec. V B satisfy Egs. (5.3) and (5.6).

First, note that the pseudo-OZ relation (5.6) can be
rewritten in the form

S(q)=h@)-[1+h@)] ", (@)
where | is the unit matrix and
2@ = pyTT / dr e, (1), ©2)
Eij(q) = P/XiXj / dr e*"q'rﬁij(r). (C3)
Note that 7;(0) = 1[7;;(0) + 1 (0)], where J;;(0) is defined

by Eq. (3.13).
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The Fourier transform %; (@) of the (orientational aver-
age) total correlation function h;;(r) =g,;;(r) — 1 is related
to the Laplace transform Gj;(s) [see Eq. (3.15)] by

s=iq

Making use of Egs. (5.12)—(5.14), it is possible to obtain, after
some algebra,

/_\,~ 47
c]—(q) = —Ci(o) (sing — gcosq) + —C(l)[Zq sing
q*

VTR

—(¢* —2)cosq] + C(3)[4q(c12 —6)

x sing + 24 — (24 — 12¢% + g*) cos q]

+ 47Tt[jyij (CS)

where the coefficients Cl(j)) s Cl(jl) ,and C(3) are independent of ¢

but depend on the density, the composmon, and the stickiness
parameters. Fourier inversion yields

©0) &) (3.3
[C;)+Cir+Cr’led —r)
+ yij(Dtij84.(r = 1). (C6)

Taking into account Eq. (4.10) we see that Eq. (C6) has the
structure

cij(r) =

Cij(r) = g;;(r) = 3;;(r). €D

But this is not but the PY closure relation (5.3). In passing,
we get the cavity function inside the core:

YO —r)=-[C)+CPr+ e —n.
(C8)
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